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Abstract The Chow—Mumford (CM) line bundle is a functorial line bun-
dle on the base of any family of kit Fano varieties. It is conjectured that it
yields a polarization on the moduli space of K -poly-stable kit Fano varieties.
Proving ampleness of the CM line bundle boils down to showing semi-
positivity/positivity statements about the CM-line bundle for families with
K -semi-stable/K -polystable fibers. We prove the necessary semi-positivity
statements in the K-semi-stable situation, and the necessary positivity state-
ments in the uniform K-stable situation, including in both cases variants
assuming K-stability only for general fibers. Our statements work in the
most general singular situation (klt singularities), and the proofs are alge-
braic, except the computation of the limit of a sequence of real numbers via
the central limit theorem of probability theory. We also present an applica-
tion to the classification of Fano varieties. Additionally, our semi-positivity
statements work in general for log-Fano pairs.
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1 Introduction

Throughout the article, the base field is an algebraically closed field k of
characteristic zero.
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Positivity of the CM line bundle

1.1 Main theorem

The interest in the moduli space of singular K -polystable Fano varieties stems
from the classification theory of algebraic varieties. The birational part of
the classification theory, also called the Minimal Model Program [2,3,12—
14,17,45,58,59,68], predicts that up to specific birational equivalences, each
projective variety decomposes into iterated fibrations with general fibers of 3
basic types: Fano, weak Calabi-Yau, and general type To be precise, one here
needs to allow pairs, see Sect. 1.2, but the boundary free case is a good first
approximation.

The above 3 types are defined by having a specific class of mild singularities
and negative/numerically trivial/positive canonical bundles. Then the moduli
part of the classification theory is supposed to construct a projective, com-
pactified moduli spaces for the above 3 basic types of varieties. According
to our current understanding, the moduli part seems to be doable only in the
presence of a singular Kihler-Einstein metric, e.g., [114, Conj 8.11, and the
following 2 paragraphs], which is predicted to be equivalent to the algebraic
notion of K -polystability [11,28-30,82,88,89,94,115]. We refer the reader to
Definition 4.8 and to Corollary 4.9 for the precise definition and for a char-
acterization of K-semistability used in the present article. Additionally, see
Sect. 1.6 for an explanation on K -polystability.

In particular, on the Fano side, for the moduli part of the classification theory
one should construct algebraically the following two spaces:

o the stack MK of K-semistable Fano varieties of dimension n and anti-
canonical volume v, as well as,

e the projective good moduli space Mff * of /\/anjS parametrizing K -
polystable Fano varieties of dimension 7 and anti-canonical volume v.

We note that the construction of the above two spaces is known except for
the properness and the projectivity of Mf » 7 via a sequence of recent papers
[5,15,16,21-23,65,123]. That is, MnKjS is known to exist as an Artin stack
of finite type over k that admits a good moduli space M,I,(f °. Additionally,
M,,Kf ® is known to be a separated algebraic space, which is of finite type over
k, and the uniformly K-stable locus My K™ C M,I,( » 7% is known to be an
open sub-algebraic space [21, ThmA]. Furthermore, the polarization on M,Iff °
is predicted to be given by the descent L to MnK;S of the Chow—Mumford
(CM) line bundle A. We refer the reader to the paragraph after (1.7.a) for the
definition of the CM line bundle, and see Lemma 10.2 for the definition of the

descent as well as for the proof of its existence. Our main theorem concerns
this prediction:
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Theorem 1.1 Fix an integer n > 0 and a rational number v > 0, and let A be

the CM line bundle on the moduli stack MY5* of K -semistable Fano varieties

of dimension n and anti-canonical volume v. Let 1 : M,Iflfs — M,Iff * be the
good moduli space of MXS5, and let L be the descent of % along w. Then:

n,v
(a) Both A and L are nef.
(b) Let V C M,Iff * be a proper closed subspace intersecting Mglv“ Then
Ly is big.
(c) If V C M,I,( o 7% is a proper closed subspace, then the normalization of
VN MEIU(‘ is a quasi-projective scheme.

