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Abstract: This paper is devoted to the estimation of the entropy of the dynamical system
{Xα(t), t ≥ 0}, where the stochastic process Xα(t) consists of the fractional Riemann–Liouville integral
of order α ∈ (0, 1) of a Gauss–Markov process. The study is based on a specific algorithm suitably
devised in order to perform the simulation of sample paths of such processes and to evaluate the
numerical approximation of the entropy. We focus on fractionally integrated Brownian motion and
Ornstein–Uhlenbeck process due their main rule in the theory and application fields. Their entropy is
specifically estimated by computing its approximation (ApEn). We investigate the relation between
the value of α and the complexity degree; we show that the entropy of Xα(t) is a decreasing function
of α ∈ (0, 1).
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1. Introduction

In the study of a biological system, whose time evolution is modeled by a stochastic process that
depends on a certain parameter α, often there is a need to find how a change in the value of α affects
the qualitative behavior of the system, as well as its complexity degree, or entropy. Another useful
information is the knowledge of a stochastic ordering, with respect to expectation of functionals of the
process (e.g., its mean and variance), when varying α.

As a case study, we are interested to the qualitative behavior of the fractional integral of a
Gauss–Markov (GM) process, when varying the order α of the fractional integration.

Actually, GM processes and their fractional integrals over time are very relevant in various
application fields, especially in Biology—e.g., in stochastic models for neuronal activity (see [1]).
In particular, the fractional integral of order α ∈ (0, 1) of a GM process, say Xα(t), is suitable to
describe certain stochastic phenomena with long range memory dynamics, involving correlated input
processes (see [2]).

As an example of application, one can consider the model for the neuronal activity, based on the
coupled differential equations:{

DαV(t) = gL
Cm

VL +
η(t)
Cm

, V(0) = V0

dη(t) = − η(t)−I(t)
τ dt + ς

τ dB(t), η(0) = η0.
(1)
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Here, Dα stands for the Caputo fractional derivative (see [3]); η(t) is in place of the white noise,
usually utilized in the stochastic differential equation, which describes a Leaky Integrate-and-Fire (LIF)
neuronal model (see, for example, [4]). The colored noise process η(t) is the correlated process obeying
the second of Equation (1) and it is the input for the first one; it is indeed a time-non-homogeneous GM
process of Ornstein–Uhlenbeck (OU)-type (see Section 2). The stochastic process V(t) represents the
voltage of the neuronal membrane, whereas Cm is the membrane capacitance, gL the leak conductance,
VL the resting (equilibrium) level potential, I(t) the synaptic current (deterministic function), τ is the
correlation time of η(t) and B(t) the noise (standard BM). As we can see, the process V(t), which is the
solution of (1) belongs to the class of fractional integrals of GM processes. Indeed, it is a specific example
of Xα(t) process, V(t) being the Caputo fractional integral of the η(t) process [5]. The biophysical
motivation in the above model is to describe a neuronal activity as a perfect integrator (without leakage),
from an initial time until to the current time, of the process η(t), representing the time dependent input.
The use of fractional operators allows us to regulate the time scale by choosing the fractional order of
integration suitably adherent to the neuro-physiological evidences. Indeed, such a model can be useful,
for instance, in the investigation and simulation of synchronous/asynchronous communications in
networks of neurons [6].

To introduce the terms of our investigation, we recall some definitions.
A continuous GM process Y(t) is a stochastic process of the form:

Y(t) = m(t) + h2(t)B(r(t)), t ≥ 0, (2)

where B(t) = Bt denotes standard Brownian motion (BM), m(t), h1(t), h2(t) are C1 functions
in (0,+∞), with h2(t) 6= 0 and r(t) = h1(t)/h2(t) is a monotone increasing, differentiable and
non-negative function.

