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Abstract

Let F be a local net of von Neumann algebras in four spacetime di-
mensions satisfying certain natural structural assumptions. We prove
that if F has trivial superselection structure then every covariant,
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1 Introduction

In the algebraic approach to QFT [31] the main objects under investigation

are (isotonous) nets of von Neumann algebras over bounded regions in the

Minkowski spacetime, satisfying pertinent additional requirements. Any such

correspondence is usually denoted by O → F(O).

Internal symmetries of a net F can be defined as those automorphisms

of the C∗-inductive limit (∪O∈KF(O))
−‖·‖ (the quasi-local C∗-algebra; it is

customary to denote it in the same way as the net), that leave every element

F(O) globally invariant; unbroken internal symmetries leave the vacuum state

invariant.

Given a certain (compact) group G of (unbroken) internal symmetries of

F, the fixpoint net FG defined by FG(O) = F(O)G is an example of subsystem

(sometimes also called subnet or subtheory in the literature), i.e. a net of

(von Neumann) subalgebras of F. This is the typical situation allowing

one to recover an observable net from a field net via a principle of gauge

invariance. However, in certain situations one can easily produce examples

of subsystems that can hardly be seen to arise in this way. See e.g. the

discussion in [46, 1, 12].

In this work we address the problem of classifying subsystems of a given

net F. Some related work has been already done in [37, 38, 18, 15, 11, 9].

Our main result states that if F satisfies certain structural properties then all

the reasonably well-behaved subsystems morally arise in the way explained

above, namely they are fixpoints for a compact group action on F or on one

component F1 in a tensor product decomposition F = F1 ⊗ F2.

We confine our discussion to nets F satisfying usual postulates such as

Poincaré covariance, Bisognano-Wichmann and the split property, plus an

additional condition, the absence of nontrivial sectors, whose meaning has
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been recently clarified in [15]. Our assumptions are sufficiently general to

cover many interesting situations, including the well-known Bosonic free field

models (massive or massless). In particular in the case of (finitely many) mul-

tiplets of the massive scalar free fields we (re)obtain a classification result of

Davidson [18], but with a different method of proof. Moreover our discussion

applies to the massless case as well. In a different direction, we also provide

a first solution to a long-standing open problem, proposed by S. Doplicher,

concerning the relationship between an observable net A and the subsystem

C generated by the local energy-momentum tensor [22, 12]. As to the main

ingredients, now A is required to have the split property and at most count-

ably many superselection sectors, all with finite statistical dimension 1 (and

Bosonic).

Still our assumptions are restrictive enough to rule out the occurrence of

models with undesiderable features. This allows us to overcome certain tech-

nical difficulties that cannot be handled in too general (perhaps pathological)

situations.

This paper is organized in the following way. In the next section we de-

scribe our setup and collect some preliminaries. The third section contains

the stated classification result. In the fourth section we present some ap-

plications. Some of the assumptions can be relaxed to some extent, at the

price of much more complicated proofs and no sensible improvement. We

end the article with some brief comments and suggestions for future work.

An appendix is included to provide some technical results about scalar free

field theories.

1If one can rule out the occurrence of sectors with infinite statistics for A, the other two
facts are easily implied by the split property for the canonical field net F, that is anyhow
needed from the start to define the subsystem C.
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2 Preliminaries

Throughout this article we denote P the connected component of the identity

of the Poincaré group in four spacetime dimensions and K the set of open

double cones of R4. We will denote the elements of P by pairs (Λ, x), where

Λ is an element of the restricted Lorentz group and x ∈ R4 is a spacetime

translation, or alternatively by a single letter L. Double cones and wedges

will be denoted O and W respectively, with subscripts if necessary. We

consider a net F over K, i.e. a map O → F(O) from double cones to von

Neumann algebras acting on a separable Hilbert space H, satisfying the

following assumptions.

(i) Isotony. If O1 ⊂ O2, O1,O2 ∈ K, then

F(O1) ⊂ F(O2). (1)

(ii) Locality. If O1,O2 ∈ K and O1 is spacelike separated from O2 then

F(O1) ⊂ F(O2)
′, (2)

(iii) Covariance. There is a strongly continuous unitary representation U

of P such that, for every L ∈ P and every O ∈ K, there holds

U(L)F(O)U(L)∗ = F(LO). (3)

(iv) Existence and uniqueness of the vacuum. There exists a unique (up to

a phase) unit vector Ω which is invariant under the restriction of U to

the one-parameter subgroup of spacetime translations.

(v) Positivity of the energy. The joint spectrum of the generators of the

spacetime translations is contained in the closure V + of the open for-

ward light cone V+.
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(vi) Reeh-Schlieder property. The vacuum vector Ω is cyclic for F(O) for

every O ∈ K.

