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Abstract: Glioblastoma multiforme (GBM) is a severe brain tumor whose ability to mutate and adapt
to therapies is at the base for the extremely poor survival rate of patients. Despite multiple efforts
to develop alternative forms of treatment, advances have been disappointing and GBM remains an
arduous tumor to treat. One of the leading causes for its strong resistance is the innate upregulation of
DNA repair mechanisms. Since standard therapy consists of a combinatory use of ionizing radiation
and alkylating drugs, which both damage DNA, targeting the DNA damage response (DDR) is
proving to be a beneficial strategy to sensitize tumor cells to treatment. In this review, we will discuss
how recent progress in the availability of the DDR kinase inhibitors will be key for future therapy
development. Further, we will examine the principal existing DDR inhibitors, with special focus on
those currently in use for GBM clinical trials.
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1. Introduction

The DNA damage response (DDR) is a collective term that gathers all the mechanisms that
detect DNA damages, signal them and either promote their repair or trigger cell death pathways [1,2].
It has evolved as a protective mechanism to maintain our genetic information unchanged between
generations, however, in a cancer therapy context, the DDR can be considered as a negative feature [3].
Indeed, under physiological conditions, the DDR protects our genome by removing errors and avoiding
the insurgence of mutations. On the other hand, in tumors treated with DNA damaging agents,
efficient DNA repair systems become the major cause for treatment failure [4].

Signalling pathways regulated by the DDR are numerous and partially overlap [3]. This orchestra
is responsible for processing the two main types of DNA lesions: single-strand breaks (SSBs) and
double-strand breaks (DSBs) [4]. At the center of DNA damage signalling, in response to DSBs,
are the phosphoinositide 3-kinase-related kinases (PIKK) ATM, ATR and DNA-PK [5]. Activation of
ATM/ATR/DNA-PK by DNA damage in turn results in phosphorylation of several substrates that
control various pathways involved in DNA repair, checkpoint activation, apoptosis and transcription
regulation. For example, ATM and ATR activate the checkpoint kinases Chk1 and Chk2 which then
phosphorylate and inactivate Cdc25 and regulate cell cycle progression [5]. Instead, SSBs can result
from endogenous oxidative damage, defective activity of cellular enzymes or erroneous incorporation
of ribonucleotides in DNA [3]. Repair can occur through base excision repair (BER), involving poly
(ADP-ribose) polymerase-1 and 2 (PARP1 and PARP2). PARP1 and PARP2 are crucial proteins for BER
and act as sensors of SSBs promoting the recruitment and activation of critical downstream SSB repair
effectors [3].

Int. J. Mol. Sci. 2020, 21, 4910; doi:10.3390/ijms21144910 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms21144910
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/14/4910?type=check_update&version=3


Int. J. Mol. Sci. 2020, 21, 4910 2 of 18

Accumulating evidence demonstrated that aberrant activation of DDR proteins (ATM, ATR,
DNA-PK, Chk1, Chk2 and PARP) in cancer is strongly correlated with resistance to genotoxic
anti-tumor therapeutics of cancer cells [3]. For this reason, DDR inhibitors are promising candidates in
cancer treatment (Figure 1). More interestingly, DDR inhibitors have the potential to elicit synthetic
lethal effects. Cancer cells with defects in one DDR pathway often depend on other pathways for
their survival, and targeting these pathways of reliance can be exploited to cause selective cancer cell
death [2].

In this review, we will briefly discuss the DNA damage response and how it can drive
therapy resistance, with particular attention to glioblastoma (GBM). The DNA repair systems
have already been extensively described elsewhere [1,5]. Here, we will mainly focus our attention
on the three apical kinases of the DNA damage response, namely ataxia-telangiectasia-mutated
(ATM), ataxia-telangiectasia- and Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK),
and analyze how they can contribute to therapy resistance. Further, we will enumerate the major
inhibitors that have been developed for each kinase, with special attention to those that have entered
clinical trials that include GBM patients (see Table 1).

Finally, we will dedicate a paragraph to PARP inhibitors, which were the firsts DDR inhibitors
(DDRi) to be developed and are currently the most studied either alone or in combination with other
forms of treatment.
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Figure 1. Treatment of cancerous cells with the standard combination of ionizing radiation (IR) and
temozolomide (TMZ) causes DNA damage and subsequent activation of the DNA damage response
(DDR) kinases (i.e., ATM, ATR and DNA-PK). Over-activation of such proteins is frequent in cancers
and is responsible for therapy resistance. Addition of a DDR inhibitor to standard therapy helps reduce
DNA repair rate and increases the mortality of tumor cells. Inhibitors shown in the graphic are currently
been tested for glioblastoma multiforme (GBM) treatment. IR, ionizing radiation; TMZ, temozolomide.

