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We present results for the moments of nucleon isovector vector and axial generalized parton distribution
functions computed within lattice QCD. Three ensembles of maximally twisted mass clover-improved
fermions simulatedwith a physical value of the pionmass are analyzed. Two of these ensembles are generated
using two degenerate light quarks. A third ensemble is used having, in addition to the light quarks, strange and
charm quarks in the sea. A careful analysis of the convergence to the ground state is carried out that is shown to
be essential for extracting the correct nucleon matrix elements. This allows a controlled determination of the
unpolarized, helicity, and tensor secondMellinmoments. Thevector and axial-vector generalized form factors
are also computed as a function of the momentum transfer square up to about 1 GeV2. The three ensembles
allow us to check for unquenching effects and to assess lattice finite volume effects.
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I. INTRODUCTION

Understanding the structure of the nucleon in terms of its
fundamental constituents is considered a milestone of
hadronic physics. During the past decades, parton distribu-
tion functions (PDFs) measured at experimental facilities,
such as HERA, RHIC, and LHC, have provided valuable
insights into the distribution of quarks and gluons within the
nucleon. Better determination of PDFs has also helped
interpret experimental data and provided input for ongoing
and future experiments. Furthermore, the planned Electron-
Ion Collider envisions a rich program of measurements,
paving theway for nucleon tomography and formapping the
three-dimensional structure of the nucleon.

Obtaining these quantities from first principles is one of the
main objectives of lattice QCD, which has seen remarkable
progress in recent years. In particular, the recent availability of
simulations at the physical values of the quark masses allows
for obtaining nucleon matrix elements without the need for a
chiral extrapolation, thus eliminating a major source of
systematic error. In addition, theoretical progress has enabled
the first exploratory study of the parton distribution functions
themselves on the lattice as compared to the traditional
approach of calculating their moments [1]. While this is a
promising approach, progress still needs to be made in order
to be able to have a direct quantitative comparison with
experiment. Therefore, the calculation of moments on the
lattice is crucial for comparing results with experiment,
especially as statistical precision for these quantities increases
and remaining systematic uncertainties, such as those from
the finite lattice spacing, from the finite volume, and from
excited state contaminations, come under control.
The generalized parton distributions (GPDs) occur in

several physical processes, such as deeply virtual Compton
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scattering and deeply virtual meson production. Their for-
ward limit coincides with the usual parton distributions, and
their first moments are related to the nucleon form factors.
Since GPDs can be accessed in high energy processes where
QCD factorization applies, the amplitude can be written as a
convolution of a hard perturbative kernel and the nonpertur-
bative universal parton distributions. GPDs are defined as
matrix elements of bilocal operators separated by a lightlike
interval. A common approach is to proceed with an operator
product expansion that leads to a tower of local operators, the
nucleon matrix elements of which can be evaluated within
lattice QCD. In this paper, we compute the nucleon matrix
elements of the one-derivative operators

Oμν
V ¼ ψ̄γfμD

↔
νg τ

3

2
ψ ;

Oμν
A ¼ ψ̄γ5γ

fμD
↔

νg τ
3

2
ψ ; and

Oμνρ
T ¼ ψ̄σ½μfν�D

↔
ρg τ

3

2
ψ ; ð1Þ

where ψ and ψ̄ are light quark flavor doublets, i.e.,
ψ̄ ¼ ðū; d̄Þ. In this work, we consider isovector quantities,
obtained using the Pauli matrix τ3 as in Eq. (1). The curly
brackets denote symmetrization and the square brackets
antisymmetrization of the enclosed indices, with subtraction
of the trace implied whenever symmetrizing and

D
↔

μ ¼
1

2
ðD⃗μ − D⃖μÞ; Dμ ¼

1

2
ð∇μ þ∇�

μÞ ð2Þ

with ∇μ and ∇�
μ denoting the forward and backward deriv-

atives on the lattice, respectively. These nucleon matrix

elements can be expanded in terms of generalized form
factors (GFFs), which are Lorentz invariant functions of the
momentum transfer squared. At zero momentum transfer,
these nucleon matrix elements yield the second Mellin
moments of the unpolarized, helicity, and transversity PDFs.
In this paper we use three ensembles of twisted mass

fermions with two values of the lattice spacing and two
physical volume sizes to compute the three second Mellin
moments.We also compute theGFFs related to the vector and
axial matrix elements. The parameters of the three ensembles
allow us to assess volume effects and check for any indication
of unquenching due to strange and charm quarks.
The remainder of this paper is organized as follows: in

Sec. II we present the matrix elements used and expressions
for the GFFs obtained, in Sec. III we present the method-
ology employed for extracting the GFFs from the lattice,
details on the lattice ensembles used, and parameters of our
lattice analysis, with Sec. IV detailing the renormalization
procedure employed. In Sec. V we provide our results, and
in Sec. VI we give our conclusions.

II. MATRIX ELEMENTS

We consider the nucleon matrix elements hNðp0; s0Þj
Oμν

H jNðp; sÞi of the three one-derivative operators of Eq. (1)
where s and p (s0 and p0) are the initial (final) spin and
momentum of the nucleon, and H denotes the γ structure
corresponding to the vector (V), axial (A), and tensor (T)
operators. In the isovector combination, the disconnected
contributions cancel, leaving only connected contributions.
The nucleon matrix elements of the operators of Eq. (1) can
bewritten in terms of the generalized form factors as follows:

hNðp0; s0ÞjOμν
V jNðp; sÞi ¼ ūNðp0; s0Þ 1

2

�
A20ðq2ÞγfμPνg þ B20ðq2Þ

iσfμαqαPνg

2mN
þ C20ðq2Þ

1

mN
qfμqνg

�
uNðp; sÞ;

hNðp0; s0ÞjOμν
A jNðp; sÞi ¼ ūNðp0; s0Þ i

2

�
Ã20ðq2ÞγfμPνgγ5 þ B̃20ðq2Þ

qfμPνg

2mN
γ5
�
uNðp; sÞ;

hNðp0; s0ÞjOμνρ
T jNðp; sÞi ¼ ūNðp0; s0Þ 1

2

�
AT20ðq2Þiσ½μfν�Pρg þ ÃT20ðq2Þ

P½μqfν�Pρg

m2
N

þ BT20ðq2Þ
γ½μqfν�Pρg

2mN
þ B̃T20ðq2Þ

γ½μPfν�qρg

mN

�
uNðp; sÞ; ð3Þ

where uN are nucleon spinors, q ¼ p0 − p is the momentum transfer, P ¼ ðp0 þ pÞ=2, andmN is the nucleon mass. For zero
momentum transfer, i.e., p ¼ p0, we have

hNðp; s0ÞjOμν
V jNðp; sÞi ¼ 1

2
A20ð0Þ⟪γfμpνg⟫;

hNðp; s0ÞjOμν
A jNðp; sÞi ¼ i

2
Ã20ð0Þ⟪γfμpνgγ5⟫;

hNðp; s0ÞjOμνρ
T jNðp; sÞi ¼ i

2
AT20ð0Þ⟪σ½μfν�pρg⟫; ð4Þ
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where we use the shorthand notation ⟪ · ⟫ to denote an
enclosed quantity between nucleon spinors ūN and uN . The
generalized form factors in the forward limit are related to
the isovector momentum fraction, helicity, and transversity
moments via hxiu−d ¼ A20ð0Þ, hxiΔu−Δd ¼ Ã20ð0Þ, and
hxiδu−δd ¼ AT20ð0Þ.

III. METHODOLOGY

A. Gauge ensembles

We use three gauge ensembles with the parameters listed
in Table I. Two ensembles are generated with two mass
degenerate (Nf ¼ 2) up and down quarks with their mass
tuned to reproduce the physical pion mass [2] using two
lattice volumes of 483 × 96 and 643 × 128 allowing one to
test for finite volume dependence. We will refer to these
ensembles as the small Nf ¼ 2 ensemble and large Nf ¼ 2
ensemble in addition to the identifier in the first column of
Table I. The third ensemble is generated on a lattice of
643 × 128 [3] with two degenerate light quarks and the
strange and charm quarks in the sea (Nf ¼ 2þ 1þ 1) with
masses tuned to reproduce, respectively, the physical mass
of the pion, kaon, and Ds-meson, keeping the ratio of charm
to strange quark mass mc=ms ≃ 11.8 [4]. For the valence
strange and charm quarks we use Osterwalder-Seiler
fermions [5] with their masses tuned to reproduce the
mass of the Ω− and the Λþ

c baryons [6], respectively. We
will refer to this ensemble simply as the Nf ¼ 2þ 1þ 1
ensemble, and to all three ensembles used as physical point
ensembles. The lattice spacing a is determined using the
nucleon mass. The procedure employed to determine a is
outlined in Ref. [7].
These ensembles use the twisted mass fermion discreti-

zation scheme [8,9] and include a clover term [10]. Twisted
mass fermions (TMF) provide an attractive formulation for
lattice QCD allowing for automatic OðaÞ improvement [9]
of physical observables, an important property for evaluat-
ing the quantities considered here. The clover term added to
the TMF action allows for reduced Oða2Þ breaking effects
between the neutral and charged pions [2]. This leads to the
stabilization of physical point simulations while retaining at
the same time the particularly significantOðaÞ improvement
that the TMF action features. For more details on the TMF

formulation see Refs. [11–13] and for the simulation
strategy Refs. [2,3,14,15].