For a continuous function f (t), its Riemann–Liouville (RL) fractional integral of order α ∈ (0, 1)
is defined as (see [7]):

Iα( f )(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, (3)

where Γ is the Gamma Euler function—i.e., Γ(z) =
∫ +∞

0 tz−1e−tdt , z > 0.
We recall also that the Caputo fractional derivative of order α of a function f (t) is defined by (see [3]):

Dα f (t) =
1

Γ(1− α)

∫ t

0

f ′(s)
(t− s)α

ds, (4)

where f ′ denotes the ordinary derivative of f .
Notice that, taking the limit for α→ 1, one gets D1 f (t) = f ′(t), while I1( f )(t) =

∫ t
0 f (s)ds—i.e.,

the ordinary Riemann integral of f. Moreover, D0 f (t) = f (t)− f (0) and I0( f )(t) = f (t).
Referring to the neuronal model (1), assuming that V(0) = 0 (and, in some cases, also η(0) = 0),

the RL fractional integral Iα is used as the left-inverse of the Caputo derivative Dα (see [8,9]). In this
way, we find that the solution V(t) of (1) involves the RL fractional integral process of the GM process
η(t), specifically:

V(t) = Iα(DαV(t)) = Iα

(
gL
Cm

VL

)
+ Iα

(
η(t)
Cm

)
, with V(0) = 0. (5)

Thus, V(t) turns out to be written in terms of the fractional integral of η(t).
From this consideration, in the framework of general stochastic models involving correlated

processes, it appears useful to investigate the properties of Xα(t) = Iα(Y)(t),—i.e., the fractional
integral of a GM process Y(t), as varying α ∈ (0, 1). Although Xα(t) is not Markov, we have showed
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in [2] that it is still a Gaussian process with mean µα(t) and variance σ2
α(t); for instance, the fractional

integral of BM has mean µα(t) = 0 and variance

σ2
α(t) =

t2α+1

(2α + 1)Γ2(α + 1)

(for closed formulae of the mean µα(t) and variance σ2
α(t) of the fractional integral of a general GM

process, see [2]). For fixed α, σ2
α(t) turned out to be increasing, as a function of t. Moreover, in [2]

we found that for small values of time t the variances of the considered fractionally integrated GM
processes become ever lower, as α increases (i.e., the variance decreases as a function of α); for large
values of t this behavior is overturned, and the variance increases with α (see [2]).

In this paper, we aim to characterize the qualitative behavior of the dynamical system
Xα(t), α ∈ (0, 1) by means of its entropy. Indeed, the entropy is widely used for this purpose in
many fields (see [10–14]). In Biology, entropy is useful to characterize the behavior of, for example,
Leaky Integrate-and-Fire (LIF) neuronal models (see [4]). In finance, Kelly in [15] introduced
entropy for gambling on horse races, and Breiman in [16] for investments in general markets.
Finally, the admissible self-financing strategy achieving the maximum entropy results in a growth
optimal strategy (see [17]).

In order to specify the entropy for the processes considered in this paper, we first note that, for a
fixed time s the r.v. Xα(s) is normally distributed with mean µα(s) and variance σ2

α(s), so recalling that
the entropy of a r.v. X with density f (x) is given by

H(X) = −
∫ +∞

−∞
log2( f (x)) f (x)dx, (6)

where, by calculation, it easily follows that the entropy of the normal r.v. X = Xα(s) with fixed s,
depends only on σ2

α(s) and it is given by (see [18], p. 181):

H(X) = log2(σα(s)
√

2πe). (7)

Thus, the larger the variance σ2
α(s), the larger the entropy of Xα(s) for a fixed time s.

In this paper we are interested in studying a different quantity: for a certain value of α ∈ (0, 1),
and T > 0, our aim is to find the entropy of trajectories of Xα(t), t ∈ [0, T], which involves all the
points of the trajectories up to time T, and to show that the entropy is a decreasing function of α.