(vii) Haag duality. For every double cone O ∈ K there holds

F(O′) = F(O)′, (4)

where O′ is the interior of the spacelike complement of O and, for every

open set S ⊂ R4, F(S) denote the algebra defined by

F(S) = ∨O⊂SF(O). (5)

(viii) TCP covariance. There exists an antiunitary involution Θ (the TCP

operator) such that:

ΘU(Λ, x)Θ = U(Λ,−x) ∀(Λ, x) ∈ P; (6)

ΘF(O)Θ = F(−O). (7)

(ix) Bisognano-Wichmann property. Let

WR = {x ∈ R
4 : x1 > |x0|}

be the right wedge and let ∆ and J be the modular operator and the

modular conjugation of the algebra F(WR) with respect to Ω, respec-

tively. Then it holds:

∆it = U(Λ(−2πt), 0); (8)

J = ΘU(R1(π), 0); (9)

where Λ(t) and R1(θ) are the one-parameter groups of Lorentz boosts

in the x1-direction and of spatial rotations around the first axis, respec-

tively.
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(x) Split property. Let O1,O2 ∈ K be open double cones such that the

closure of O1 is contained in O2 (as usual we write O1 ⊂⊂ O2). Then

there is a type I factor N(O1,O2) such that

F(O1) ⊂ N(O1,O2) ⊂ F(O2). (10)

Using standard arguments (cf. [16]) it can be shown that the previous

assumptions imply the irreducibility of the net F, namely the algebra F(R4)

coincides with the algebra B(H) of all bounded operators on H. Another

easy consequence of the assumptions is that Ω is U -invariant. Moreover the

algebra F(W) is a factor (in fact a type III1 factor), for every wedge W, see

e.g. [5, Theorem 5.2.1]. Strictly speaking, it is also possible to deduce (viii)

from the other assumptions [29, Theorem 2.10].

From Haag duality it follows that the algebra associated with a double

cone coincides with intersection of the algebras associated to the wedges

containing it, i.e.

F(O) = ∩O⊂WF(W), (11)

for every O ∈ K. Thus our net F corresponds to a particular case of the AB-

systems described in [46], see also [45]. Moreover the Bisognano-Wichmann

property implies wedge duality, i.e.

F(W)′ = F(W′), (12)

for every wedge W, where W′ denotes the interior of the causal complement

of W.

Another important fact is that, due to the split property, the net F satis-

fies Property B for double cones: given O ⊂⊂ Õ, O, Õ ∈ K, for each nonzero

selfadjoint projection E ∈ F(O) there exists an isometry W ∈ F(Õ) with
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E = WW ∗. Moreover, for every nonempty open set S ⊂ R4, the algebra

F(S) is properly infinite.

Definition 2.1. A covariant subsystem B of F is an isotonous net of non-

trivial von Neumann algebras over K, such that:

B(O) ⊂ F(O); (13)

U(L)B(O)U(L)∗ = B(LO), (14)

for every O ∈ K and every L ∈ P.

We use the notation B ⊂ F to indicate that B is a covariant subsystem

of F. As in the case of F, for every open set S ⊂ R4 we define B(S) by

B(S) = ∨O⊂SB(O). (15)

Definition 2.2. We say that a covariant subsystem B of F is Haag-dual if

B(O) = ∩O⊂WB(W) ∀O ∈ K. (16)

If a covariant subsystem B is not Haag-dual, one can associate to it an

Haag-dual covariant subsystem Bd (the dual subsystem) defined by

B
d(O) = ∩O⊂WB(W), (17)

cf. [45, 46]. Note that B(W) = Bd(W) for every wedge W.

Given a covariant subsystem B of F we denote HB the closure of B(R4)Ω

and by EB the corresponding orthogonal projection. It is trivial that the

algebras B(O), O ∈ K leave HB stable. Hence we can consider the reduced

von Neumann algebras B̂(O) := B(O)EB
, O ∈ K acting on the Hilbert space

HB and denote B̂ the corresponding net. It is straightforward to verify that

B(S)EB
= ∨O⊂SB̂(O), (18)
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for every open set S ⊂ R4. Therefore the notation B̂(S) is unambiguous.

Moreover, due to the Reeh-Schlieder property (for F), the map B ∈ B(S) 7→
B̂ := BEB

∈ B̂(S), is an isomorphism of von Neumann algebras, whenever

the interior S′ of the causal complement of S is nonempty.

The following result is due in large part to Wichmann [46] and Thomas

and Wichmann [45].

Proposition 2.1. Let B be a Haag-dual subsystem of F. Then the following

properties hold:

(a) Θ and U commute with EB. Accordingly we can consider the reduced

operators Θ̂ := ΘEB
and Û := UEB

on HB;

(b) All the properties from (i) to (x) listed in the beginning of this section

holds with F, H, U , Θ, replaced by B̂, HB, Û , Θ̂, respectively.

Proof. For (a) and (b), properties from (i) to (ix), we refer the reader to [46]

and [45, Section 5]. Proving (x) for B̂ corresponds to show that the split

property is hereditary. This fact is well known (cf. e.g. [21, Section 5]) but

we include here a proof for convenience of the reader.

Let O1,O2 ∈ K be such that O1 ⊂⊂ O2. It is sufficient to show that there

is a faithful normal product state on B̂(O1) ∨ B̂(O2)
′, i.e. a faithful normal

state φ satisfying

φ(BB′) = φ(B)φ(B′) ∀B ∈ B̂(O1), ∀B′ ∈ B̂(O2)
′, (19)

see e.g. [24]. B̂ satisfies Haag duality and

B̂(O1) ∨ B̂(O′
2) = [B(O1) ∨B(O′

2)]EB

is isomorphic to B(O1) ∨B(O′
2), being HB separating for the latter algebra.