B. Correlation functions

Extraction of the nucleon matrix elements on the lattice
proceeds with the evaluation of two- and three-point
correlation functions. All expressions that follow are in
Euclidean space. The three-point functions are given by

CμνðΓ; q⃗; p⃗0; ts; tins; t0Þ
¼

X
x⃗ins;x⃗s

eiðx⃗ins−x⃗0Þ·q⃗e−iðx⃗s−x⃗0Þ·p⃗0

× Tr½ΓhJNðts; x⃗sÞOμν
H ðtins; x⃗insÞJ̄Nðt0; x⃗0Þi�; ð5Þ

where q ¼ p0 − p is the momentum transfer. We give the
general expressions for the matrix elements and corre-
sponding correlation functions using any operator insertion
Oμν

H with μν arbitrary with the understanding that for the
tensor operator there is an additional index ρ. For the case
of the moment of the tensor PDF, where we need a third
index, we will explicitly include all indices. The initial
coordinates x0 are referred to as the source position, xins as
the insertion, and xs as the sink. Γ is a projector acting on
spin indices, and we will use either the unpolarized Γ0 ¼
1
2
ð1þ γ0Þ or the three polarized Γk ¼ iγ5γkΓ0 combina-

tions. For JN, we use the standard nucleon interpolating
operator

JNðx⃗; tÞ ¼ ϵabcuaðxÞ½u⊺bðxÞCγ5dcðxÞ�; ð6Þ

where u and d are up- and down-quark spinors and C ¼
γ0γ2 is the charge conjugation matrix. Inserting a complete
set of states in Eq. (5), one obtains a tower of hadron matrix
elements with the quantum numbers of the nucleon
multiplied by overlap terms and time dependent exponen-
tials. For large enough time separations, the excited state
contributions are suppressed compared to the nucleon
ground state and one can then extract the desired matrix
element. Knowledge of two-point functions is required in
order to cancel time dependent exponentials and overlaps.
They are given by

TABLE I. Simulation parameters for the Nf ¼ 2þ 1þ 1 [3] and Nf ¼ 2 [2] ensembles used in this work. When two errors are given,
the first error is statistical and the second is systematic. The lattice spacing is determined using the nucleon mass, as explained in Ref. [6]
for the cA2.09.48 ensemble and in Ref. [7] for the cB211.072.64 ensemble. For the Nf ¼ 2 ensembles, the systematic error in the lattice
spacing is due to the fact that the pion mass is underestimated and an interpolation is carried out using one-loop chiral perturbation
theory to interpolate to the physical pion mass. More details can be found in Ref. [7]. The systematic error in the pion mass when
expressed in physical units is due to the error in the lattice spacing. The volume given in the fifth column is in lattice units.

Ensemble cSW β Nf Vol. mπL a [fm] mN=mπ amπ amN mπ [GeV] L [fm]

cB211.072.64 1.69 1.778 2þ 1þ 1 643 × 128 3.62 0.0801(4) 6.74(3) 0.05658(6) 0.3813(19) 0.1393(7) 5.12(3)
cA2.09.64 1.57551 2.1 2 643 × 128 3.97 0.0938(3)(1) 7.14(4) 0.06193(7) 0.4421(25) 0.1303(4)(2) 6.00(2)
cA2.09.48 1.57551 2.1 2 483 × 96 2.98 0.0938(3)(1) 7.15(2) 0.06208(2) 0.4436(11) 0.1306(4)(2) 4.50(1)
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CðΓ0; p⃗; ts; t0Þ ¼
X
x⃗s

e−iðx⃗s−x⃗0Þ·p⃗Tr½Γ0hJNðts; x⃗sÞJ̄Nðt0; x⃗0Þi�:

ð7Þ

In order to increase the overlap of the interpolating
operator JN with the proton state and thus decrease overlap
with excited states we use Gaussian smeared quark fields
via [16,17],

ψa
smearðt; x⃗Þ ¼

X
y⃗

Fabðx⃗; y⃗;UðtÞÞψbðt; y⃗Þ; ð8Þ

F ¼ ð1þ αHÞn;

Hðx⃗; y⃗;UðtÞÞ ¼
X3
i¼1

½UiðxÞδx;y−{̂ þU†
i ðx − {̂Þδx;yþ{̂�; ð9Þ

with APE smearing [18] applied to the gauge fields Uμ

entering the Gaussian smearing hopping matrix H. For the
APE smearing [18] we use 50 iteration steps and
αAPE ¼ 0.5. The Gaussian smearing parameters are tuned
to yield approximately a root mean square radius for the
nucleon of about 0.5 fm, which has been found to yield
early convergence of the nucleon two-point functions to the
nucleon mass. This can be achieved by a combination of the
smearing parameters α and n. We use α ¼ 0.2 and n ¼ 125
for the Nf ¼ 2þ 1þ 1 ensemble, and α ¼ 0.2 and 4.0 and
n ¼ 90 and 50 for the large and small Nf ¼ 2 ensembles,
respectively.

C. Extraction of matrix element

In order to cancel time dependent exponentials and
unknown overlaps of the interpolating fields with the
physical state one constructs appropriate ratios of three-
to two-point functions. We consider an optimized ratio
constructed such that the two-point functions entering in
the ratio utilize the shortest possible time separation to keep
the statistical noise minimal as well as benefit from
correlations. The ratio [19–21] used is given by

RμνðΓ; p⃗0; p⃗; ts; tinsÞ

¼ CμνðΓ; p⃗0; p⃗; ts; tinsÞ
CðΓ0; p⃗0; tsÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΓ0; p⃗; ts − tinsÞCðΓ0; p⃗0; tinsÞCðΓ0; p⃗0; tsÞ
CðΓ0; p⃗0; ts − tinsÞCðΓ0; p⃗; tinsÞCðΓ0; p⃗; tsÞ

s
;

ð10Þ

where from now on ts and tins are taken to be relative to the
source t0; i.e., we assume t0 ¼ 0 without loss of generality.
In the limit of large time separations, ðts − tinsÞ ≫ a and
tins ≫ a, the lowest state dominates and the ratio becomes
time independent,

RμνðΓ; p⃗0; p⃗; ts; tinsÞ ⟶
ts−tins≫a

tins≫a
ΠμνðΓ; p⃗0; p⃗Þ: ð11Þ

The generalized form factors are then extracted from
linear combinations of ΠμνðΓ; p⃗0; p⃗Þ. In our approach, we
use sequential inversions through the sink, fixing the sink
momentum p⃗0 ¼ 0, which implies that the source momen-
tum is fixed via momentum conservation to p⃗ ¼ −q⃗. The
general expressions relating ΠμνðΓ; q⃗Þ to the generalized
form factors are provided in Appendix A. For the special
case of zero momentum transfer q⃗ ¼ 0, the expressions of
Appendix A simplify to

Π00
V ðΓ0Þ ¼ −

3mN

4
hxiu−d;

Πkk
V ðΓ0Þ ¼ −

mN

4
hxiu−d;

Πj0
A ðΓkÞ ¼ −

imN

2
δjkhxiΔu−Δd;

Πμνρ
T ðΓkÞ ¼ iϵμνρk

mN

8
ð2δ0ρ − δ0μ − δ0νÞhxiδu−δd; ð12Þ

with j, k ¼ 1, 2, 3 and μ, ν, ρ ¼ 0, 1, 2, 3. All expressions
are given in Euclidean space.
The GFFs, given in Appendix A, depend only on the

momentum transfer squared (Q2 ¼ −q2), while ΠμνðΓ; q⃗Þ
depends on q⃗. The system is therefore overconstrained, and
thus for extracting the GFFs, we form the matrix G defined
by

ΠμνðΓ; q⃗Þ ¼ GμνðΓ; q⃗ÞFðQ2Þ; ð13Þ

where G is an array of kinematic coefficients given in the
expressions in Appendix A and F is the vector of GFFs. For
example for the vector operator Oμν

V , F
⊺ ¼ ðA20; B20; C20Þ,

and thus G is an N × 3 matrix where N is the number of
elements contributing to a given value of Q2. To obtain F,
we will use the singular value decomposition (SVD) of G,
combined with three methods for the identification of
excited states.