2. Glioblastoma Multiforme

Glioblastoma multiforme is the most aggressive of brain tumors. Despite early treatment, patients’
survival remains dismal, with an approximate life expectancy of 14 months [6]. Standard care after
surgery consists of a combinatory therapy of ionizing radiations (IR) and temozolomide (TMZ). Both IR
and TMZ act by damaging the DNA. IRs directly cause irreversible clustered DNA damage, generating
interstrand crosslinks (ICL), single- or double-strand breaks leading to cell death [7]; on the other
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hand, TMZ has a more intricate mechanism of action. It can produce up to 12 different lesions,
the most frequent being: N7-methylguanine (N7MeG) (80–85%), N3-methyladenine (N3MeA) or
N3-methylguanine (N3MeG) (8–20%). Despite their frequency, these lesions are not by far as lethal as
the minor O6-methylguanine (O6MeG) lesion (8%) [8]. The formation of this adduct causes the guanine
to mispair with thymine, therefore activating the mismatch repair system (MMR). The MMR removes
the incorrect thymine creating a gap. When the polymerase tries to seal the gap, it misreads the O6MeG
once again and pairs it with a new thymine, thereby initiating a so called “futile repair cycle” [9,10].
After the second round of repair, replication forks stall and collapse, generating a double-strand break
(DSB) and activating proteins of the DDR [11]. An alternative line of treatment is represented by
chloroethylating nitrosoureas (CNUs), which act in a similar way producing 06-chloroethylguanine
(O6-ClEtG) lesions [12].

Developing resistance to radiation and chemotherapy is a major clinical issue: a great part of
resistance is caused by GBM’s enhanced activity of DNA repair systems that render DNA damaging
treatments ineffective [13].

Developing resistance to radiation and chemotherapy is a major clinical issue: glioblastoma is a
highly radio- and chemo-resistant tumor. Radio-resistance and chemo-resistance can be defined as
the capacity of cancer cells to resist respectively to ionizing radiations or chemotherapeutic drugs.
These characteristics render GBM a very difficult tumor to treat [3]. Although the molecular basis for
its innate resistance has not been fully elucidated, a great part of it has been linked to the presence of
cancer stem cells which are responsible for cancer initiation and recurrence and are characterized by
the aberrant functionality of the DNA repair machinery. Indeed, GBM’s ability to resist DNA insults
is directly attributable to its innate upregulation of DNA repair pathways which render treatments
ineffective [13].

3. The DNA Damage Response in Mediating Resistance in Glioblastoma

Cells are constantly exposed to either exogenous or endogenous stresses that can lead to DNA
damage and threaten the genomic integrity of the cell. As a form of protection, mammals have evolved
several types of DNA repair systems, each specific for a precise type of damage [1].

Broadly, these repair systems can be divided in two groups: those repairing SSBs and those
handling DSBs. Common cancer therapy includes radiation and chemotherapy, which trigger the
formation of both single-strand and double-strand breaks, therefore stimulating the response of both
types of repair mechanisms.

3.1. Single Strand Break Repair Systems

Single-strand break (SSB) repair systems comprehend base excision repair (BER), nucleotide
excision repair (NER) and mismatch repair (MMR). All these systems operate by firstly recognizing and
removing the damaged portion of the DNA. They then use the other strand as a template to synthetize
a new correct sequence and seal the gap [1].

SSB repair systems are significantly activated after chemotherapy. As discussed above,
administration of alkylating or chloroethylating drugs results in the formation of DNA adducts [8,12]
that, upon detection by the repair machinery, can be repaired by either BER or NER accordingly to the
type of damage. In a therapeutic context, the hope lies in the incapacity of the system to repair the
induced lesions. Therefore, the activation of early repair systems such as BER and NER jeopardizes the
attempt to turn the DNA adducts into greater forms of damage and lead cancerous cells to death [14].