Therefore it remains to show the existence of a faithful normal product state

8



on B(O1) ∨ B(O′
2). This trivially follows from the existence of a faithful

normal product state for F(O1) ∨ F(O′
2), which is a consequence of the split

property for F. 2

From the previous proposition it follows that if B is Haag-dual then B̂

satisfies Haag duality.3 It is quite easy to show that also the converse is true.

This remark should make it clear that considering only Haag-dual subsystems

is not a too serious restriction.

If B is a covariant subsystem of F, we can consider the net Bc defined by

B
c(O) = B(R4)′ ∩ F(O), (20)

cf. [18, 5]. If Bc is trivial, then we say that B is full (in F). If Bc is nontrivial,

then it is easy to check that it is a Haag-dual covariant subsystem of F (the

coset subsystem). It follows from the definition that B ⊂ Bcc, and Bc = Bccc.

For later use it is convenient to introduce the notions of tensor product

and of unitary equivalence of two nets. Let F1 and F2 be two nets acting

on H1 and H2 respectively, and let U1, U2 and Ω1,Ω2 the corresponding

representations of the Poincaré group and the vacuum vectors. By tensor

product of nets F1 ⊗ F2 we mean the net K ∋ O 7→ F1(O)⊗ F2(O) acting on

H1⊗H2 together with the representation U1⊗U2 of P and the vacuum Ω1⊗Ω2.

It follows that F1 ⊗ F2 satisfies properties (i)–(x) if F1 and F2 do so. We

say that F1 and F2 are unitarily equivalent if there exists a unitary operator

W : H1 → H2 with WF1(O)W
∗ = F2(O) (O ∈ K), WU1(L)W

∗ = U2(L).

Note that since the vacuum is unique up to a phase, one can always choose

W so that WΩ1 = Ω2.

2A similar argument shows that split for wedges (cf. [41]) is inherited by subsystems
satisfying wedge duality; here the space-time dimension is not important.

3This is not true in two spacetime dimensions.
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3 General Classification Results

In this section we consider a net F satisfying all the properties (i)–(x) de-

scribed in the previous section. Moreover we will assume the following con-

dition (cf. [15]):

(A) Every representation of (the quasi-local C∗-algebra) F satisfying the

DHR selection criterion is a multiple of the vacuum representation.4

Let us observe that condition (A) is equivalent to the seemingly weaker

condition that all the irreducible representations satisfying the selection cri-

terion are equivalent to the vacuum representation. This is a consequence

of the fact that the irreducible representations occurring in the direct inte-

gral decomposition of a localized5 representation are localized a.e. (see [34,

Appendix B]).

Now let B be a Haag-dual, covariant subsystem of F and let π be the

corresponding representation of B̂ in H, i.e. the representation defined by

π(B̂) = B for B ∈ ∪O∈KB(O). We denote π0 the identical (vacuum) repre-

sentation of F on H and π0 the vacuum representation of B̂, i.e. its identical

representation on HB. The following result is already known (see e.g. [15])

but we include a proof for the sake of completeness.

Lemma 3.1. π satisfies the DHR criterion.

Proof. For every O ∈ K the von Neumann algebras B(O′) and B̂(O′) are

isomorphic. Moreover, as noted in the previous section, these von Neumann

algebras are properly infinite with properly infinite commutants. By [32,

4For the basic notions concerning the DHR theory of superselection sectors we refer
the reader to [31] and references therein.

5In this article the word localized referred to representations or endomorphisms means
localized in double cones.
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Theorem 7.2.9.] and [32, Proposition 9.1.6.] we can find a unitary operator

UO : HB → H

such that

UOB̂UO
∗ = B ∀B ∈ B(O′).

Hence if O1 ∈ K is contained in O′ there holds

π0(B̂) = UO
∗π(B̂)UO ∀B̂ ∈ B̂(O1).

Actually, this is the DHR criterion.

Proposition 3.1. For every irreducible localized transportable morphism σ

of B̂, π0◦σ is equivalent to a subrepresentation of π. Moreover σ is covariant

with positive energy and it has finite statistical dimension.

Proof. Since π satisfies the DHR criterion we can find a transportable local-

ized morphism ρ of B̂ such that there holds the unitary equivalence

π ≃ π0 ◦ ρ, (21)

cf. [40, Proposition 3.4.].

Let us consider the extension σ̂ of σ to F [15], cf. [40]. Then the assump-

tion (A) for F imply that

π0 ◦ σ̂ ≃ ⊕iπ
0, (22)

where the index i in the direct sum on the r.h.s. runs over a set whose

cardinality is at most countable. Restricting these representations to B we

find

π ◦ σ ≃ ⊕iπ (23)
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and therefore using equation 21

ρσ ≃ ⊕iρ. (24)

Since ρ contains the identity sector we have σ ≺ ρσ and hence

σ ≺ ⊕iρ. (25)

Thus, being σ arbitrary, every irreducible representation of B̂ satisfying

the DHR criterion is contained in a countable multiple of ρ. The latter

multiple is a representation on a separable Hilbert space. Hence there are at

most countably many irreducible sectors of B̂.