D. Treatment of excited states

Ensuring that the asymptotic behavior of Eq. (11) holds
is a delicate process. This is because the statistical noise
exponentially increases with increasing sink-source sepa-
ration ts. In our analysis, we use three methods to study the
dependence of the three- and two-point correlation func-
tions on ts and ts − tins. This allows us to study the effect of
excited states and thus better identify the convergence to
the desired nucleon matrix element. The methods employed
are as follows:
Plateau method: In this method we use the ratio in

Eq. (10) in search of a time-independent window (plateau)
and extract a value by fitting to a constant. We then seek
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convergence of the extracted plateau value as we increase ts
that then produces the desired matrix element.
Two-state method: Within this method, we fit the two-

and three-point functions keeping terms up to the first
excited state; namely we use

Cðq⃗; tsÞ ¼ c0ðq⃗Þe−ENðq⃗Þts þ c1ðq⃗Þe−E�ðq⃗Þts ; ð14Þ
CμνðΓ; q⃗; ts; tinsÞ ¼ Aμν

00ðΓ; q⃗Þe−mNðts−tinsÞ−ENðq⃗Þtins

þ Aμν
01ðΓ; q⃗Þe−mNðts−tinsÞ−E�ðq⃗Þtins

þ Aμν
10ðΓ; q⃗Þe−m

�
Nðts−tinsÞ−ENðq⃗Þtins

þ Aμν
11ðΓ; q⃗Þe−m

�
Nðts−tinsÞ−E�ðq⃗Þtins ; ð15Þ

wheremN (m�
N) and ENðq⃗Þ [E�ðq⃗Þ] are the mass and energy

of the ground (first excited) state with momentum q⃗,
respectively. The ground state corresponds to a single
particle, so its energy at finite momentum is given by
the continuum dispersion relation, ENðq⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

N

p
,

where q⃗ ¼ 2π
L n⃗ with n⃗ a lattice vector with components

ni ∈ ð− L
2a ;

L
2a�. In Appendix B we check that the continuum

dispersion relation is satisfied for all Q2 values considered
in this work. The first excited state, on the other hand, is
allowed to be a two-particle state, although we expect the
overlap to be volume suppressed. We fit the two-point
function at zero momentum and the two-point function
with momentum q⃗ yielding the fit parameters mN , m�

N ,

E�ðq⃗Þ, c0ð0⃗Þ, c1ð0⃗Þ, c0ðq⃗Þ, and c1ðq⃗Þ. The three-point
function is then fitted for the four fit parameters A00, A01,
A10, and A11. For extracting the moments in the case of zero
momentum transfer, the two-point function fit reduces to
four parameters and the three-point function fit to three.
The errors of the fit parameters of the two-point functions
are propagated by carrying out the fits within the resam-
pling method used for each ensemble, i.e., within jackknife
for the case of the Nf ¼ 2þ 1þ 1 ensemble for which all
results are obtained on the same configurations, and within
a bootstrap for the Nf ¼ 2 ensembles (see Table II). The
desired matrix element is then given by

ΠμνðΓ; q⃗Þ ¼ Aμν
00ðΓ; q⃗Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ð0Þc0ðq⃗Þ

p : ð16Þ

Summation method: Summing over tins in the ratio of
Eq. (10) yields a geometric sum [22,23] from which we
obtain

SμνðΓ; q⃗; tsÞ ¼
Xts−2a
tins¼2a

RμνðΓ; q⃗; ts; tinsÞ

¼ cþ ΠμνðΓ; q⃗Þ × ts þOðe−ðm�
N−mNÞtsÞ; ð17Þ

where the ground state contribution, ΠμνðΓ; q⃗Þ, is extracted
from the slope of a linear fit with respect to ts. The

advantage of the summation method is that, despite the fact
that it still assumes a single state dominance, the excited
states are suppressed exponentially with respect to ts
instead of ts − tins that enters in the plateau method. On
the other hand, the errors tend to be larger.
For all three methods, we carry out correlated fits to the

data; i.e., we compute the covariance matrix vij between
jackknife or bootstrap samples and minimize

χ2c ¼ ½yi − fðb⃗; fts; tinsgÞ�v−1ij ½yj − fðb⃗; ft; tinsgÞ�; ð18Þ

where yi are the lattice data, i.e., RμνðΓ; q⃗; ts; tinsÞ,
CμνðΓ; q⃗; ts; tinsÞ, or SμνðΓ; q⃗; tsÞ depending on whether
we are using the plateau, two-state, or summation method,
respectively; fðb⃗; fts; tinsgÞ is the fit function, which
depends on the variables tins and/or ts according to which

TABLE II. Statistics used for evaluating the three- and two-point
functions for the three ensembles. Columns from left to right are
the sink-source time separation, the number of configurations
analyzed, the number of source positions per configuration chosen
randomly, and the total number of measurements for each time
separation. Rows with “All” in the first column refer to statistics of
the two-point function, while the rest indicate statistics for three-
point functions. For the entries indicated with an asterisk ( �), three-
point functions are only available with projector Γ0.

ts=a Nconf Nsrcs Nmeas

cB211.072.64: Nf ¼ 2þ 1þ 1, 643 × 128

Three-point correlators
8 750 1 750
10 750 2 1500
12 750 4 3000
14 750 6 4500
16 750 16 12000
18 750 48 36000
20 750 64 48000

Two-point correlators
All 750 264 198000

cA2.09.64: Nf ¼ 2, 643 × 128

Three-point correlators
12 333 16 5328
14 515 16 8240
16 515 32 16480

Two-point correlators
All 515 32 16480

cA2.09.48: Nf ¼ 2, 483 × 96

Three-point correlators
10,12,14 578 16 9248
16� 530 88 46640
18� 725 88 63800

Two-point correlators
All 2153 100 215300
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of the three methods we use for the extraction of the matrix
element; and b⃗ is a vector of the parameters being fitted for.
In the most straightforward approach, one minimizes χ2c

of Eq. (18) once for each combination of current indices μ
and ν, the momentum vectors q⃗ that contribute to the same
Q2, and the projection matrix Γ, to populate the elements of
ΠμνðΓ; q⃗Þ. Then, a second minimization is performed to
minimize

χ2 ¼
X

μ;ν;q⃗∈Q2

�
GμνðΓ; q⃗ÞFðQ2Þ − ΠμνðΓ; q⃗Þ

wμνðΓ; q⃗Þ
�
2

; ð19Þ

where w is the statistical error of Π. Alternatively, the
correlated generalization of Eq. (19) can be used, in which
the covariance between bootstrap and jackknife samples of
ΠμνðΓ; q⃗Þ are used. Minimizing χ2 in Eq. (19) is equivalent
to taking

F ¼ V†Σ−1U†Π̃; ð20Þ

where

Π̃μνðΓ; q⃗Þ≡ ½wμνðΓ; q⃗Þ�−1ΠμνðΓ; q⃗Þ;
G̃μνðΓ; q⃗Þ≡ ½wμνðΓ; q⃗Þ�−1GμνðΓ; q⃗Þ; and

G̃ ¼ UΣV: ð21Þ

In the last line, we have used the SVD of G̃ where U is a
Hermitian N × N matrix with N the number of combina-
tions of μ, ν, Γ and components of q⃗ that contribute and V a
HermitianM ×M matrix withM the number of GFFs, i.e.,
typicallyM ≪ N. Σ is the pseudodiagonalN ×M matrix of
the singular values of G̃.
As pointed out in Ref. [24], a more economical approach

arises if one combines the SVD with the fitting procedure.
In the case of correlated fits this is also more robust since it
avoids instabilities. We thus adopt it also here. From
Eq. (13), we observe that the product U†R, with R the
ratio of Eq. (10) [or C in Eq. (5) for the case of the two-state
fit method and S in Eq. (17) for the case of the summation]
is an N-length vector of which only the first M elements
contribute to the GFFs. Rather than N fits to the individual
components of RμνðΓ; q⃗; ts; tinsÞ, CμνðΓ; q⃗; ts; tinsÞ, or
SμνðΓ; q⃗; tsÞ we can therefore perform M fits to the M
first elements of the product U†R, U†C, or U†S. This
“single step” approach, as it is referred to in Ref. [24], will
be employed for the results that follow. We note that the
single step approach produces exactly the same values and
errors as analyzing the original system, i.e., using Eq. (18)
to obtain Πμνðq⃗;ΓÞ in the first step and then Eq. (19) to
obtain F in a second step.

E. Evaluation of correlators and statistics

For each of the three ensembles, we calculate three- and
two-point functions from multiple randomly chosen source
positions. The three-point functions are calculated for
multiple sink-source separations to study the contribution
of excited states. The statistics are listed in Table II.
Since we use sequential inversions through the sink, an

additional inversion is required for each sink-source time
separation ts and projector. As mentioned, the sink momen-
tum p⃗0 is set to zero. We invert for all four projectors Γμ,
μ ¼ 0, 1, 2, 3, unless otherwise indicated in Table II. For the
Nf ¼ 2þ 1þ 1 and small Nf ¼ 2 ensemble, increased
statistics are available for two-point functions compared
to three-point functions. This is because for these two
ensembles we have also evaluated disconnected contribu-
tions, which require higher statistics. We use the full set of
available two-point functions here to improve the accuracy
of our two-state fits. The results for the disconnected
contributions will appear in an upcoming publication.
For the efficient inversion of the twisted mass Dirac

operator, we use an appropriately tuned multigrid algorithm
[25–27]. This is essential for reaching the Oð106Þ inver-
sions per ensemble listed in Table II.
It is worth noting that the use of χ2c as defined in Eq. (18),

which takes into account the covariance of our data in the
fit, requires a relatively well conditioned covariance matrix,
which in turn requires high statistics, such as those listed in
Table II. Indicatively, in Fig. 1 we show for the Nf ¼
2þ 1þ 1 ensemble the correlation matrix of the two-point
correlation function, defined as

v̄tt0 ¼
vtt0

σtσt0
¼ h½hCðtÞi − CðtÞ�½hCðt0Þi − Cðt0Þ�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hC2ðtÞi − hCðtÞi2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hC2ðt0Þi − hCðt0Þi2
p ;

ð22Þ

where σt is the standard deviation of CðtÞ and all expect-
ation values are to be taken over configurations. Figure 1
shows v̄tt0 in the range of time slices used in our analysis,

FIG. 1. Correlation matrix v̄tt0 as defined in Eq. (22) for the case
of the two-point correlation function for the Nf ¼ 2þ 1þ 1
ensemble, cB211.072.64, for the first 35 time slices, i.e.,
t; t0 ∈ ½0; 35�. From left to right, we show v̄tt0 using Nconf ¼
30, 150, and 750 configurations.
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starting from 30 configurations and quintupling twice to
reach the maximum of 750 configurations. As can be seen,
for Nconf ¼ 750, we obtain a well-defined covariance, with
dominant diagonal and suppressed off-diagonal fluctua-
tions, as compared to Nconf ¼ 30 and Nconf ¼ 150.