We address later, in Remark 1.15, the reasons of the specific generality of
Theorem 1.1, and we present in Sect. 1.2 our results for pairs.

Remark 1.2 Notably, Theorem 1.1 deals with non-smoothable singular Fano
varieties too, about which we remark that:

(a) Thisis the first result about (semi-)positivity of the CM line bundle dealing
with non-smoothable singular Fano varieties.

(b) A typical K-semistable Fano variety is non-smoothable. In fact, smooth
Fano varieties of a given dimension are bounded regardless of K-semi-
stability [74], and so are smoothable K-semi-stable varieties [65]. On
the other hand, non-smoothable K -semistable Fano varieties of a given
dimension are unbounded if one does not fix the volume, as can be seen
by considering quasi-étale quotients by bigger and bigger finite subgroups
of Aut(P?), which quotients are K -semi-stable according to [50, Cor. 1.7].

Remark 1.3 The proof of Theorem 1.1 uses the Central Limit Theorem of
probability theory. See Sect. 1.7.1 for an outline of our argument or Theo-
rem 5.11 for the precise place where the Central Limit Theorem is used.

Remark 1.4 Let M,Iff **™ be the closure of the locus of smooth Fano varieties.
Using analytic methods one can show that M,If,? *5M s proper and that L |y is big

on every closed V C M,Il(f Ssm intersecting the smooth locus [80,81,90,109].
Our theorem extends this to the case of V intersecting the uniformly K -stable
locus, which then yields the quasi-projectivity of the normalization of an open

set of M,]ff 5™ that is possibly bigger than the smooth locus.

Remark 1.5 An equivalent way of stating point (a) and (b) of Theorem 1.1 is
the following: A and L are nef, and for every proper closed subspace V C M,Ii'f *
the augmented base locus B4 (L|y) is contained in V' \ ME:E'S. This follows

immediately from [86, Thm 0.3].

Remark 1.6 Uniformly K-stable Fano varieties have finite automorphism
group; this implies that, when MYX is smooth, the coarse moduli space
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Positivity of the CM line bundle

M5 has finite quotient singularities, and hence the normalization in Theo-
rem 1.1.(c) can be dropped from the statement.

We know that ME:IUQS is smooth at the points corresponding to smooth Fano
varieties [67,105], and to terminal Fano 3-folds [106, Thm 1.7]. Unfortunately,
these unobstructedness statements do not hold for all Fano varieties, for exam-
ple, [106, Rem 2.13] gives a counterexample. However, the counterexample is
a cone over a del Pezzo surface of degree 6, which is not uniformly K -stable,
as its automorphism groups is not finite. This leads to the following question.

Question 1.7 1s the deformation space of uniformly K-stable Fano varieties
unobstructed?

1.2 Technical statements

Our most general statements implying Theorem 1.1, just as points (a) and (b)
of Theorem 1.1, come in two flavors: semi-positivity and positivity statements.
We start with the semi-positivity statements, which we are able to show also in
the logarithmic case. Let us first present the precise definition of the CM-line
bundle in this setting.

If f:(X,A) — T is a flat morphism of relative dimension n from a
projective normal pair to a normal projective variety such that —(Kx,7 + A)
is Q-Cartier and f-ample. Then we define the CM line bundle by

Ara = —fil(—=(Kx 7 + A", (1.7.2)

This cycle, up to multiplying with a positive rational number, is the first Chern
class of the functorial line bundle on 7" defined in [101,102], see also Propo-
sition 3.7 and [43,44,103]. In particular, one defines X to be the unique Q-line
bundle A on MXS such that for every v : T — MESS if f 1 X — T is the
associated family, then v*A = A7 := A 1.

Our most general semi-positivity statements then are the following. We note
that by a general geometric fiber we mean a fiber over any geometric point

Spec L — U, where U C T is a fixed non-empty open set.

Theorem 1.8 Let f : X — T be a flat morphism of relative dimension n with
connected fibers between normal projective varieties and let A be an effective
Q-divisor on X such that —(Kx,7 + A) is Q-Cartier and f-ample. Let X y A
be the CM line bundle on T as defined in (1.7.a).