Being π a direct integral of irreducible DHR representations [34, Ap-

pendix B] and appealing to some standard arguments (see e.g. [19, 20]) one

gets that π is in fact a direct sum. From equation 25 it is not difficult to show

that, being σ irreducible, we have σ ≺ ρ i.e. π0 ◦ σ is unitarily equivalent to

a subrepresentation of π.

Since B is covariant π is covariant with positive energy. We have to show

that every irreducible subrepresentation has the same property, cf. [4]. Since

the action induced by the representation U of the Poincaré group leaves

B(R4) globally invariant it leaves globally invariant also its centre. Being the

latter purely atomic (due to the decomposition of π into irreducibles) and P

connected, it follows that the orthogonal projection E[σ] ∈ B(R4)′ ∩ B(R4)

onto the isotypic subspace corresponding to σ must commute with U . Let

U[σ] and π[σ] be the restrictions to E[σ]H of U and π respectively. Then we

have the unitary equivalence

π[σ] ≃ (π0 ◦ σ)⊗ I . (26)

Moreover, using the relation

U[σ](L)π[σ](B̂)U[σ](L)
∗ = π[σ](Û(L)B̂Û(L)

∗), (27)
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where B ∈ ∪O∈KB(O), L ∈ P, and a classical result by Wigner on projective

unitary representations of P [47, 2], it is quite easy to show that

U[σ](L) ≃ Uσ(L)⊗Xσ(L), (28)

where Uσ and Xσ are unitary continuous representations of (the covering

group of) P and Uσ is such that

Uσ(L)σ(B̂)Uσ(L)
∗ = σ(Û(L)B̂Û(L)∗). (29)

Since U[σ] satisfies the spectral condition, both Uσ and Xσ have to satisfy it.6

Hence σ is covariant with positive energy.

Finally, from ρσ ≃ σρ and equation 24 it follows that id ≺ σρ. Therefore,

being σ covariant with positive energy, it has finite statistical dimension

because of [23, prop. A.2].

A related result has been independently obtained by R. Longo, in the

context of nets of subfactors [39].

Let FB be the canonical field net of B̂ as defined in [26, Section 3]. In

natural way FB can be considered as a Haag-dual subsystem of F containing

B [15, Theorem 3.5]. In fact one finds that FB(O) coincides with the von

Neumann algebra generated by the family of Hilbert spaces Hσ̂ in F, where

σ runs over all the transportable morphisms of B which are localized in O

and σ̂ denotes the functorial extension of σ to F. From the fact that the

latter extension commutes with spacetime symmetries, namely (σL)̂ = (σ̂)L

for every L ∈ P it is also easy to show that FB is a covariant subsystem.

(Besides, by [13, Proposition 2.1] FB coincides with its covariant companion,

cf. [26].)

6This follows from the fact that if S1 and S2 are two orbits of the restricted Lorentz
group such that S1 + S2 ⊂ V + then S1 ⊂ V + and S2 ⊂ V +.
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Theorem 3.1. F̂B has no irreducible DHR sectors other than the vacuum.

Proof. By the previous proposition it is enough to consider sectors with finite

statistical dimension. Let R be the canonical field algebra of F̂B. Then R

is a Haag-dual covariant subsystem of F, and as such it inherits the split

property. By the results discussed in [8] this is sufficient7 to deduce that

FB = R.8 In fact the group G̃ of the (unbroken) symmetries of R extending

the gauge automorphisms of FB is compact in the strong operator topology

by (the proof of) [24, Theorem 10.4], and obviously R
G̃ = B. The conclusion

follows by the uniqueness of the canonical field net [26].

Theorem 3.2. There exists a unitary isomorphism of F with F̂B ⊗ B̂c. In

particular FB = Bcc, and if B is full9 in F then FB = F.

Proof. Let π̃ be the representation of F̂B on H (the vacuum Hilbert space

of F) arising from the embedding FB ⊂ F and π̃0 the vacuum representation

of F̂B on HFB
⊂ H. By the previous theorem F̂B has no nontrivial sectors.

Moreover Lemma 3.1 applied to FB instead of B implies that π̃ is (spatially)

equivalent to a multiple of π̃0 and therefore to π̃0⊗I, on HFB
⊗H1, where H1

is a suitable Hilbert space. Let W : H → HFB
⊗H1 be a unitary operator

implementing this equivalence. For every double cone O there holds

F̂B(O
′)⊗ I ⊂ F̃(O′) (30)

where F̃(O) = WF(O)W ∗. Therefore, using Haag duality for F̂B,

F̂B(O)⊗ I ⊂ F̃(O) ⊂ F̂B(O)⊗ B(H1). (31)

7This idea is not new, see e.g. [42, Section 2], however some technical difficulties are
circumvented when the assumptions made in this paper are used.