IV. RENORMALIZATION FUNCTIONS

The bare matrix elements of the operators defined in
Eqs. (1) must be renormalized in order to obtain physical
quantities. The renormalization functions (Z-factors) for
the isovector operators considered here are multiplicative
and are computed nonperturbatively. We obtain the Z-
factors using five ensembles at different values of the pion
mass, so that the chiral limit can be taken. For a proper
chiral extrapolation we compute the Z-factors for degen-
erate quark flavors. For the Nf ¼ 2 we use the already
generated gauge configurations while for the Nf ¼ 2þ 1þ
1 ensemble one needs to generate Nf ¼ 4 ensembles with
the same β value. In Table III we provide details on the
Nf ¼ 4 ensembles used and the obtained Z-factors on each
ensemble, while the results for Nf ¼ 2 ensembles are
extensively discussed in Ref. [28].
We present here a summary of the methodology

employed and discuss the results for the renormalization
functions. We employ the Rome-Southampton method (RI0
scheme) [29] to compute them nonperturbatively and
impose the conditions

Zq ¼
1

12
Tr½ðSLðpÞÞ−1SBornðpÞ�jp2¼μ2

0
; ð23Þ

Z−1
q ZO

1

12
Tr½ΓLðpÞΓBorn−1ðpÞ�jp2¼μ2

0
¼ 1: ð24Þ

The momentum p is set to the RI0 renormalization scale, μ0,
SBorn (ΓBorn) is the tree-level value of the fermion propa-
gator (operator), and the trace is taken over spin and color
indices. The momentum source method introduced in
Ref. [30] and employed in Refs. [28,31,32] for twisted
mass fermions is utilized. This method offers high stat-
istical accuracy using a small number of gauge configu-
rations. In this work we use ten configurations to achieve a

per mil accuracy. To reduce discretization effects we use
democratic momenta; namely we consider the same spatial
components

ðapÞ≡ 2π

�
2nt þ 1

2T=a
;
nx
L=a

;
nx
L=a

;
nx
L=a

�
;

nt ∈ ½2; 10�; nx ∈ ½2; 5�; ð25Þ

where T=a (L=a) is the temporal (spatial) extent of the
lattice in lattice units, and we restrict the momenta up to
ðapÞ2 ∼ 7. An important constraint for the chosen momenta
is to suppress the non-Lorentz invariant contributionsP

i p
4
i =ð

P
i p

2
i Þ2 < 0.3 [33]. This is based on empirical

arguments, as the aforementioned ratio appears in Oða2Þ
terms in the perturbative expressions for the Green's
functions, and is expected to have a non-negligible con-
tribution to higher orders in perturbation theory (see
Refs. [28,31,32] for technical details). It is worth mention-
ing that we improve the nonperturbative estimates by
subtracting finite lattice effects [28,34]. The latter are
computed to one-loop in perturbation theory and to all
orders in the lattice spacing, Oðg2a∞Þ. These artifacts are
present in the nonperturbative vertex functions of the
fermion propagator and fermion operators under study.
To obtain the renormalization functions in the chiral limit

we perform an extrapolation using a quadratic fit with
respect to the pion mass of the ensemble, that is,
aRI

0 ðμ0Þ þ bRI
0 ðμ0Þ ·m2

π , where aRI
0
and bRI

0
depend on

the scheme and the scale. As demonstrated in our earlier
work on the renormalization functions, there is a negligible
dependence on the pion mass [35], which is confirmed by
the results on the Nf ¼ 4 ensembles of Table III. Allowing
b ≠ 0 and performing a linear extrapolation with respect to
m2

π the data yield a slope that is compatible with zero within
the small uncertainties. Selected data for all operators are
shown in Table III on each ensemble, at a scale ðaμ0Þ2 ¼ 2,
while the chiral extrapolation for this scale is shown in
Fig. 2 for the three renormalization functions needed to
renormalize hxiq, hxiΔq, and hxiδq, namely Zμ¼ν

V , Zμ≠ν
A , and

Zμ≠ν≠ρ≠μ
T , respectively. As can be seen, the pion mass

TABLE III. Parameters and resulting Z-factors for the Nf ¼ 4 ensembles needed for the renormalization of the Nf ¼ 2þ 1þ 1
ensemble (cB211.072.64). The first column is the twisted bare mass parameter and the second and third columns are the pion mass in
lattice and physical units, respectively. The remaining columns give the Z-factors in the RI0 scheme at ðaμ0Þ2 ¼ 2. The number in the
parentheses is the statistical error.

β ¼ 1.778, a ¼ 0.0801ð4Þ fm, ðL3 × TÞ ¼ ð243 × 48Þ
aμ amπ mπ [MeV] Zμ¼ν

V Zμ≠ν
V Zμ¼ν

A Zμ≠ν
A Zμ≠ν¼ρ

T Zμ≠ν≠ρ≠μ
T Zμ¼ν≠ρ

T

0.0060 0.14836 366(2) 1.1675(3) 1.1835(4) 1.1921(4) 1.1814(4) 1.1863(4) 1.2058(5) 1.1527(3)
0.0075 0.17287 427(2) 1.1672(2) 1.1830(2) 1.1917(2) 1.1808(2) 1.1860(3) 1.2055(2) 1.1527(2)
0.0088 0.18556 458(2) 1.1673(2) 1.1831(2) 1.1918(2) 1.1808(2) 1.1860(2) 1.2054(3) 1.1528(2)
0.0100 0.19635 485(2) 1.1676(3) 1.1836(3) 1.1922(3) 1.1815(3) 1.1866(2) 1.2061(3) 1.1530(1)
0.0115 0.21028 519(3) 1.1678(3) 1.1839(4) 1.1927(3) 1.1816(4) 1.1869(4) 1.2064(4) 1.1534(3)

MOMENTS OF NUCLEON GENERALIZED PARTON … PHYS. REV. D 101, 034519 (2020)

034519-7



dependence is negligible and within the statistical
uncertainties.
In order to compare lattice values to experimental results

one must convert to the same renormalization scheme and
use the same reference scale μ̄. We employ the commonly
used MS-scheme at μ̄ ¼ 2 GeV. The conversion from RI0

to the MS scheme uses the intermediate renormalization
group invariant (RGI) scheme, which is scale independent.
Therefore, one may use this property to relate the renorm-
alization functions between two schemes, and in this case
the RI0 and MS:

ZRGI
O ¼ ZRI0

O ðμ0ÞΔZRI0
O ðμ0Þ

¼ ZMS
O ð2 GeVÞΔZMS

O ð2 GeVÞ: ð26Þ

The conversion factor can be extracted from the above
relation

CRI0;MS
O ðμ0; 2 GeVÞ≡ ZMS

O ð2 GeVÞ
ZRI0
O ðμ0Þ

¼ ΔZRI0
O ðμ0Þ

ΔZMS
O ð2 GeVÞ

:

ð27Þ

The quantity ΔZS
Oðμ0Þ is expressed in terms of the β-

function and the anomalous dimension γSO ≡ γS of the
operator

ΔZS
OðμÞ ¼

�
2β0

gSðμÞ2
16π2

�− γ0
2β0

× exp

�Z
gSðμÞ

0

dg0
�
γSðg0Þ
βSðg0Þ þ

γ0
β0g0

��
: ð28Þ

The expressions for the one-derivative operators are
known to three-loops in perturbation theory and can be
found in Ref. [28] (and references therein).

In Fig. 3 we compare the renormalization functions in
the RI0 and MS schemes as a function of the RI0 renorm-
alization scale, μ0. Note that the values in MS have been
evolved to 2 GeV, and from the plot we can see that the
purely nonperturbative data (black points) exhibit a residual
dependence on μ0 [the scale they were evolved from, using
the appropriate expressions of Eq. (27)]. This dependence
is removed via two procedures:
(1) the subtraction of finite-a effects to Oðg2a∞Þ,
(2) the extrapolation of ðaμ0Þ2 to zero, using the Ansatz

ZOðapÞ ¼ Zð0Þ
O þ Zð1Þ

O · ðaμ0Þ2: ð29Þ

Zð0Þ
O corresponds to our final value of the renorm-

alization functions for operator O (filled magenta
diamonds at ðaμ0Þ2 ¼ 0), and in the above fit we
consider momenta ðaμ0Þ2 ≥ 2 for which perturba-
tion theory is trustworthy and lattice artifacts are still
under control.