It is otherwise important to specify that, while as a general rule, increased activation of DNA
repair systems is counterproductive for standard cancer therapy, each type of treatment and repair
mechanism must be considered individually. In fact, when discussing TMZ treatment, activation of
BER and NER systems is not desirable. On the contrary, an operating MMR is instead required: with
no active MMR, no “futile repair cycle” occurs and the DNA adducts are never converted into DSBs,
which are ultimately what endangers the tumor [9,10].
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The role of the MMR system in promoting TMZ sensitivity has also emerged in a recent
CRISPR-Cas9 screening aimed at identifying genes that mediate TMZ resistance [15]. The screening
was performed on patient-derived glioblastoma stem cells (GSCs) treated with high doses of TMZ.
The results highlighted that three weeks after treatment, resistant cells displayed an enrichment of
four genes involved in the MMR (MLH1, MSH2, MSH6 and PMS2) [15]. Of note, in recurrent GBM,
a significant decrease in the MSH2, MSH6 and PMS2 protein expression level was reported [16],
and reduction in MLH1 and PMS2 correlated with TMZ resistance [17].

3.2. Double Strand Break Repair Systems

When the damage is more extended and comprises both strands, the repair mechanisms are more
complex. This is largely because when DNA information is missing from both strands, the polymerase
has no template to copy to generate the new strand [1].

The two repair systems involved in double-strand break (DSB) repair are homologous
recombination (HR) and non-homologous end-joining (NHEJ). The first one can only work if cells are
damaged whilst in their late S/G2 phase of the cell cycle. This is because only during these phases
the DNA has been replicated and each cell disposes of two copies of each DNA strand. Therefore,
the HR enables the polymerase to use the sister chromatid as a template to synthetize the repaired
strand [18,19].

When cells are damaged in different phases of the cell cycle and lack a second copy of the
DNA, the NHEJ is called into action. The heterodimer KU 70/80 binds the DSB and recruits the
DNA-dependent protein kinase catalytic subunit (DNA-PKcs). With no template to copy from, the
NHEJ acts by joining the two ends of the DSB. This system is then able to repair the DSB but does not
restore DNA to its original state before the damage [20].

The CRISPR-Cas9 screening cited above also identified genes involved with DSB repair mechanisms
as essential for TMZ-resistance [15]. The spotted genes (e.g., MCM8 and MCM9) are connected to
Fanconi anemia/interstrand crosslink and homologous recombination. In fact, knockout of MCM8
or MCM9 significantly increased TMZ sensitivity in GSCs, despite having no effect on non-tumor
neuronal stem cells (NSCs) [15].

4. Temozolomide Treatment and Cell Death

The DNA damage response exerts its function first of all by regulating the cell cycle and at a
second stage by triggering either repair or death signalling pathways. Among the first proteins to be
recruited to the DSB, ATM and ATR kinases are key in sensing the damage and initiating a downstream
signalling cascade [12,21].

As soon as DNA damage is detected, the cell cycle is arrested. One of the first goals of the
ATR/ATM signalling cascade is in fact to activate checkpoint kinases 1 and 2 (Chk1 and Chk2) and
slow down the cell cycle [1]. Once the cycle has been arrested, the cell attempts to repair the damage.
However, if such damage is too extended, the prolonged activation of the DDR kinases spurs either
apoptotic or necrotic death pathways [22].

TMZ and CNUs Affect Cell Cycle and Death

TMZ creates lesions that cause replication forks to stall, activating in the first place the ATR-Chk1
axis. Only at a later stage is the ATM-Chk2 axis triggered, probably due to secondary effects caused by
DSBs at collapsed replication forks [23,24]. It has been demonstrated that TMZ preferentially induces
cells to arrest in the G2/M phase of the cell cycle: a recent work showed that 48h post-TMZ, GBM
cells (i.e., T98G) are preferentially retained in this phase [25]. Similarly, another study had previously
evidenced an increase in the percentage of G2/M cells upon TMZ treatment [26]. This G2/M arrest
appears to be independent of p53 status as TMZ administration was shown to spur G2/M arrest both
in p53-proficient (i.e., U87MG) and p53-deficient (i.e., E6-transfected U87MG and LN-Z308) GBM cell
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lines. The difference between p53-proficient and p53-deficient cells lays in the duration of this G2/M
arrest, which is prolonged for p53-proficient cells [26].

Otherwise, it is also known that TMZ-induced ATM/ATR activation leads to p53 phosphorylation
on serine 15 and 20, arresting the cell cycle in G1/S, thereby promoting transcription of pro-survival
genes [27]. When damage is too extensive to be repaired, TMZ also promotes p53 phosphorylation
on serine 46 which induces transcription of pro-apoptotic genes as FAS, BAK, BAX, PUMA and
PTEN, preferentially leading to apoptotic cell death [28]. The G1/S arrested population is the one that
undergoes apoptotic death, while the cells arrested in G2/M are more likely to become senescent if they
have the wild-type p53 [25].