8Alternatively, the same result may be deduced combining Proposition 3.1 with [15].
9Irreducible subsystems, namely those satisfying B′ ∩ F = C, are full.
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It follows that

F̂B(W)⊗ I ⊂ F̃(W) ⊂ F̂B(W)⊗ B(H1). (32)

The algebras of wedges are factors. By the results in [28] (cf. also [44])

there exists a von Neumann algebra M(W) ⊂ B(H1) such that

F̃(W) = F̂B(W)⊗M(W). (33)

Taking on both sides of this equality the intersection over all the wedges

containing a given O ∈ K we find

F̃(O) = F̂B(O)⊗M(O), (34)

where

M(O) = ∩O⊂WM(W). (35)

Now, using the commutant theorem for von Neumann tensor products, it is

straightforward to show that

I⊗M(O) =WB
c(O)W ∗

for every O ∈ K. The previous equation implies the existence of a repre-

sentation τ of B̂c on H1 such that WBW ∗ = I ⊗ τ(B̂), B ∈ Bc(O) for

every O ∈ K. Moreover, since M acts irreducibly on H1 and the vacuum

representation πc of B̂c is contained in I ⊗ τ , τ is spatially isomorphic to

πc and thus the mapping O → M(O) gives a net unitarily equivalent to B̂c.

Therefore without loss of generality we can assume that H1 = HBc and that

WF(O)W ∗ = F̂B(O)⊗ B̂c(O), O ∈ K. The conclusion follows noticing that

WUW ∗ = UEFB
⊗ UEBc . Here we omit the easy details.

Applying the previous theorem to Bc in place of B we get that Bc as no

nontrivial sectors, since FBc = Bccc = Bc.
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Corollary 3.1. Let B be a Haag-dual covariant subsystem of F, then the

net of inclusions K ∋ O 7→ B(O) ⊂ F(O) is (spatially) isomorphic to O 7→
F̂B(O)

G ⊗ I ⊂ F̂B(O)⊗ B̂c(O), where G is the canonical gauge group of B̂.

Corollary 3.2. If B is a Haag-dual covariant subsystem of F and if FB is

full (in particular if B is full) then there exists a compact group G of unbroken

internal symmetries of F such that B = FG.

Now let C be the (local) net generated by the canonical implementations

of the translations on F [12]. It is a covariant subsystem of F. Since C is

(irreducible thus) full in F and Cd ⊂ FGmax, where Gmax is the (compact)

group of all unbroken internal symmetries of F, we have

Corollary 3.3. In the situation described above it holds

C
d = F

Gmax. (36)

4 Applications

4.1 Free fields

Our standing assumptions are satisfied in the case where F is generated by a

finite set of free scalar fields [27, 7] and also by suitable infinite sets of such

fields [25]. They are also satisfied in other Bosonic theories, e.g. when F is

generated by the free electromagnetic field, see [7].

Therefore from our Corollary 3.2 one can obtain all the results in [18] in

the case of full subsystems, even without assuming the existence of a mass

gap. Concerning subsystems that are not full, one has to study the possible

decompositions

F̂B(O)⊗ B̂c(O) = F(O) (37)
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(up to unitary equivalence). In the case where F is generated by a finite

set of free scalar fields, it turns out that FB and Bc are always free scalar

theories generated by two suitable disjoint subsets of the generating fields of

F. We present a detailed proof of this fact in the appendix. 10 In particular,

if F is generated by a single scalar free field ϕ(x) of mass m ≥ 0, no such

nontrivial decomposition is possible and hence all of the subsystems of F

are full. Accordingly, in this case, the unique Haag-dual covariant proper

subsystem of F is the fixed point net F
Z2 under the action of the group of

(unbroken) internal symmetries.

Note that when m = 0 there are covariant subsystems which are not

Haag-dual. For instance the subsystem A ⊂ F generated by the derivatives

∂µϕ(x) is Poincaré covariant but not Haag-dual and in fact one has F = A
d

[7]. However it can been shown that conformally covariant subsystems of F

are always Haag-dual. Actually the latter fact still holds in a more general

context.

4.2 Theories with countably many sectors

Summing up, we have shown a classification result for Haag-dual subnets of

a purely Bosonic net with trivial superselection structure (including infinite

statistics) and with the split property. Moreover we have exhibited an im-

portant class of examples, namely (multiplets of) the free fields, to which our

results apply. This is already quite satisfactory. One can consider a more

general situation in which F is the canonical field net of an observable net A.

A closely related problem is, of course, to look for the structural hypothe-

ses on A ensuring that F = FA will have the required properties. It has

been known for some time that if A has only a finite number of irreducible

10Davidson obtained this result in the purely massive case [18].
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DHR sectors with finite statistical dimension (i.e. A is rational), all of which

are Bosonic, then F (is local and) has no nontrivial DHR sectors with finite

statistical dimension [13, 42]. This result is not sufficient for our purposes,

because it does not rule out the possible presence of irreducible DHR rep-

resentations of F with infinite statistical dimension. However, a solution to

this problem can be achieved by using the stronger results given in [15].

Theorem 4.1. Let A be a local net satisfying the split property and Haag

duality in its (irreducible) vacuum representation. If A has at most countably

many irreducible (DHR) sectors, all of which are Bosonic and with finite

statistical dimension, then any sector of A is a direct sum of irreducible

sectors. Moreover, the canonical field net F of A has no nontrivial sectors

with any (finite or infinite) statistical dimension.

Proof. In view of [15, Theorem 4.7] it is enough to show the first statement.

But using the split property and the bound on the number of inequivalent

sectors, this follows arguing as in the proof of Proposition 3.1.