FIG. 2. Example chiral extrapolation of the renormalization
functions Zμ¼ν

V (red open circles), Zμ≠ν
A (blue open squares), and

Zμ≠ν≠ρ≠μ
T (green open diamonds) for the case of ðaμ0Þ2 ¼ 2. We

show with corresponding filled symbols the renormalization
functions extrapolated to the chiral limit, obtained via a quadratic
fit, as explained in the text.

FIG. 3. Chirally extrapolated results for Zμ¼ν
V (upper plot), Zμ≠ν

A

(center plot), and Zμ≠ν≠ρ≠μ
T (lower plot), which are needed for

hxiq, hxiΔq, and hxiδq, respectively. The data for the RI0 scheme
are shown with blue triangles, the purely nonperturbative data for
the MS scheme are shown with black circles, and the improved
MS estimates with magenta diamonds. The data are plotted as a
function of the initial renormalization scale ðaμ0Þ2. The dashed
lines correspond to the fit of Eq. (29), and the filled magenta

diamonds represent the final estimate Zð0Þ
O .
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In Table IV we report our chirally extrapolated values for
the renormalization functions used in this work. The
statistical and systematic uncertainties are given in the first
and second sets of parentheses, respectively. The source of
systematic error is related to the ðaμ0Þ2 → 0 extrapolation,
and it is obtained by varying the lower and higher fit ranges
between aμ0 ¼ 2 and 7 and taking the largest deviation as
the systematic error. The values given in Table IV are
determined using the fit interval ðaμ0Þ2ϵ½2 − 7�.

V. RESULTS

A. Zero momentum transfer

We begin by presenting our results for zero momentum
transfer, which yield the isovector moments of PDFs, i.e.,
the momentum fraction hxiu−d, the helicity hxiΔu−Δd, and
the transversity hxiδu−δd. In Fig. 4 we show a summary
of the analyses carried out, as described in Sec. III D, for
the case of the Nf ¼ 2þ 1þ 1 ensemble.
In the first column of Fig. 4, we plot the ratios of Eq. (10)

for the three moments. In the central column, we plot the
values obtained from plateau fits to the ratio as a function of
the sink-source separation ts. We show the plateaus
obtained taking the insertion fit range: tins ∈ ½τplat; ts −
τplat� choosing τplat such that when it is increased, the values
obtained for the plateau fit do not change for each ts. We
find τplat ¼ 7a satisfies this criterion, and for the separa-
tions for which ts < 14awe plot the value of the ratio at the
midpoint, i.e., for tins ¼ ts=2, in the central column
of Fig. 4.
As explained for the two-state fit we first fit the two-

point function at zero momentum. The values we extract for
mN andm�

N remain unchanged within errors if we include a
second excited state, i.e., if we perform a three-state fit.
While in the spectral decomposition of the two-point
correlation function, the energy state above the nucleon
should include a pion-nucleon with relative momentum, it
is noteworthy that for all ensembles we find a value for m�

N
that is consistent to the mass of the Roper rather than a
multiparticle state, as shown in Table V.
The results obtained using the summation and two-state

fit methods are shown in the right column of Fig. 4, as a
function of the smallest sink-source separation used in the
fit tlows . For the two-state fit method, we choose the fit range
for the two-point function by requiring the ground state

mass extracted with the two-exponential ansatz of Eq. (14)
to agree with that obtained from a constant fit to the
effective mass, within half the error of the latter. This
analysis yields ts ∈ ½8a; 35a� in the case of the Nf ¼ 2þ
1þ 1 ensemble, and this is used throughout. Furthermore,

TABLE IV. Renormalization functions for the operators used in our GFF calculation in the MS scheme at an energy scale of 2 GeV.
The first row is for the Nf ¼ 2þ 1þ 1 ensemble with β ¼ 1.778, and the second row is for the two Nf ¼ 2 ensembles with β ¼ 2.1. The
number in the first parentheses is the statistical error, while the number in the second parentheses corresponds to the systematic error
obtained by varying the fit range in the ðaμ0Þ2 → 0 extrapolation.

Ensemble Zμ¼ν
V Zμ≠ν

V Zμ¼ν
A Zμ≠ν

A Zμ≠ν¼ρ
T Zμ≠ν≠ρ≠μ

T Zμ¼ν≠ρ
T

cB211.072.64 1.151(1)(4) 1.160(1)(3) 1.172(1)(4) 1.159(1)(2) 1.182(1)(2) 1.198(1)(5) 1.154(1)(9)
cA2.09.f48; 64g 1.125(3)(2) 1.140(2)(1) 1.149(1)(1) 1.136(2)(20) 1.138(16)(1) 1.147(12)(5)

FIG. 4. Results for the Nf ¼ 2þ 1þ 1 ensemble, cB211.
072.64, for the isovector momentum fraction hxiu−d (top row),
the helicity moment hxiΔu−Δd (middle row), and the transversity
hxiδu−δd (bottom row) as a function of ts or tlows in physical units.
In the left column, we show the ratio of Eq. (10) for sink-source
separation ts ¼ 8a (blue circles), 10a (orange squares), 12a
(green diamonds), 14a (red downwards pointing triangles), 16a
(purple upwards pointing triangles), 18a (brown left pointing
triangles), and 20a (magenta right pointing triangles), plotted
against the insertion time shifted by ts=2 so that the midpoints
coincide. Data are additionally slightly shifted horizontally to
ease legibility of overlapping points. The curves and correspond-
ing bands are the result of the two-state fit. In the middle column,
we show the result of the plateau fit for each sink-source
separation, using the symbol notation of the left column. The
band is obtained from the two-state fit parameters, as explained in
the text. The right column shows the result of the summation
method (green triangles) and the two-state fit method (black
squares) as a function of the lower value tlows included in the fit.
The open black square shows the selected value and the
horizontal band spanning all three columns is the associated error
band.
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we find that taking tins ∈ ½τ; ts − τ� for τ ≥ 3a in the two-
state fit yields consistent results, and thus we fix τ ¼ 3a.
From the right column of Fig. 4, we see that in general

the two-state fit results are stable for all tlows values, with the
summation method converging as tlows is increased. The
bands in the left column of Fig. 4 show the ratio of Eq. (10)
when using the parameters of the two-state fit to reproduce
the two- and three-point functions, namely Eqs. (14) and
(15). We see that in all cases, the predicted bands reproduce
the data well.
The band in the central column of Fig. 4 is not a fit to the

data; it is drawn using the parameters obtained from the
two-state fit as a function of continuous values for ts and
taking tins ¼ ts=2. The left and central columns show that
the data are reproduced well with the two-state fit ansatz.
Furthermore, the band drawn in the central column reveals
that sink-source separations beyond ≈2 fm are required to
obtain plateaus that would sufficiently suppress the first
excited state and therefore yield agreement between the
plateau and two-state fit methods. Such a separation would
not be feasible with currently available computational
resources. Indeed, between our smallest and largest sepa-
rations of 0.64 fm and 1.6 fm, respectively, we increase
statistics by 64× (see Table II) while errors increase by
∼2.5×, indicating that to obtain at ∼2 fm the same error as
that obtained at 1.6 fm we would require Oð100Þ more
statistics. We will therefore quote the result of the two-state
fit method as our final result, shown by the horizontal band
spanning all columns in Fig. 4.
To choose the tlows of the two-state fit for quoting our

final result, we will demand that this agrees with the
converged value of the summation method. For hxiu−d the
two-state fit result with tlows ¼ 8a agrees with the result of
the summation method for tlows > 1 fm. We therefore take
the two-state fit result with tlows ¼ 8a as our final value
for the momentum fraction. For the helicity hxiΔu−Δd and
tensor charge hxiδu−δd, as can be seen, we need to increase
tlows further to achieve agreement with the summation
method. We therefore take the value when fitting from
tlows ¼ 12a as our final result.
The same analysis is carried out for the small and large

Nf ¼ 2 ensembles, shown in Figs. 5 and 6, respectively.
The analysis of the Nf ¼ 2þ 1þ 1 ensemble, for which we
use seven values of ts with increased statistics, has clearly
revealed that excited state effects die out slowly and that

one needs to go to larger values of ts [36] keeping statistical
errors small to see clear convergence as also demonstrated
in Ref. [37]. With this hindsight, we reanalyze the Nf ¼ 2
ensembles. For determining the fit ranges of the two-point

TABLE V. Values of the excited state mass m�
N , in GeV, as

extracted from the two-state (first row of results) and three-state
(second row of results) fits to the two-point functions of the three
ensembles analyzed in this work.

cB211.072.64 cA2.09.48 cA2.09.64

Two-state: 1.43(7) 1.59(6) 1.45(11)
Three-state: 1.38(12) 1.44(15) 1.15(16)

FIG. 5. Results for the small Nf ¼ 2 ensemble, cA2.09.48. In
the left column, we show the ratio of Eq. (10) for sink-source
separation ts ¼ 10a (blue circles), 12a (orange squares), 14a
(green diamonds), 16a (red downwards pointing triangles), and
18a (purple upwards pointing triangles). The rest of the notation
is as in Fig. 4.