We do not actually compute the entropy of Xα(t), but its approximate entropy ApEn (see [19]),
obtained by using several long enough simulated trajectories (they were previously obtained in [2],
for the fractional integral of some noteworthy GM processes Y(t), namely, BM and Ornstein–Uhlenbeck
(OU)). In fact, Pincus [19] has showed that ApEn is suitable to quantify the concept of changing
complexity, being able to distinguish a wide variety of system behaviors. Indeed, for general
time series, it can potentially separate those coming from deterministic systems and stochastic
ones, and those coming from periodic systems and chaotic ones; moreover, for a homogeneous,
ergodic Markov chain, ApEn coincides with Kolmogorov–Sinai entropy. Thus, though Xα(t) is not a
Markov process, its approximate entropy ApEn is able to characterize the complexity degree of the
system, when varying α.

As we said, we previously found that, in all the considered cases of GM processes, for large t
the variance σ2

α(t) of their fractional integral Xα(t) is an increasing function of α, while for small t it
decreases with α; instead, the covariance function has more diversified behaviors (see [2]).

In the present article, we show that, for small values of α ∈ (0, 1), Xα(t) exhibits a large value of
the complexity degree; a possible explanation is that, for small α the trajectories of the process Xα(t)
become more jagged, giving rise to a greater value of the complexity degree. In fact, our estimates
of ApEn show that it is a decreasing function of α ∈ (0, 1). This behavior appears for the fractional
integral of BM (FIBM), as well as for the fractional integral of the OU process (FIOU).
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2. The Entropy of the Trajectories of Xα(t)

In this section, we study the complexity degree of the trajectories of the process Xα(t), in two
noteworthy cases of GM processes Y(t), precisely:

(i) Y(t) = Bt, so Xα(t) = Iα(B)(t) is fractionally integrated Brownian motion (FIBM);
(ii) Y(t) is the Ornstein–Uhlenbeck (OU) process, driven by the SDE.

dY(t) = −(µY(t)− β)dt + σdBt, Y(0) = y (µ, σ > 0, β ∈ R), (8)

which can be expressed as (see [20]):

Y(t) = β + e−µt[y− β + B(r(t))], (9)

where the equality is meant in distribution, and

r(t) =
σ2

2µ

(
e2µt − 1

)
. (10)

OU process Y(t) is a GM process of the form (2), with:

m(t) = β + e−µt(y− β), h1(t) =
σ2

2µ

(
eµt − e−µt) , h2(t) = e−µt, (11)

and covariance

c(s, t) = h1(s)h2(t) =
σ2

2µ

(
e−µ(t−s) − e−µ(s+t)

)
, 0 ≤ s ≤ t. (12)

Then, Xα(t) = Iα(Y)(t) is called the fractionally integrated OU (FIOU) process.
Both FIBM and FIOU are Gaussian processes whose variance and covariance functions were

explicitly obtained in [2] and studied, as functions of α ∈ (0, 1).
To study the complexity degree of the trajectories of the process Xα(t), in cases (i) and (ii), we make

use of several simulated trajectories of length N, previously obtained in [2], for N large. The sample
paths have been obtained by using the R software, with time discretization step h = 0.01 and by
means of the same sequence of pseudo-random Gaussian numbers. The simulation algorithm has
been realized as an R script. More specifically, we specialize the algorithm to simulate an array of
(x1, x2, . . . , xN) Gaussian numbers with a specified covariance matrix. Indeed, we first set the time
instants t1 < t2 < . . . < tN (with t0 = 0 and ti = ti−1 + h, i = 1, . . . , N) and we evaluate the
elements of the covariance matrix Ci,j = cov(Xα(ti), Xα(tj)). Note that, for each fractionally integrated
Gauss–Markov process here considered, we implemented a specific algorithm to be evaluated by
numerical procedures the mathematical expression of the covariance according to Equation (3.5)
of [2]. Then, we apply the Cholesky decomposition to matrix C in order to determine the lower
triangular matrix G, such that C = GGT , where GT is the transposition of G. Finally, we generate
N pseudo-Gaussian standard numbers (z1, z2, . . . , zN) ≡ zT and we set xi = Giz (for i = 1, . . . , N,
with Gi the i−th row of matrix G) such that the obtained array (x1, x2, . . . , xN) is a simulation of a
centered Gaussian distributed N-dimensional r.v. with covariances cov(xi, xj) = Ci,j for i, j = 1, . . . , N.