This result 11 shows that F satisfies the condition (A) of section 3. More-

over if A satisfies all of the conditions (i)-(vii) then the same is true for F

[26]. In order to apply the above result about classification of subsystems

and solve the problem about local charges, we need to know conditions on

A implying the validity of properties (viii)-(x). Concerning (x), it would be

a consequence of the split property for A if G were finite and abelian. In

other cases one can invoke some version of nuclearity for A, implying that

F is split [6]. But it is also necessary to know if the existence of a TCP

symmetry and the special condition of duality for A imply the same for its

11As in [13], in the case of rational theories a different argument could be given when
the local algebras are factors, based on a restriction-extension argument (cf. [34, Lemma
27]).
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canonical field system F. The relationship between the validity of conditions

(viii)-(ix) for A and its canonical field system F has been discussed in [35, 36]

(the TCP symmetry has been also treated in [14] under milder hypotheses).

The conclusion is that if A satisfies the usual axioms (and all its sectors are

covariant), moreover it is purely Bosonic and satisfies a suitable version of

nuclearity (implying, among other things, the existence of at most countably

many sectors), TCP covariance and the Bisognano-Wichmann property, then

we know how to classify all the subsystems of F satisfying Haag duality.

Corollary 4.1. Let A be an observable net satisfying the properties (i)-(ix)

above, without DHR sectors with infinite statistical dimension or para-Fermi

statistics of any finite order, whose (Bosonic) canonical field net F has the

split property. Then, if C is the net generated by the local energy-momentum

tensor, one has

C
d = F

Gmax.

Moreover A = Cd if and only if A has no proper full Haag-dual subsystem

(in which case A has no unbroken internal symmetries).

Proof. Since A satisfies the split property and has at most countably many

sectors, all with finite statistics, the first statement follows by the previous

result and Corollary 3.3. If G denotes the canonical gauge group of A, so that

A = FG, the equality A = Cd is equivalent to the equality G = Gmax, which,

due to Corollary 3.2, means that there is no proper subsystem of A full (or

irreducible) in F. To complete the proof we only need to show that every

full subsystem of A is full in F, when G = Gmax. Let B be a (Haag-dual)

subsystem of A. Due to the results in the previous section, for every wedge

W the inclusions

B(W) ⊂ A(W) ⊂ F(W)
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are spatially isomorphic to

B̂(W)⊗ I ⊂ Ã(W) ⊂ F̂B(W)⊗ B̂c(W),

with Ã isomorphic to A. Moreover, from G = Gmax it follows that

Ã(W) ⊂ B̂(W)⊗ B̂c(W).

Arguing as in the proof of theorem 9 we find that if B is not full in F then

for every O ∈ K, the algebra B(R4)′ ∩ A(O) is nontrivial. It follows that B

is not full in A.

5 Comments on the assumptions

Some of the results of the previous sections are in fact still true even after

relaxing some conditions. We will briefly discuss some aspects here.

The hypothesis (x) is useful to derive property B (also for the subsystems),

to apply the results in [34] and also to define the local charges. If we renounce

to (x), and possibly (A), taking F as the DHR field algebra of A ⊃ B in its

vacuum representation on H (here it is not even essential to require the

condition of covariance, nor the additional assumptions of the main theorem

in [15]), it is still possible to deduce that π̃ ≃ π̃0⊗I as in the proof of Theorem

9. For this purpose one needs to know that A and B both satisfy property B,

and that π̃ in restriction to B (thought of as a representation of B̂) is quasi-

contained in the canonical embedding of B̂ into its field net. By the results

in [15], the latter property holds if it is possible to rule out the occurrence of

representations with infinite statistics for B̂ acting on H (e.g. if [A : B] <∞
in the case of nets of subfactors). In fact we don’t even need to know a priori

that π satisfies the DHR selection criterion. Relaxing covariance is necessary
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to discuss QFT on (globally hyperbolic) curved spacetimes. Possibly results

resembling those presented here should hold also in that context (cf. [30]).

The Bisognano-Wichmann property for F and TCP covariance may also

be relaxed, but, for the time being, F and the considered subsystems always

have to satisfy Haag duality in order to deduce some nice classification result.

However, let us discuss the inheritance of the split property in a slightly

more general situation. We start with a subsystem B ⊂ F, but now both

F and B are only assumed to satisfy essential duality (cf. [31]) in their

respective vacuum representation, namely Fd = Fdd and (B̂)d = (B̂)dd (this

is consistent with the notation adopted in the previous sections). Moreover

we require the split property for Fd. In the situation where one has an

embedding of (B̂)d inside Fd, 12 we may deduce the split property for (B̂)d by

our previous argument. For instance if F satisfies the Bisognano-Wichmann

property (thus in particular wedge duality, which implies essential duality),

then B̂ satisfies the same property as well [46] and moreover there exists the

embedding alluded above, therefore the split property for Fd entails the split

property for (B̂)d.13

6 Outlooks

In this article we have not discussed graded local (Fermionic) nets. As far as

we can see, it should be possible to obtain classification results also in this

case, once the natural changes in the assumptions, the statements and the

proofs are carried out.