FIG. 6. Results for the large Nf ¼ 2 ensemble, cA2.09.64. The
left column shows the ratio of Eq. (10) for sink-source separation
ts ¼ 12a (blue circles), 14a (orange squares), and 16a (green
diamonds). The rest of the notation is as in Fig. 4.
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function we use the same criteria as for the Nf ¼ 2þ 1þ 1
ensemble. We find that ts ∈ ½6a; 24a� for the small Nf ¼ 2
ensemble and ts ∈ ½5a; 24a� for the large Nf ¼ 2 ensemble
satisfy the agreement between the values extracted from
one-state (plateau) and two-state fits. While for the Nf ¼
2þ 1þ 1 and small Nf ¼ 2 ensembles we have increased
statistics for the two-point functions used in the two-state fit
method, for the large Nf ¼ 2 ensemble we are limited to the
same statistics for two-point functions as those for the
three-point function. The reason is that for the latter
ensemble we did not compute disconnected contributions.
This also explains why the lower fit range for the large
Nf ¼ 2 ensemble is smaller as compared to the small Nf ¼
2 ensemble, since the two-point correlator has lower
precision. In the case of the three-point function, for both
these ensembles, in general only three sink-source separa-
tions are available, which allow for only a single point for
the summation method and two points for the two-state fit
method. The unpolarized projector for the case of the small
Nf ¼ 2 ensemble is the only exception, namely for this case
we obtain hxiu−d, for two additional separations.
From Figs. 5 and 6 we observe a curvature in the ratio

data similar to that of the Nf ¼ 2þ 1þ 1 ensemble. For the
plateau fits shown in the central columns, we use τplat ¼ 5a
for both ensembles, determined using the same criterion as
for the Nf ¼ 2þ 1þ 1 case. Comparing two-state fit and
summation methods, we note that at the smallest tlows
available for these two ensembles, which is around
∼1 fm, we see agreement between two-state and summa-
tion methods. For all three ensembles, therefore, the
summation method at around tlows ≃ 1 fm converges to
the two-state fit result within errors. We take the two-state
fit result as our final value for these two ensembles. Our
final results for the three moments are given in Table VI.
Comparing the three moments between the three ensem-

bles, we see in general that these agree within our statistical
errors, an exception being hxiΔu−Δd for Nf ¼ 2þ 1þ 1 and
the Nf ¼ 2 ensembles, where agreement is within 1.5σ of
the former.
Comparing the results obtained using the two Nf ¼ 2

ensembles, which differ only in their volume, with mπL ¼
2.98 to 3.97, respectively, reveals no finite volume effects
within our statistical errors for all three moments. The Nf ¼
2þ 1þ 1 ensemble hasmπL ¼ 3.62 (see Table I), which is
between the two volumes with Nf ¼ 2, and thus we also

expect that volume effects are also within the statistical
errors for this ensemble as well. The Nf ¼ 2þ 1þ 1
ensemble has a smaller lattice spacing and includes the
strange and charm quarks in the sea. We find that the
moments obtained using the Nf ¼ 2þ 1þ 1 ensemble and
the two Nf ¼ 2 ensembles are in agreement. This suggests
that unquenching effects and cutoff effects for these
quantities, at least within the range of these two lattice
spacings, are also smaller than our statistical uncertainties.

B. Finite momentum transfer

To obtain the GFFs we perform, for each value of the
momentum transfer squared, a similar analysis as for the
moments. This analysis is summarized in Figs. 7 and 8 for
the Nf ¼ 2þ 1þ 1 lattice for four representative values of
the momentum transfer squared. We note that for the ratios
of Figs. 7 and 8 we plot, for each value of Q2 and ts, the
quantity: V†Σ−1U†RðΓ; q⃗; ts; tinsÞ, where R is the ratio of
Eq. (10) and U, Σ, and V are obtained from the SVD of the
kinematic matrix G defined in Eq. (13). This is done for the
purposes of presenting our results in a similar way to that of
the moments in Fig. 4, whereas in the analysis, to extract
the result of the plateau from the single step approach, we
fit the combinationU†R. As in the case of the moments, we
observe non-negligible excited state effects in the ratios as
we increase ts. The two-state fit results are stable as we
increase tlows and the summation method converges to the
two-state fit value for tlows ≃ 1 fm. We therefore use the
two-state fit to extract our final values for the GFFs for all
Q2 using the same fit parameters as for the moments.
The same procedure is followed for the small and large

Nf ¼ 2 ensembles shown in Figs. 9 and 10, respectively, in
which we show the dominant vector and axial GFFs,
namely A20 and Ã20. We show four representative momen-
tum transfer values for the two ensembles, chosen such that
they are approximately equal in physical units. Note that for
extracting the vector GFFs we require all four projectors
(see Appendix A), which means that for the small Nf ¼ 2
ensemble we are restricted to three sink-source separations
for Q2 > 0.
From Figs. 9 and 10, we see that summation and two-

state fit methods yield consistent results for the Q2 values
shown. This is confirmed for all Q2 values, and for the
subdominant vector and axial GFFs, namely B20, B̃20,
and C20.
The availability of the two Nf ¼ 2 ensembles that differ

only in their volumes allows us to assess finite volume
effects. A comparison between the results obtained using
these two ensembles is shown in Fig. 11, for all five GFFs
using our final values extracted from two-state fits. As in
the case of the moments shown in Table VI, comparing
these two ensembles reveals no finite volume effects within
the achieved statistical precision. The small discrepancies
seen for A20 at some values of the momentum are well

TABLE VI. Results for the three isovector moments from the
three ensembles analyzed in this work. The results are obtained
from the two-state fit as explained in the text.

Ensemble hxiu−d hxiΔu−Δd hxiδu−δd
cB211.072.64 0.178(16) 0.193(18) 0.204(23)
cA2.09.48 0.167(13) 0.221(12) 0.206(25)
cA2.09.64 0.189(23) 0.217(24) 0.205(35)
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within the allowed statistical fluctuations. We stress that
these results are extracted taking into account correlations.
Were we to ignore the correlations among different ts the
errors increase and no disagreement is observed.
In Fig. 12 we show the five GFFs for the Nf ¼ 2þ 1þ 1

ensemble obtained from the two-state fit method. We
note that C20 is found to be consistently zero for
all Q2, in agreement with previous lattice results for this
quantity [19,24].
For the A20; B20; Ã20, and B̃20 with nonzero signal, we

perform fits to the form

GðQ2Þ ¼ Gð0Þ
ð1þQ2=M2Þn ; ð30Þ

as well as using the so-called z-expansion [38]

GðQ2Þ ¼
Xkmax

k¼0

akzk; ð31Þ

with

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffi
tcut

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffi

tcut
p : ð32Þ

The dipole form, obtained by setting n ¼ 2 in Eq. (30), is
supported by model considerations as e.g., in the quark-
soliton model in the large NC limit for Q2 < 1 GeV2 [39].
Fitting to our data for Q2 ≤ 0.5 GeV2 allowing Gð0Þ and
M to vary, we obtain the results shown in Table VII, where
we also include the χ2 per degrees of freedom (d.o.f.) which
indicates that this Ansatz models our data well. In Fig. 12
we show the resulting fit to the data with the solid line. For

FIG. 7. Results for the vector and axial GFFs for the Nf ¼ 2þ 1þ 1 ensemble, cB211.072.64, for two representative q⃗2 values
corresponding to Q2 ¼ 0.114 GeV2 (left) and 0.222 GeV2 (right). The first three rows show results for the three vector GFFs, namely
A20, B20, and C20, and the last two rows for the two axial GFFs Ã20 and B̃20. For each of the two values of Q2 shown, we use the same
notation as for the Q2 ¼ 0 case of Fig. 4, namely showing the ratio obtained as explained in the text (left columns), the result of fitting
the plateau in the single step approach (central columns), and the results from two-state fits and summation method (right columns).
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FIG. 8. The same as in Fig. 7 but for Q2 ¼ 0.421 GeV2 (left) and Q2 ¼ 0.514 GeV2 (right).

FIG. 9. Results for the dominant vector (first row) and axial (second row) GFFs for the small Nf ¼ 2 ensemble, cA2.09.48, for four
representative Q2 values. For each value of Q2, we use the same notation as for the Q2 ¼ 0 case of Fig. 5.
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the case of the GFFs B20 and B̃20 we also consider the
tripole form by setting n ¼ 3 in Eq. (30). Such a form has
been shown to satisfy certain constraints in the energy and
pressure distributions inside the nucleon [40]. The resulting
tripole fit (dashed line in Fig. 12) is fully consistent with the
dipole yielding similar values for B20ð0Þ and B̃20ð0Þ as the
dipole form, as can be seen in Table VII.
The z-expansion provides for a model-independent

Ansatz and has been originally developed for fitting
electromagnetic [38] and axial [41] form factors. In
Eq. (32), we use tcut ¼ ð4mπÞ2 and ð3mπÞ2 for the vector
and axial cases, respectively, and fit varying the parameters

ak studying their convergence as we increase kmax. Without
loss of generality, demanding that the GFFs are zero as
Q2 → ∞ constrains one parameter, which we implement by
setting akmax

¼ −
Pkmax−1

k¼0 ak. Furthermore, in the fit we use
priors for the parameters ak for 1 < k < kmax. The prior
width is determined as 5maxða0; a1Þ, as obtained from the
fit using kmax ¼ 2. As we increase kmax, we find that the
parameters a0 and a1 do not change after kmax ¼ 3, for
which we quote the fit parameters in Table VII. To compare
with the dipole fit, for the z-expansion we quote:
M ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−8a0tcut=a1
p

, which is the dipole mass that yields
the same slope as the z-expansion for the GFF at Q2 ¼ 0.