In particular, referring to algorithms for the generation of pseudo-random numbers (see [21]),
the main steps of implementation were the following (for more, see [2]):

STEP 1 The elements of N × N covariance matrix C(ti, tj) are calculated at times ti, i = 1, . . . , N,
of an equi-spaced temporal grid.

STEP 2 The Cholesky decomposition algorithm is applied to the covariance matrix C in order to
obtain a lower triangular matrix G(i, j), such that C = GGT .

STEP 3 The N-dimensional array z of standard pseudo-Gaussian numbers is generated.
STEP 4 The sequence of simulated values of the correlated fractionally integrated process is

constructed as the array x = Gz.
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Finally, the array x provides the simulated path—i.e., a realization (x1, x2, . . . , xN), of
(Xα(t1), . . . , Xα(tN)), whose components have the assigned covariance.

2.1. The Approximate Entropy

In [19] Pincus defined the concept of approximate entropy (ApEn) to measure the complexity of
a system, proving also that, for a Markov chain, ApEn equals the entropy rate of the chain. In fact,
to measure chaos concerning a given set of data, we have at our disposal Hausdorff and correlation
dimension, K-S entropy, and the Lyapunov spectrum (see [19]); indeed, to calculate one of the above
parameters, one needs an impractically large amount of data. Instead, calculation of ApEn(m, r)
(see below for the definition) only requires relatively few points. Actually, as shown in [19], if one uses
only 1000 points, and m is taken as being equal to 2, ApEn(m, r) can characterize a large variety of
system behaviors, since it is able to distinguish deterministic systems from stochastic ones, and periodic
systems from chaotic ones.

For instance, Abundo et al. [10] used ApEn to obtain numerical approximations of the entropy rate,
with the final purpose to investigate the degree of cooperativity of proteins in a Markov model with
binomial transition distributions. They showed that the corresponding ApEn is a decreasing function
of the degree of cooperativity (for more about approximation of entropy by numerical algorithms,
see [12] and references therein).

Now, we recall from [19] the definition of ApEn. Let {x1, x2, ..., xN} be given a time-series of data,
equally spaced in time, and fix an integer m > 0 and a positive number r. Next, let us consider a
sequence of vectors {v1, v2, ..., vN−m+1} in Rm defined by vi = (xi, xi+1, ..., xi+m−1). Then, define for
each i, 1 ≤ i ≤ N −m + 1,

Ci(m, r) =
# o f j such that d(vi, vj) ≤ r

N −m + 1
, (13)

in which the distance d(·, ·) between two vectors is defined by

d(vi, vj) = max
k=1,...,m

|xi+k−1 − xj+k−1|. (14)

We observe that the Ci(m, r) quantities measure up to a tolerance r the frequency of patterns which are
similar to a certain pattern whose window length is m. Now, define

ΦN(m, r) =
∑N−m+1

i=1 log Ci(m, r)
N −m + 1

(15)

and
ApEn(m, r) = lim

N→∞
(ΦN(m, r)−ΦN(m + 1, r)). (16)

Given N data points, formula (16) can be implemented by defining the statistics

ÂpEn(m, r, N) = ΦN(m, r)−ΦN(m + 1, r). (17)

Heuristically, we can say that ApEn is a measure of the logarithmic likelihood that runs of patterns that
are close for m observations, remain close on the next incremental comparison. A greater likelihood
of remaining close (i.e., regularity) produces smaller ApEn values, and viceversa. On the basis of
simulated data, Pincus showed that, for N = 1000 and m = 2, for values of r, between 0.1 and 0.2
times the standard deviation of the xi data produce reasonable statistical validity of ÂpEn(m, r, N).
Moreover, he showed that, for a homogeneous, ergodic Markov chain, ApEn coincides with the
Kolmogorov–Sinai entropy (see [14]), that is

ApEn(m, r) = −∑
i

∑
j

πi pij log pij,
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where pij denotes the transition probability of the Markov chain from the state i to the state j, and πj =

limn→∞ p(n)ij is the j−th component of the vector π = (π1, π2, . . . ) of the stationary probabilities, being

p(n)ij the n−step transition probability of the Markov chain from the state i to the state j.