In the situation described in the present paper the index of a subsystem

12This may be true or not and is related to the validity of the equality (B̂)d = (Bd)̂.
13As a matter of fact, the same argument goes through when we just have essential

duality for F and wedge duality for B̂, see e.g. [15, Section 3].
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is clearly always infinite, or an integer. Moreover any integer value is in fact

realized14. In a broader context (e.g. inclusions of conformal nets on S1),

the computation of the set of possible index values for subsystems seems an

interesting problem. In the case of concrete models many calculations are

now available. We hope to return on these subjects in the future.

A Appendix

In this appendix we study the possible tensor product decompositions of a

net generated by a finite number of scalar free fields.

We consider a net O 7→ F(O), acting irreducibly on its vacuum Hilbert

space H, generated by a finite family of Hermitian scalar free fields ϕ1(x),

ϕ2(x) . . . , ϕn(x), where n = n1 + n2 + . . . + nk and ϕ1(x), . . . , ϕn1
(x) have

mass m1, ϕn1+1(x), . . . , ϕn1+n2
(x) have mass m2, and so forth, and 0 ≤ m1 <

. . . < mk.

Accordingly, for each O ∈ K, F(O) is the von Neumann algebra generated

by the Weyl unitaries eiϕj(f) for j = 1, . . . , n and real-valued f ∈ S(R4) with

support in O.

We denote U,Θ,Ω the corresponding representation of P, TCP operator

and vacuum vector respectively.

For every i we let Ki be the closed subspace of H generated by the vectors

ϕi(f)Ω with f ∈ S(R4).

Each Ki is U -invariant, and the restriction Vi of U to Hi is the irreducible

representation of P with spin 0 and corresponding mass.

Moreover the generating fields are chosen so that Ki is orthogonal to Kj

for i 6= j.

14To see this, consider the fixpoint net of the complex scalar free field under the subgroup
Zn of the gauge group S1.
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If K = ⊕n
i=1Ki and V = ⊕n

i=1Vi, then H can be identified with the (sym-

metric) Fock space Γ(K) and U with the second quantization representation

Γ(V ), see e.g. [43].

If Fi is the covariant subsystem of F generated by ϕi(x), then HFi
can

be identified with Γ(Ki) and from the relation F(O) = ∨iFi(O) and the

properties of the second quantization functor it follows that the net F is

isomorphic to F̂1 ⊗ . . .⊗ F̂n on ⊗iΓ(Ki).

Note that there is some freedom in the choice of the generating fields,

corresponding to the internal symmetry group G = O(n1)× . . .×O(nk).

Let Emh
be the orthogonal projection from H onto Kmh

:= ⊕nh−1+nh

i=nh−1+1Ki,

where by convention n0 = 0. For each m ≥ 0, let Pm be the orthogonal

projection onto Ker(P 2 − m2), where P 2 denotes the mass operator corre-

sponding to U . It is not difficult to see that Pm(K + CΩ)⊥ = 0 by a direct

calculation on the k-particles subspaces of H (note that Pm = 0 whenever

m /∈ {0} ∪ {m1, . . . , mk}). It follows that Pmh
= Emh

if mh > 0, while for

mh = 0 we have Pmh
= Emh

+ PΩ where PΩ ∈ U(P)′ ∩ U(P)′′ is the or-

thogonal projection onto CΩ. In particular, for any h ∈ {1, . . . , k} we have

Emh
∈ U(P)′ ∩ U(P)′′.

The following simple lemma will be used to study the tensor product

decomposition of F.

Lemma A.1. Let U1 and U2 be subrepresentations of U on subspaces H1

and H2 of H both orthogonal to CΩ. Then there are no eigenvectors for the

mass operator corresponding to the representation U1 ⊗ U2.

Proof. We consider the net F̃ = F⊗F and the corresponding representation

Ũ = U ⊗ U of P. Obviously the net F̃ is of the same type as F, with the

same masses but different multiplicities. U1 ⊗ U2 is a subrepresentation of

Ũ on H1 ⊗ H2. If P̃ 2 is the mass operator corresponding to Ũ and P̃m is
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the orthogonal projection onto Ker(P̃ 2 −m2), we only have to show that for

every m ≥ 0 we have P̃mH1 ⊗ H2 = 0. But this follows by the discussion

in the last paragraph before the statement, since H1 ⊗H2 is orthogonal to

C(Ω ⊗ Ω) + K̃ where K̃ = K ⊗ Ω + Ω ⊗ K is the one-particle subspace of

H⊗H.

We are now ready to study the possible tensor product decompositions

FA ⊗ FB of F. In the sequel we assume to have such a decomposition, and

deduce some consequences.

Then H is given by HA ⊗HB so that Ω = ΩA ⊗ ΩB and U = UA ⊗ UB.

We set HA = CΩA ⊕ H̃A, and analogously for B, so that H = HA ⊗
HB = CΩ ⊕ (ΩA ⊗ H̃B) ⊕ (H̃A ⊗ ΩB)⊕ (H̃A ⊗ H̃B). We also set F0 = PΩ,

FA = [ΩA ⊗ H̃B], FB = [H̃A ⊗ ΩB], FAB = [H̃A ⊗ H̃B]. Notice that these

orthogonal projections commute not only with U but also with Θ.

Lemma A.2. For each h = 1, . . . , k it holds Emh
FAB = 0.