For both alkylating and chloroethylating drugs, p53 status is also key in deciding which
death pathway to trigger. Gliomas expressing the wild-type p53 trigger the extrinsic pathway
of apoptosis upon TMZ and the intrinsic pathway upon CNUs administration [29]. On the other hand,
non-functioning p53 mainly results in the activation of the apoptotic intrinsic pathway upon TMZ and
necrosis upon CNU administration [28].

5. Inhibition of DDR Kinases to Overcome Therapy Resistance in GBM

In the next paragraphs, we will consider the role of apical DDR kinases in repairing DNA damage
and explore existing inhibitors that have been developed for these proteins. For each kinase, we will
examine on-going or recently concluded clinical trials to underline the importance of DDR inhibitors
in cancer therapy, especially for tumors that have a naturally hyperactive DDR, such as GBM.

5.1. ATM

ATM is a serine/threonine kinase belonging to the phosphatidylinositol-3 kinase-like kinase (PIKK)
family. It is activated by several stimuli, including DNA DSBs, hypoxia and reactive oxygen species
(ROS) and plays a dual role in cancer [30]. When both strands of the DNA are damaged, the sensor
complex MRN (Mre11-Rad50-Nbs1) is engaged at the site of the damage. This in turn can recruit ATM,
which becomes activated through an auto-phosphorylation process thereby initiating a signalling
cascade. Among its main targets, there are Chk2 and p53. The activation of this signalling cascade
leads to cell cycle arrest preferentially in the G1/S checkpoint [31], but also in the G2/M checkpoint [32]
and consequently to either repair of the damage or initiation of death pathways.

ATM depletion results in an autosomal recessive disorder known as ataxia-telangiectasia which
displays increased sensitivity to radiation. Knowledge of this suggested that inhibitors targeting ATM
(ATMi) could be used as radio- or chemo-sensitizers, electing them among the firsts DDR inhibitors to
be developed, starting from the small molecule ATP-analogue KU55933 [33]. This first-generation drug
was a selective ATM inhibitor but lacked several fundamental drug attributes, such as good aqueous
solubility and bioavailability and it was therefore soon substituted by its derivative KU60019 [34] and
by CP466722 [35]. Second-generation drugs, such as AZ32, brought considerable improvement to
drugs’ availability and to their capacity to cross the brain–blood barrier (BBB) [36].

Pre-clinical studies have highlighted a promising effect for ATMi ameliorating patient’s response
to radiations (or radiomimetic drugs) and topoisomerase I/II drugs (e.g., camptothecin, etoposide,
doxorubicin) [33–36].

High-throughput screenings are also proving useful in the constant search for new molecules
that could inhibit ATM. A cell-based screening mechanism, employing the in-cell Western (ICW)
immunoassay, was used to identify two new molecules that could potentially act as ATM inhibitors:
SJ573017, a potent Polo-like kinase 1 (PLK1) and 3 (PLK3), and SJ573226, a GSK-3 kinase inhibitor [37].

More recently, ATMi have entered Phase-I clinical trials either as monotherapy or in combination
with other forms of treatment. As far as GBM is concerned, the ATM inhibitor AZD1390 was specifically
optimized to cross the BBB and has a good central nervous system (CNS) availability [38]. Its toxicity is
currently being evaluated in a clinical trial combining AZD1390 and IR (see Table 1 CT-NCT03423628).
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ATM plays a key role in DSB repair by homologous recombination (HR) as it triggers the formation
of single-strand DNA overhangs that are key for HR initiation. Moreover, ATM loss is frequently
reported in cancers and has been shown to cause a “mild” HR deficiency [39]. Synthetic lethality
between ATM and ATR was revealed in several studies and spurred the usage of ATMi to sensitize
HR-proficient cells to treatment [40].

As far as the role of p53 is concerned, contrasting studies have been published regarding the
significance of p53 status for ATM inhibitor-induced toxicity. For example, studies conducted on
human colorectal cancer cell lines showed p53 status to be inconsequential for ATMi KU59403
radio-sensitizing effect [41]. On the other hand, a study using GBM cell lines pointed out that KU60019
would render mutant p53 cells more sensitive to therapy than the correspondent p53-WT cell line [42].
Whether differences can be imputable on the different types of inhibitors used, the different ways in
which sensitivity is determined or on the tumor type remains to be clarified.