FIG. 10. Results for the dominant vector (first row) and axial (second row) GFFs for the large Nf ¼ 2 ensemble, cA2.09.64, for four
representative Q2 values. For each value of Q2, we use the same notation as for the Q2 ¼ 0 case of Fig. 6.

FIG. 11. Comparison of the vector (top row) and axial (bottom row) GFFs between the two Nf ¼ 2 ensembles, cA2.09.64 (green
diamonds) and cA2.09.48 (blue squares), which differ only in the volume, namely with mπL ¼ 3.97 and 2.98, respectively. We show
results obtained using two-state fits.
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C. Comparison of results with other studies

We compare our results with phenomenology as well as
other lattice studies with physical or near-physical pion
masses.
The isovector momentum fraction hxiu−d has been

extensively calculated in lattice QCD at pion masses larger
than its physical value, and a review of results can be found

in Ref. [42]. Recent results include results using CLS Nf ¼
2þ 1 clover improved Wilson fermions from the Mainz
group [43], as well as from two collaborations at physical
or near-physical pion mass: RQCD, using Nf ¼ 2 clover
improved Wilson fermions [24] and LHPC [44] using Nf ¼
2þ 1 HEX-smeared clover improved fermions. RQCD
analyzed 11 ensembles among which one that has a near-
physical pion mass of 150 MeV, a lattice volume of
643 × 64, and a ¼ 0.071 fm. The authors analyzed three
sink-source time separations for this ensemble within
ts ∈ ½0.6; 1.1� fm, and conclude that suppressing the
excited states would require additional separations that
agrees with our findings. They, therefore, restrict them-
selves to showing results using a single separation at
15a ≃ 1.1 fm, which is too small to control excited states.
Their value of 0.213(11)(04) is compatible with the one we
find at the similar sink-source time separation of 1.12 fm,
namely 0.232(11), that clearly overestimates the momen-
tum fraction extracted from larger values of ts and from the
two-state fit. We thus do not include this result in our
comparison. LHPC analyzed one ensemble with pion mass
of mπ ¼ 149 MeV, a lattice volume of 483 × 48, and
a ¼ 0.116 fm. The summation method is used to obtain
their final value from three sink-source separations with
values 0.9, 1.2, and 1.4 fm [45].
Results for hxiu−d are shown in Fig. 13 where we include

the phenomenological values extracted from global fits to
PDF experimental data from Refs. [46–51]. Results from
our three ensembles are consistent with each other, indicat-
ing no detectable lattice artifacts within their precision.

FIG. 12. Results for the vector (top row) and axial (bottom row) GFFs for the Nf ¼ 2þ 1þ 1 ensemble, cB211.072.64, obtained
using the two-state fit method. Dipole (solid black curves), tripole (dashed red curves), and z-expansion (dot-dashed green curves) fits
are shown using Q2 ≤ 0.5 GeV2, while the dotted curves extend the fits beyond Q2 ¼ 0.5 GeV2. For B20 and B̃20 we also show the
value at Q2 ¼ 0 extracted from the dipole (open black asterisk), tripole (open red asterisk), and z-expansion (open green asterisk) fits,
the latter two shifted slightly to improve legibility.

TABLE VII. The parameters extracted from fitting A20; B20;
Ã20 and B̃20 to the dipole form (n ¼ 2 in Eq. (30)) and the
z-expansion (Eq. (31)) and B20 and B̃20 to the tripole form (n ¼ 3

in Eq. (30)). We use Q2 ≤ 0.5 GeV2. For the z-expansion we

show results for kmax ¼ 3, with Gð0Þ ¼ a0 and M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 8a0tcut

a1

q
.

Gð0Þ M [GeV] χ2=d:o:f

Dipole

A20 0.167(13) 1.41(27) 0.4
B20 0.159(41) 1.64(72) 0.5
Ã20 0.190(13) 1.32(17) 0.1
B̃20 0.20(17) 1.7(2.8) 0.2

Tripole
B20 0.158(40) 2.05(88) 0.5
B̃20 0.20(17) 2.1(3.4) 0.2

z-expansion (kmax ¼ 3)
A20 0.174(14) 1.03(28) 0.2
B20 0.163(45) 1.36(90) 0.4
Ã20 0.195(15) 1.08(47) 0.1
B̃20 0.21(21) 1.2(2.1) 0.2
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Results for the Nf ¼ 2þ 1þ 1 ensemble are obtained
using more time separations allowing for a more rigorous
assessment of exited state effects compared to the other two
ensembles. We thus take the value extracted from the Nf ¼
2þ 1þ 1 ensemble to compare with phenomenology. We
observe agreement with two of the phenomenological
extractions shown in Fig. 13, with the remaining within
1.5σ of our value.
For hxiΔu−Δd our results are compared in Fig. 14 to

phenomenological results from Refs. [52–55]. As can be
seen, our value is in good agreement with these phenom-
enological determinations and in particular with the value

found in Ref. [52]. The results for hxiδu−δd are shown in
Fig. 15. No phenomenological nor other lattice QCD
results at the physical point are available for the tensor
moment, and thus the current work provides a valuable
prediction. We note that for the helicity and tensor moments
only three sink-source time separations are available in the
case of the two Nf ¼ 2 ensembles. This restricts the two-
state analysis, and thus we consider the result of the Nf ¼
2þ 1þ 1 ensemble as the most reliable. As already
mentioned, the two Nf ¼ 2 ensembles show no detectable
volume dependence for these quantities indicating that
volume effects are negligible as compared to the current
accuracy obtained from the analysis using the Nf ¼ 2þ
1þ 1 ensemble.

VI. CONCLUSIONS

The isovector momentum fraction, helicity moment, and
transversity of the nucleon are extracted using lattice QCD
simulations produced with physical values of the quark
masses. For the Nf ¼ 2þ 1þ 1 ensemble cB211.072.64,
seven sink-source separations are analyzed from 0.6 fm to
1.6 fm, allowing for the most thorough study of excited
states to date for these quantities directly at the physical
pion mass. The isovector unpolarized and helicity GFFs are
also extracted for the first time directly at the physical
point. The study reveals that both for Q2 ¼ 0 as well as for
Q2 > 0, the convergence of these quantities to the ground
state is slow. For values of the sink-source time separation
ts < 2 fm a two-state fit analysis yields stable results and
agrees with the values extracted from the summation
method when including separations larger than ∼1 fm.
We therefore, take the results from the two-state fit when
confirmed with the summation method as our final values.
The results for the GFFs are provided in Tables VIII, IX,
and X of Appendix C and in Table VI for the moments. For
the case of the small Nf ¼ 2 ensemble, the current results
for the moments are an update to those of Ref. [15], which
are included for comparison in Appendix D. The Nf ¼
2þ 1þ 1 ensemble includes dynamical strange and charm
quarks in addition to the light quarks, thus providing a full
description of the QCD vacuum. In addition, the seven
sink-source separations are analyzed to high accuracy

FIG. 14. hxiΔu−Δd from the three ensembles studied in this
work with the notation of Fig. 13. We compare to results from
global fits to polarized PDF experimental data with the open
symbols, namely from Ref. [52] (left-pointing triangle),
NNPDFpol1.1 [53] (circle), DSSV08 [54] (triangle), and
JAM17 [55] (square).

FIG. 13. hxiu−d from the three ensembles studied in this work,
namely the Nf ¼ 2þ 1þ 1 (red star), small Nf ¼ 2 (blue
square), and large Nf ¼ 2 (green diamond) ensembles. We
compare to lattice results from Ref. [44] (orange triangle). We
also show results from global fits to PDF experimental data with
the open symbols, namely NNPDF3.1 [46] (circle), CT14 [47]
(triangle), MMHT2014 [48] (square), ABMP2016 [49] (left-
pointing triangle), CJ15 [50] (right-pointing triangle), and HER-
APDF2.0 [51] (diamonds).

FIG. 15. hxiδu−δd from the three ensembles studied in this work
with the notation of Fig. 13.
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allowing for a robust analysis of excited states. We thus
consider the results extracted from the Nf ¼ 2þ 1þ 1
ensemble as the best prediction of these quantities. We thus
quote as our final results the values obtained from the
analysis of the Nf ¼ 2þ 1þ 1 ensemble. We find for the
moments:

hxiu−d ¼ 0.178ð16Þ;
hxiΔu−Δd ¼ 0.193ð18Þ;
hxiδu−δd ¼ 0.204ð23Þ; ð33Þ

where we quote the values extracted directly from the
nucleon matrix element at zero momentum. The values for
the unpolarized and helicity moments agree with a subset of
the phenomenological results. The helicity and transversity
moments hxiΔq and hxiδq are shown to be related to
longitudinal and transverse spin-orbit correlations, respec-
tively [56,57], and are interpreted as the parity and chiral
partners of Ji’s relation for angular momentum.
Fits of the GFFs yield the results provided in Table VII.