2.2. Calculation of the Entropy of Simulated Trajectories of the Process Xα(t)

In the case of FIBM and FIOU, for a set of values α ∈ (0, 1), we have performed L
(discretized) trajectories (x1, x2, . . . , xN) of length N of the process Xα(t), by means of the simulation
algorithm previously described in STEPS 1–4. In particular, for each simulated path, we follow the
remaining steps:

STEP 5 Construction of the array {v1,α, v2,α, ..., vN−m+1,α} in Rm (for a fixed m) by extracting from a
given sample path (x1, x2, . . . , xN) ≡ (Xα(t1), ..., Xα(tN)), obtained in STEPS 1-4, the vectors
vi,α = (Xα(ti), Xα(ti+1), ..., Xα(ti+m−1)).

STEP 6 Construction of the distance matrix Dα
i,j whose elements are dα

i,j are defined as the follows
distance between vectors vi,α and vj,α—i.e.,

dα
i,j = d(vi,α, vj,α) = max

k=1,...,m
|Xα(ti+k−1)− Xα(tj+k−1)|. (18)

STEP 7 After setting r = 0.1 ∗ S , with S sample deviation of simulated paths, evaluation of array Cα

whose components are provided as

Cα
i =

# o f j such that d(vi,α, vj,α) ≤ r
N −m + 1

, (19)

for 1 ≤ i ≤ N −m + 1.
STEP 8 Evaluation of the quantities

Φα
N,m =

∑N−m+1
i=1 log Cα

i
N −m + 1

, Φα
N,m+1 =

∑N−m
i=1 log Cα

i
N −m

(20)

and
ApEnα = Φα

N,m −Φα
N,m+1. (21)

We have taken the number of paths L large enough and N from 100 to 300, and for each of these
L trajectories of length N, corresponding to a value of α, we have estimated ApEnα(i), i = 1, . . . , L
by means of the approximation ÂpEn(2, r, N), where r = 0.1× (the standard deviation of trajectory
points); then, the approximate entropy of Xα(t) has been obtained by ApEnL

α = 1
L ∑L

i=1 ApEnα(i).
This allowed us to study the dependence of the entropy of the sample paths of Xα(t) = Iα(Y)(t) on
the parameter α, showing that the entropy—namely a measure of the complexity of the dynamical
system Xα(t)—is a decreasing function of α ∈ (0, 1).

Since the fractional integral of order zero of Y(t) is nothing but the process Y(t) itself, and the
fractional integral of order 1 is the ordinary Riemann integral of Y(t), our result means that fractional
integration introduces a greater degree of complexity than that corresponding to ordinary integration;
moreover, the maximum degree of complexity is obtained for the original process Y(t) (that is,
without integration).

In Figures 1 and 2 we plot the numerical results for ApEn, as a function of α, for FIBM and FIOU,
respectively. When the estimates of ApEn have been obtained for N = 100, it appears clear that ApEn
is a decreasing function of α.

Moreover, our calculation highlights that, for small values of α, the trajectories of FIBM and FIOU
become more jagged, giving rise to a greater value of the complexity degree (see Figure 3).
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Figure 1. Approximate entropy (ApEn) of FIBM, as a function of α for N = 100. (Values of α are on the
horizontal axes).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 2. Approximate entropy (ApEn) of FIOU with µ = σ = 1, β = 0, as a function of α for N = 100.
(Values of α are on the horizontal axes).
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Figure 3. Some simulated sample paths of FIBM (left) and of FIOU (right) for some values of α

(specified by labels inside the figure). In both examples we set N = 100, but the time discretization step
h is 0.01 on the left and 0.1 on the right. The seed of the random generator is the same for all simulated
paths. (Values of time t are on the horizontal axes).