The main target of ATM, Chk2, has also been under investigation for the generation of inhibitor
molecules, but studies have so far only reached the pre-clinical stage, at least for GBM: PV1019 [43]
and CCT241533 [44] were used in combination with IR, bleomycin or the PARP inhibitor olaparib in
GBM cell lines. The least selective inhibitor AZD7762 which targets both Chk2 and Chk1 reached a
Phase-I clinical trial for GBM, but this had to be terminated early due to cardiotoxicity issues [45].

5.2. ATR

ATR is a serine/threonine kinase belonging to the PIKK family but, differently to ATM, it responds
to single-strand DNA (ssDNA). Single-strand DNA is commonly generated when replication forks
stall and collapse or during the processing of DSB sites [46]. Replication protein A (RPA) coats
ssDNA to stabilize it and avoid the formation of destructive secondary structures. ATR works in
couple with ATR-interacting protein (ATRIP), which is used to recruit ATR to RPA-coated ssDNA [46].
Once recruited to the site of the damage, regulatory complexes such as 9-1-1 (Rad9-HUS1-Rad1)
stimulate ATR and drive its activation. Its main target is Chk1 which arrests the cell cycle in the intra-S
or the G2/M phase [46].

The first ATR inhibitor (ATRi) to be developed, VE-821, was a competitive ATP-analogue that
specifically inhibited ATR [47].

Both VE-821 [48] and its structural analogue AZD6738 [49] were used in pre-clinical trials on GBM
cells and stem cells as monotherapy or in combination with cisplatin.

Second-generation drugs VX-970 [50,51], BAY1895344 [52] and the AZ20 derivative AZD6738 [49,53]
acquired ameliorated selectivity and oral availability and were the first ATRi to enter clinical trials.
There are currently several undergoing Phase-I/II clinical trials examining ATRi: AZD6738 is so far the
only inhibitor suitable for glioma patients thanks to improved BBB-permeability [53].

As discussed above for ATMi, also ATRi are able to increase toxicity more powerfully in cancer
cells lacking ATM or that display a mutated form of p53 [54–56]. Coherently, ATM deficiency is
one of the most advantageous biomarkers used for patient’s selection in clinical trials employing
ATRi [40,49,57].

It is otherwise interesting to note that ATRi have also been found to synergize with Chk1 inhibitors,
increasing their toxicity, although the reason for this is still poorly understood [58].

Chk1 inhibitors as SRA737 [59] and LY2606368 [60] are being evaluated in Phase I/II clinical trials,
not involving GBM patients so far. Their BBB-permeability is still unclear and under investigation, but
a Phase-I clinical trial for LY2606368 including medulloblastoma patients may lead the way for future
studies in other brain tumors (see Table 1, CT-NCT04023669).

Synthetic lethality of ATRi or Chk1 has been proven also together with Wee1 inhibitors [61,62].
Wee1 is a kinase activated by Chk1 that inhibits cyclin-dependent kinase 1 (CDK1), thereby preventing
mitotic entry [63].

Loss of the phosphatase CDC25A has been identified as a major cause for resistance to ATR
inhibitors [64]. CDC25A loss causes cells to arrest before they undergo mitosis, thereby reducing
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the impact of DNA-damaging agents. A way around this form of resistance is represented by the
concomitant use of Wee1 inhibitors. The only Wee1 inhibitor available so far is MK1775 and is currently
under Phase-I evaluation. It forces mitotic entry before replication has been completed resulting in
abnormal mitoses and cell death [65,66]. It has a good BBB-permeability and is being tested in GBM
patients treated with IR and TMZ [66–68].

5.3. DNA-PK

DNA-PK is once again a serine/threonine kinase belonging to the PIKK family. It is composed
of the DNA binding heterodimer KU70/KU80 and the catalytic subunit called DNA-PKcs. It is a key
protein in the non-homologous end-joining repair system, which as mentioned above, is required for
the repair of DSBs that occur before DNA duplication [20].

Currently there are two DNA-PK inhibitors being tested in clinical trials: M3814 [69,70] is being
tested in a Phase-I clinical trial for advanced solid tumors and leukemia patients that have ATM
deficiency. Indeed, DNA-PK inhibitors have previously been demonstrated to increase lethality in
cancers with ATM loss [71,72]. CC-115 is a recent compound which is able to cross the BBB and whose
toxicity and efficacy are being evaluated in GBM patients, combined with IR and TMZ treatment [73].