From these fits we obtain B20ð0Þ, which is related to the
proton spin via Ji’s sum rule [58]. Using the values for
Nf ¼ 2þ 1þ 1 obtained by fits to the dipole form, we
obtain

Ju−d ¼ 1

2
½Au−d

20 ð0Þ þ Bu−d
20 ð0Þ� ¼ 0.168ð22Þð02Þ ð34Þ

for the isovector contribution of the up and down quarks
to the proton spin, where the first error is statistical and
the second a systematic obtained as the difference in
B20 between the extraction using the dipole form and
the z-expansion.
A next step in this study will be the inclusion of

disconnected contributions in order to calculate the iso-
scalar and gluonic quantities. This would allow for com-
plete flavor decomposition of the GFFs and for calculating
the spin and momentum carried by quarks and gluons in
the proton.
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APPENDIX A: EXPRESSIONS FOR
GENERALIZED FORM FACTORS

The following expressions are provided in Euclidean
space. We suppress the Q2 ¼ −q2 argument of the
generalized form factors, EN is the nucleon energy for
three-momentum q⃗, the kinematic factor K ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

N=½ENðEN þmNÞ�
p

, and Latin indices (k, n, and j)
take values 1, 2, and 3 with k ≠ j while ρ takes values
1, 2, 3, and 4.

1. Vector operator

Π00
V ðΓ0; q⃗Þ ¼ A20K

�
−
3EN

8
−

E2
N

4mN
−
mN

8

�

þ B20K
�
−
EN

8
þ E3

N

8m2
N
þ E2

N

16mN
−
mN

16

�

þ C20K
�
EN

2
−

E3
N

2m2
N
þ E2

N

4mN
−
mN

4

�
; ðA1Þ

Π00
V ðΓn; q⃗Þ ¼ 0; ðA2Þ

Πkk
V ðΓ0; q⃗Þ ¼ A20K

�
EN

8
þmN

8
þ q2k
4mN

�

þ B20K
�
−

E2
N

16mN
þmN

16
−
q2kEN

8m2
N
þ q2k
8mN

�

þ C20K
�
−

E2
N

4mN
þmN

4
þ q2kEN

2m2
N
þ q2k
2mN

�
;

ðA3Þ
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Πkk
V ðΓn;q⃗Þ¼A20K

�
−i

ϵkn0ρqkqρ
4mN

�
þB20K

�
−i

ϵkn0ρqkqρ
4mN

�
;

ðA4Þ

Πk0
V ðΓ0; q⃗Þ ¼ A20K

�
−i

qk
4
− i

qkEN

4mN

�

þ B20K
�
−i

qk
8
þ i

qkE2
N

8m2
N

�

þ C20K
�
i
qk
2
− i

qkE2
N

2m2
N

�
; ðA5Þ

Πk0
V ðΓn; q⃗Þ ¼ A20K

�
−ϵkn0ρ

�
qρ
8
þ qρEN

8mN

��

þ B20K
�
−ϵkn0ρ

�
qρ
8
þ qρEN

8mN

��
; ðA6Þ

Πkj
V ðΓ0; q⃗Þ ¼ A20K

qkqj
4mN

þ B20K
�
−
qkqjEN

8m2
N

þ qkqj
8mN

�

þ C20K
�
qkqjEN

2m2
N

þ qkqj
2mN

�
; ðA7Þ

Πkj
V ðΓn; q⃗Þ ¼ A20K

�
−i

ϵkn0ρqjqρ
8mN

− i
ϵjn0ρqkqρ
8mN

�

þ B20K
�
−i

ϵkn0ρqjqρ
8mN

− i
ϵjn0ρqkqρ
8mN

�
: ðA8Þ

2. Axial operator

Πμν
A ðΓ0; q⃗Þ ¼ 0; ðA9Þ

Πk0
A ðΓn; q⃗Þ ¼ Ã20K

�
−iδnk

�
EN

4
þ E2

N

8mN
þmN

8

�
− i

qkqn
8mN

�

þ B̃20K
�
i
qkqnEN

8m2
N

�
; ðA10Þ

Πkj
A ðΓn;q⃗Þ¼ Ã20K

�
δnj

�
qk
8
þqkEN

8mN

�
þδnk

�
qj
8
þqjEN

8mN

��

þ B̃20K
�
−
qkqjqn
8m2

N

�
: ðA11Þ

APPENDIX B: EFFECTIVE ENERGIES AND
DISPERSION RELATION

In Fig. 16 we plot for the three ensembles used in this
work the energies obtained by fits to the effective energy as
a function of the two-point function momentum. As can be
seen, the effective energies obtained are consistent with the
continuum dispersion relation ENðq⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

N

p
, where

q⃗ ¼ 2π
L n⃗ with n⃗ a lattice vector with components

ni ∈ ð− L
2a ;

L
2a�.

FIG. 16. The difference between squared effective energy and
squared effective mass obtained for the Nf ¼ 2þ 1þ 1 (blue
circles), the large Nf ¼ 2 (orange squares), and the small Nf ¼ 2
(green diamonds) ensembles as a function of the spatial mo-
mentum squared. The black line is the continuum dispersion
relation E2

Nðq2Þ −m2
N ¼ q2.
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APPENDIX C: TABLES OF RESULTS

Results for the GFFs are provided for A20ðQ2Þ, B20ðQ2Þ, Ã20ðQ2Þ, and B̃20ðQ2Þ using the two-state fit method as
explained in the text. We do not provide C20 which is found to be consistent with zero. We provide results for ensemble
cB211.072.64 in Table VIII, for cA2.09.48 in Table IX, and for cA2.09.64 in Table X.

TABLE VIII. GFFs for ensemble cB211.072.64 obtained using the two-state fit method. We do not provide C20

which is found to be consistent with zero.

Q2 [GeV2] A20ðQ2Þ B20ðQ2Þ Ã20ðQ2Þ B̃20ðQ2Þ
0.000 0.178(16) 0.193(18)
0.058 0.165(19) 0.137(46) 0.182(16) 0.30(32)
0.114 0.140(15) 0.157(31) 0.163(16) 0.07(16)
0.169 0.128(16) 0.159(29) 0.149(17) 0.24(15)
0.222 0.150(21) 0.075(42) 0.152(15) 0.25(15)
0.273 0.125(14) 0.130(27) 0.143(14) 0.127(85)
0.324 0.119(15) 0.132(27) 0.130(15) 0.179(82)
0.421 0.117(16) 0.108(30) 0.127(14) 0.130(89)
0.468 0.119(14) 0.124(26) 0.119(14) 0.153(64)
0.514 0.115(15) 0.112(23) 0.118(14) 0.207(72)
0.559 0.121(15) 0.123(17) 0.107(14) 0.032(72)
0.603 0.107(22) 0.095(36) 0.110(16) 0.065(97)
0.647 0.115(16) 0.092(31) 0.102(15) 0.143(63)
0.690 0.143(15) 0.078(13) 0.094(15) 0.061(63)
0.773 0.087(21) 0.096(36) 0.116(17) 0.22(12)
0.814 0.116(18) 0.107(31) 0.086(15) 0.114(58)
0.854 0.114(20) 0.118(32) 0.093(15) 0.123(63)
0.893 0.131(21) 0.069(42) 0.112(15) 0.202(74)
0.932 0.115(22) 0.085(36) 0.079(16) 0.125(68)
0.970 0.138(17) 0.109(15) 0.080(16) 0.022(67)

TABLE IX. GFFs for ensemble cA2.09.48 obtained using the two-state fit method. We do not provide C20 which
is found to be consistent with zero.

Q2 [GeV2] A20ðQ2Þ B20ðQ2Þ Ã20ðQ2Þ B̃20ðQ2Þ
0.000 0.167(13) 0.221(12)
0.075 0.176(24) 0.191(49) 0.197(18) 0.12(26)
0.146 0.144(20) 0.182(38) 0.192(16) 0.53(17)
0.215 0.120(24) 0.207(36) 0.167(19) 0.37(17)
0.282 0.103(31) 0.180(43) 0.158(16) 0.20(13)
0.346 0.124(20) 0.173(28) 0.144(17) 0.220(90)
0.409 0.109(22) 0.162(31) 0.142(16) 0.294(86)
0.529 0.102(26) 0.180(33) 0.115(18) 0.233(91)
0.586 0.088(27) 0.171(32) 0.115(17) 0.154(73)
0.643 0.108(23) 0.081(34) 0.097(18) 0.130(74)
0.698 0.114(24) 0.125(31) 0.104(15) 0.160(68)
0.751 0.105(38) 0.176(52) 0.089(23) 0.053(82)
0.804 0.092(33) 0.204(44) 0.095(18) 0.026(59)
0.855 0.072(41) 0.196(47) 0.092(22) 0.132(71)
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APPENDIX D: COMPARISON WITH PREVIOUS RESULTS

The results presented here for the small Nf ¼ 2 ensemble, cA2.09.48, are an update to those first presented in Ref. [15].
For completeness, in Fig. 17 we compare the current results with those obtained in Ref. [15].
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