We also show that the results of ApEn as N increases in Figures 4 and 5. Our investigations show
that the estimated values of ApEn for FIOU, for a given α and a given trajectory length, are considerably
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larger than those for FIBM (compare Figures 4 and 5). This possibly depends on the fact that the
trajectories of FIOU are more complicated than those of FIBM, giving rise to a greater complexity
degree. Moreover, contrary to the case of FIBM, where for all α the estimated value of ApEn is
a decreasing function of the length N of simulated trajectories, in the case of FIOU, for α ≤ 0.5,
the estimated value of ApEn appears to be an increasing function of N. Perhaps if one used far longer
trajectories (N ≥ 1000) to estimate ApEn, the values obtained in both cases would be comparable and
they would exhibit the same behavior as a function of N. Notice, however, that to simulate very long
trajectories is impractical from the computational point of view (even for N = 300, the CPU time to
evaluate ApEn in the case of FIOU was of order of almost one hour).
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Figure 4. Approximate entropy (ApEn) of FIBM, for various value of α (specified by labels inside the
figure) and N (on the horizontal axes).
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Figure 5. Approximate entropy (ApEn) of FIOU with µ = σ = 1, β = 0, for various value of α

(specified by labels inside the figure) and N (on the horizontal axes).

3. Conclusions and Final Remarks

In this paper, we further investigated the qualitative behavior of the fractional integral of order
α ∈ (0, 1) of a Gauss–Markov process, that we already studied in [2].
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Actually, Gauss–Markov processes and their fractional integrals over time are very relevant
in various application fields, especially in Biology—e.g., in stochastic models for neuronal activity
(see [1]). In fact, the fractional integral of order α ∈ (0, 1) of a Gauss–Markov process Y(t), say Xα(t),
is suitable to describe stochastic phenomena with long range memory dynamics, involving correlated
input processes, which are very relevant in Biology (see [2]).

While in [2] we have showed that Xα(t) is itself a Gaussian process, and we have found its
variance and covariance, obtaining that the variance σ2

α(t) of Xα(t) is an increasing function of α, in this
paper we have characterized the qualitative behavior of the dynamical system Xα(t), α ∈ (0, 1) by
means of its complexity degree, or entropy. Actually, for several values of α we have estimated its
approximate entropy ApEn, obtained by long enough trajectories of the process Xα(t). Specifically,
we investigate the problem by means of the implementation of an algorithm based on STEPS 1–8
detailed described in the paper. We have found that ApEn is a decreasing function of α; this behavior
appeared for the fractional integral of the Brownian motion, as well as for the fractional integral of
Ornstein–Uhlenbeck process. Since the fractional integral of Y(t) of order zero is nothing but the
process Y(t) itself, and the fractional integral of order 1 is the Riemann integral of Y(t), our result
means that fractional integration introduces a greater degree of complexity than in the case of ordinary
integration; moreover, the maximum degree of complexity is obtained for the original Gauss–Markov
process Y(t) (that is, without integration).

Furthermore, we remark that the algorithm for computing ApEn uses numerical data, which can
be used independently of knowing the process where they come from. However, in our case, we study
the process Xα(t), when varying the parameter α, so we need to simulate its trajectories, and to make
use of the obtained numerical values to estimate ApEn. As regards the possibility of finding out,
by using ApEn, if certain data come from a particular class of possible systems, we have not investigated
this. Our aim was only to characterize the behavior of fractionally integrated Gauss–Markov process
Xα(t), as varying the parameter α, by means of the corresponding value of ApEn.

As a future work, we aim to estimate the entropy for other cases of fractionally integrated
Gauss–Markov processes Xα(t), such as the fractional integral of stationary Ornstein–Uhlenbeck
process. Moreover, in order to further characterize the qualitative behavior of Xα(t) in terms of α,
our investigation will be addressed to estimate the fractal dimension of its trajectories, as a function
of α.
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