5.4. PARP

Poly (ADP-ribose) polymerases (PARPs) are a family of 18 proteins united by their ability to
transfer ADP-ribose to target proteins. PARP1 is the first and best studied protein of the family and
shares 69% homology with PARP2. Both PARP1 and PARP2 are best known for their role in DNA
repair mechanisms [74]. PARP proteins respond to SSBs and are involved in the base excision repair
(BER) pathway, being part of the BER complex together with DNA ligase II, DNA polymerase β and
XRCC1 [75]. Chemotherapeutic agents such as alkylating or chloroethylating agents typically induce a
form of DNA damage that activates BER [3].

There is evidence for PARP upregulation in several types of cancers: hepatocellular carcinoma [76],
breast cancer and ovarian cancer [77]. As far as GBM is concerned, PARP-1 was found to be more
expressed in GBM biopsies than in healthy donor tissues [13,78]. Altogether, these findings suggest
that inhibition of PARP activity may be beneficial for tumor treatment. In fact, PARP-deficient mice
were found to be more sensitive to radiation and DNA-damaging agents [79].

Tumors that display impaired homologous recombination (HR) capacity, such as BRCA1-BRCA2-
mutated tumors, were found to be strongly dependent on PARP-1 activity and therefore possibly
more sensitive to its inhibition [80]. This is the reason why the first PARP inhibitors were specifically
developed for ovarian or breast cancers displaying BRCA1/2 defects [81,82].

ARIEL2 and ARIEL3 were double-blinded Phase-II and Phase-III clinical trials evaluating the
effect of the PARP inhibitor Rucaparib as monotherapy for ovarian cancer with HR deficiency [83].
Pre-clinical studies have focused on trying to extend Rucaparib use to GBM treatment in combination
with TMZ. Despite having obtained promising results on GBM cultures, Rucaparib failed to improve
TMZ sensitivity in orthotopic models, due to extremely poor CNS permeability [84]. On the other
hand, Niraparib [85] and Veliparib [86] both showed good BBB-penetration and were approved for
Phase-I/II clinical trials on GBM patients.

The GBM standard treatment drug temozolomide induces toxicity mainly through O6-MeG
lesions because N3-MeA and N7-MeG lesions are easily repaired by BER [8]. Since PARP inhibitors
are known to affect the BER system, they were thought to be potentially good TMZ sensitizers,
by restoring the lethality of N3-MeA and N7-MeG adducts that make up 80% of TMZ-induced lesions.
Whether TMZ sensitization by PARP inhibitors is due to their effect on the BER repair system or not
is under investigation; knock-down of other BER proteins failed to further increase PARP-mediated
TMZ sensitization, which was instead enhanced by knock-down of HR key proteins such as BRCA1
or Rad51 [87]. Another recent study pointed out a BER independent role for PARPi Veliparib and
Olaparib in restoring TMZ sensitivity in cells that were resistant due to MMR deficiency [88].
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At last, we discuss the PARP inhibitor Olaparib [89]. Olaparib is undergoing a Phase-I clinical
trial for GBM in combination with radiation, TMZ and bevacizumab. Despite no evidence for Olaparib
as a CNS available drug, it is being tested for brain tumors as well, as recent evidence has highlighted
that many GBM patients show compromised integrity of the BBB and that in such cases, Olaparib may
be successfully delivered to the tumor [90].

Many pre-clinical trials involving PARP inhibitors and TMZ have failed due to the high
haematological toxicity induced by the combination of these drugs [91]. A solution could be presented
by the Phase-I study PARADIGM-2 [92], which is studying dose-dependent toxicity in GBM patients
that have been divided according to their MGMT expression. MGMT is a demethylase that removes
TMZ-induced alkyl-adducts rendering TMZ treatment ineffective [93]. PARADIGM-2 patients that
have methylated and poorly expressed MGMT are administered Olaparib plus radiation and TMZ,
while TMZ-resistant patients with high levels of MGMT are treated with Olaparib plus a higher dose
of radiation only [92].