Proof. It is an immediate consequence of Lemma A.1.

Since Emh
F0 = 0, the previous lemma implies that Emh

(FA+FB) = Emh
,

for h = 1, . . . , k. This amounts to say that K ⊂ H̃A ⊗ ΩB ⊕ ΩA ⊗ H̃B. As

a consequence, with the aid of some linear algebra and the fact that FA and

FB commute with Θ, it is not difficult to show that there is a partition in

two disjoint sets {1, . . . , n} = αA ∪ αB along with a suitable choice of the

generating fields such that, for every f ∈ S(R4),

ϕi(f)Ω ∈ H̃A ⊗ ΩB for i ∈ αA, ϕi(f)Ω ∈ ΩA ⊗ H̃B for i ∈ αB. (38)

Because of equations 38, for every f ∈ S(R4) and i ∈ αA one can define

a vector Ti(f) ∈ H̃A by

ϕi(f)(ΩA ⊗ ΩB) =: Ti(f)⊗ ΩB. (39)
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It follows that if supp(f) ⊂ O, f real, and XA ∈ FA(O
′), XB ∈ FB(O

′),

we get that

ϕi(f)(XAΩA ⊗XBΩB) = ϕi(f)(XA ⊗XB)(ΩA ⊗ ΩB)

= (XA ⊗XB)ϕi(f)(ΩA ⊗ ΩB)

= XATi(f)⊗XBΩB, i ∈ αA. (40)

By a continuity argument (we are assuming ϕi(f) to be closed),

ϕi(f)(XAΩA ⊗ ξ) = XATi(f)⊗ ξ ∀ ξ ∈ HB.

Therefore, for every T ∈ B(HB), (I ⊗ T )(XAΩA ⊗XBΩB) belongs to the

domain of ϕi(f) and

(I ⊗ T )ϕi(f)(XAΩA ⊗XBΩB) = ϕi(f)(I ⊗ T )(XAΩA ⊗XBΩB). (41)

Hence again by continuity we find that, for every X ∈ F(O′),

(I ⊗ T )ϕi(f)XΩ = ϕi(f)(I ⊗ T )XΩ, i ∈ αA. (42)

Similarly, for each T ∈ B(HA),

(T ⊗ I)ϕi(f)XΩ = ϕi(f)(T ⊗ I)XΩ, i ∈ αB. (43)

Our next goal is to show that F(O′)Ω is a core for ϕi(f) for any real f

as above and i = 1, . . . , n. This will entail that eiϕi(f) ∈ (I ⊗ B(HB))
′ =

B(HA) ⊗ I for every real-valued test function f with compact support (by

arbitrariness of O in the argument above) and i ∈ αA, and similarly eiϕi(f) ∈
I⊗B(HB) for i ∈ αB, from which it is easy to see that ∨i∈αA

Fi(O) = FA(O)⊗I
and ∨i∈αB

Fi(O) = I ⊗ FB(O), O ∈ K.

Proposition A.1. For any f ∈ S(R4) real, O ∈ K and i = 1, . . . , n, F(O)Ω

contains a core for ϕi(f). In particular if supp(f) ⊂ O then F(O′)Ω is a core

for ϕi(f).
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Proof. We use some techniques concerning energy-bounds, cf. [3, Section

13.1.3]. Let N be the total number operator acting on H = Γ(K). Then N

is the closure of
∑

iNi with Ni the number operator on Γ(Ki). Using well

known enstimates about free fields (see [43, Section X.7]) for every real f

and ψ in the domain of N we have

‖ϕi(f)ψ‖ ≤ c(f)‖
√
N + Iψ‖ ≤ c(f)‖(N + I)ψ‖ (44)

for some constant c(f) depending only on f . Moreover ϕi(f) is essentially

self-adjoint on any core for N .

We define a self-adjoint operator H as (the closure of) the sum of the Hi,

where Hi on Γ(Ki) is the conformal Hamiltonian if ϕi(x) has vanishing mass

and the generator of time translations otherwise. Note that N2
i ≤ c2iH

2
i ,

where ci is the inverse of the mass corresponding to ϕi(x) if that is different

from 0, and equal to 1 otherwise.

It follows that, for ψ in the domain of H ,

‖ϕi(f)ψ‖ ≤ b(f)‖(H + I)ψ‖ (45)

for some constant b(f).

Thus, since N is essentially self-adjoint on the domain of H , ϕi(f) is

essentially self-adjoint on any core for H .

To complete the proof we only need to show that, for each O ∈ K, F(O)Ω

contains a core for H . But this follows from [10, Appendix], after noticing

that given O1 ⊂⊂ O then eitHF(O1)e
−itH ⊂ F(O) for |t| small enough.

Summing up, we have thus proved the following result.

Theorem A.1. Let F be the net generated by a finite family of free Hermi-

tian scalar fields and let F = FA ⊗ FB be a tensor product decomposition,

then, for a suitable choice ϕ1(x), . . . , ϕn(x) of the generating fields for F
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and a k ∈ {1, . . . , n}, FA ⊗ I is generated by ϕ1(x), . . . ,ϕk(x) and I ⊗FB by

ϕk+1(x), . . . ,ϕn(x).
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