6. Conclusions

Over recent years, the DDR has gained increasing importance in cancer treatment.
Better understanding of the mechanisms regulating the DDR in cancer have helped clarify the role of the
major DDR kinases in response to chemotherapy and radiation and have encouraged the development
of DDRi as potential treatments. GBM is a multifaceted tumor that owes much of its incurability to
the upregulation of DNA repair pathways that contrast therapy-induced DNA damage. All in all,
when evaluating GBM treatment, many factors have to be kept in mind: HR efficacy, BER activity,
MGMT status and drug BBB-penetrating ability being only part of the picture. What is certain is that
the recent advances in DNA sequencing techniques and improvement of DDR inhibitors will enable a
personalized form of treatment for patients, which may represent a valuable solution for a complex
and variable tumor such as GBM.
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Table 1. Summarizes the main inhibitors that target proteins of the DNA damage response. For each compound, existing clinical trials have been noted, focusing
on those involving GBM patients where possible. Further, pharmacologically relevant characteristics such as the drug’s availability and blood–brain barrier (BBB)
permeability have been highlighted.

Kinase Inhibitor Clinical Trial
Phase End Date Drug Combinatory

Strategy Characteristics BBB
Permeability Tumors/Cell Lines Reference

ATM

KU55933 Pre-clinical - +IR
+etoposide phosphate

Poor aqueous
solubility and poor

bioavailability
no

Human cervical cancer
(HeLa), Human

osteosarcoma (U2OS)
[33,94]

KU60019 Pre-clinical - -
Poor aqueous

solubility and poor
bioavailability

no Human glioma (U87, U1241) [34]

CP466722 Pre-clinical - +temozolomide
Improved aqueous

solubility and
bioavailability

no

Human breast cancer cell
line (MCF7), fibroblasts
(HFF), A-T cells, GBM12

glioblastoma xenograft cell
lines

[35]

KU59403 Pre-clinical - +irinotecan
+etoposide phosphate

Improved aqueous
solubility and
bioavailability

no

Human colon cancer
(HCT116, SW620), Human

osteosarcoma (U2OS),
Human breast cancer

(MDA-MB-231)

[41]

AZ32 Pre-clinical - +IR Good bioavailability yes Human glioma (U87, LN18,
T98G, . . . , A172) [36]

AZD0156
Phase-I

NCT02588105
clinicaltrials.gov

30 April 2020 +olaparib
+irinotecan - yes (poor)

Various metastatic solid
tumours (including gastric
adenocarcinoma, colorectal

cancer)

[95]

AZD1390
Phase-I

NCT03423628
clinicaltrials.gov

05 April 2022 +IR Good bioavailability yes Primary and recurrent
glioblastoma multiforme [38]

ATR

VE-821 Pre-clinical - +cisplatin - yes (poor)

Hamster ovarian cells
(AA8), hamster lung

fibroblasts (V79), human
glioblastoma multiforme

(M059J)

[47]

NU-6027 Pre-clinical -
+cisplatin
+PARPi

+hydroxyurea
- unclear Breast cancer, pancreatic

cancer, ovarian cancer [96]

AZ20 Pre-clinical - monotherapy Poor aqueous
solubility yes (poor)

Colorectal adenocarcinoma
cell line (HT29),

glioblastoma CSCs
[55,97]

clinicaltrials.gov
clinicaltrials.gov
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Table 1. Cont.

Kinase Inhibitor Clinical Trial
Phase End Date Drug Combinatory

Strategy Characteristics BBB
Permeability Tumors/Cell Lines Reference

ATR

VX-970
Phase-I

NCT02157792
clinicaltrials.gov

11 March 2020, 30
April 2025

monotherapy
+cisplatin - unclear Advanced solid tumors [50,51]

BAY1895344
Phase-I

NCT03188965
clinicaltrials.gov

25 March 2022 monotherapy - unclear Solid cancers and
lymphomas [52]

AZD6738
Phase-II

NCT03682289
clinicaltrials.gov

19 March 2023 +olaparib Good oral
bioavailability yes (good)

Renal and pancreatic
carcinoma, glioma initiating

cells
[49,53]

DNAPK

M3814

Phase-I
NCT02316197
NCT02516813

clinicaltrials.gov

19 December 2020

monotherapy
+IR

+cisplatin
+doxorubicin

Orally bioavailable unclear CLL and solid tumors [69,70]

CC-115
Phase-I

NCT02977780
clinicaltrials.gov

May 2022 +neratinib
+temozolomide - yes (good) Glioblastoma multiforme [73]

Chk2

PV1019 Pre-clinical - +IR
+topotecan Good bioavailability yes (good)

Human breast cancer
(MCF7), Human ovarian

cancer (OVCAR-3,-4,-5,-8),
Human glioblastoma (U251)

[43]

CCT241533 Pre-clinical -
+bleomycin
+olaparib

+IR
Good bioavailability yes (good)

Human colorectal cancer
(HT-29), human breast
cancer (MCF7), human
glioblastoma (U87MG),

human ovarian cancer line
(OVCAR-3,5)

[44]

Chk2/Chk1 AZD7762
Phase-I

NCT00473616
clinicaltrials.gov

February 2011,
terminated due to

cardiotoxicity
+irinotecan - unclear

Solid advanced tumors,
glioblastoma primary
isolates (pre-clinical)

[45]

Chk1

LY2606368
Phase-I

NCT04023669
clinicaltrials.gov

June 2026 +gemcitabine
+cyclophosphamide

Good oral
bioavailability unclear Advanced solid tumors,

medulloblastoma [60]

SRA737

Phase-I/II
NCT02797964
NCT02797977

clinicaltrials.gov

28 October 2019
monotherapy

+cisplatin
+gemcitabine

Good oral
bioavailability unclear Advanced solid tumors,

Non-Hodgkin’s lymphoma [59]

Wee1 MK-1775

Phase-I
NCT02207010
NCT01849146

clinicaltrials.gov

May 2018, 28
September 2020

monotherapy
+IR

+temozolomide

Good oral
bioavailability yes (good)

Recurrent glioblastoma,
Glioblastoma xenografts,
Human glioblastoma cell

line (U251, U87MG, T98G)

[66–68]

clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
clinicaltrials.gov
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Table 1. Cont.

Kinase Inhibitor Clinical Trial
Phase End Date Drug Combinatory

Strategy Characteristics BBB
Permeability Tumors/Cell Lines Reference

PARP

Rucaparib

Phase II
NCT01891344

Phase III
NCT01968213

clinicaltrials.gov

31 October 2021
June 2020 monotherapy Good oral

availability yes (poor)
Ovarian cancer, Epithelial
ovarian cancer, Fallopian

tube cancer
[83,84,98,99]

Niraparib

Phase I
NCT01294735

Phase II
NCT03307785

May 2012
February 2020

monotherapy
+temozolomide
+bevaciumab
+carboplatin

Good bioavailability yes (good)
Melanoma, Glioblastoma

Multiforme, Metastatic
solid tumors

[85]

Veliparib

Phase I
NCT01514201

Phase II
NCT03581292

Phase III
NCT02152982

28 March 2018,
29 October 2024,
14 January 2021

+IR
+temozolomide

Good oral
bioavailability yes (good) Newly diagnosed

Glioblastoma and glioma [86]

Olaparib

Phase II
NCT03233204

Phase II
NCT02974621
Phase IINCT

03212274 Phase I
NCT03212742

30 September
2024, 31 May 2020,

31 July 2020, 30
June 2022

monotherapy
+bevacizumab

+IR
+temozolomide

Good oral
bioavailability yes (poor)

Non-hodgkin lymphoma,
Advanced solid tumours,

Glioma
[89,90]

clinicaltrials.gov
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Abbreviations

9-1-1 Rad9-HUS1-Rad1
ATM Ataxia-telangiectasia-mutated
ATR Ataxia-telangiectasia- and Rad3-related
BAK Bcl2 antagonist/killer
BAX Bcl2 associated X protein
BBB Blood–brain barrier
BRCA1 Breast cancer 1
CDC25A Cell division cycle 25A
CDK1 Cyclin dependent kinase 1
CHK1 Checkpoint kinase 1
CHK2 Checkpoint kinase 2
CNU Chloroethylating nitrosoureas
DDR DNA damage response
DDRi DNA damage response inhibitors
DNA-PK DNA-dependent protein kinase
DSB Double-strand break
GBM Glioblastoma multiforme
GSC Glioblastoma stem cell
HR Homologous recombination
IR Ionizing radiation
MCM8 Minichromosome maintenance 8
MCM9 Minichromosome maintenance 9
MGMT O-6-Methylguanine DNA-methyltransferase
MLH1 MutL homologue 1
MMR Mismatch repair
MRN Mre11-Rad50-Nbs1
MSH2 MutS homologue 2
MSH6 MutS homologue 6
NSC Neural stem cell
NHEJ Non-homologous end-joining
PARP Poly-ADP-ribose polymerase
PIKK Phosphatidylinositol 3-kinase related kinase
PMS2 PMS1 homolog 2
PTEN Phosphatase and tensin homologue
PUMA P53 upregulated modulator of apoptosis
ROS Reactive oxygen species
SSB Single-strand break
TMZ Temozolomide
XRCC1 X-ray repair cross-complementing 1
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