(a) PSEUDO- EFFECTIVITY: If T is smooth and (X;, A;) is K-semi-stable for
general geometric fibers X;, then Ay A is pseudo-effective.

(b) NEFNESS: If all fibers X, are normal, A does not contain any fibers (so
that we may restrict A on the fibers), and (X;, A;) is K -semi-stable for
all geometric fibers X;, then A ¢ A is nef.
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Next we state our positivity statements. These pertain to families with max-
imal variation. Here, a family f : X — T of Fano varieties as in Theorem 1.9
has maximal variation if there is a non-empty open set of T over which the iso-
morphism equivalence classes of the fibers are finite. In the logarithmic case
one faces considerable extra difficulties when the variation comes partially
also from the variation of the boundary, as it was also the case for the KSBA
stable moduli [76]. Hence, to keep the length of the article under control, we
address here only the question of positivity in the boundary free case. The
logarithmic version was addressed after the initial submission of the present
article in [104].

Theorem 1.9 Let f : X — T be a flat morphism with connected fibers
between normal projective varieties such that — Ky is Q-Cartier and f-
ample, and let .y be the CM line bundle defined in equation (1.7.a).

(a) BIGNESS: If T is smooth, the general geometric fibers of f are uniformly
K -stable, the variation of f is maximal, and either dim T = 1 or the fibers
of f are reduced, then Ay is big.

(b) AMPLENESS: If all the geometric fibers of f are uniformly K -stable and
the isomorphism equivalence classes of the closed fibers are finite, then
Ar is ample.

(c) QUASI- PROJECTIVITY: If T is only assumed to be a proper normal alge-
braic space, all the geometric fibers are K -semi-stable and there is an open
set U C T overwhich the geometric fibers are uniformly K -stable and the
isomorphism classes of the fibers are finite, then U is a quasi-projective
variety.

Remark 1.10 We note that both, K -semistability [22, Thm 1.1] [123, Thm 1.4]
and uniform K -stability [21, Thm A] are open properties.

We also remark that in Theorem 1.9 we carefully said “geometric fiber”
instead of just “fiber”. The reason is that we use the §-invariant description of
K -stability, and the §-invariant of a variety is not invariant under base extension
to the algebraic closure, see Remark 4.16. So, for scheme theoretic fibers over
non algebraically closed fields the §-invariant can have non semi-continuous
behavior.

Remark 1.11 We proved Theorem 1.8 and Theorem 1.9 in the stated generality,
as in this setting the relative canonical divisor exists and admits reasonable
base-change properties on very general curves in moving families of curves
on the base, see Sect. 2.4 for details. Nevertheless, in situations where this
base-change is automatic, Theorem 1.9 directly implies statements over non-
normal, non-projective, and even non-scheme bases. This is made precise for
example in the following statement:
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Positivity of the CM line bundle

Corollary 1.12 Let f : X — T be aflat, projective morphism with connected
fibers to a proper algebraic space, such that there is an integer m > 0 for which
a)g:,"/]T is a line bundle and all the geometric fibers are K -semi-stable kit Fano

varieties. Let N be the CM-line bundle associated to the polarization a)g(_";].

Then, N is nef, and if the variation of f is maximal and the very general
geometric fiber is uniformly K -stable, then N is big.

The CM line bundle over a general base is defined in Notation 3.6, following
[102].

Remark 1.13 Note that over C the positivity properties of Theorem 1.9
(nefness, pseudo-effectivity, bigness, ampleness) can be also characterized
analytically, e.g., [37, Prop 4.2]

Remark 1.14 NEGATIVITY OF —K ;7 POINT OF VIEW. Unwinding definition
(1.7.a), we obtain that, in the case of one dimensional base, Theorem 1.9 states
that (—Kx /T)”+1 is at most zero/smaller than 0. Using this in conjunction with
the base-change property of the CM line bundle proved in Proposition 3.8 we
obtain that Theorem 1.9, especially the last 3 points, prove strong negativity
properties of —Kx 7 for families of klt Fano varieties. For example, one
obtains that if C — T is a general enough curve, then the top self intersection
of (—KX/T)If_1C is negative.

There do exist birational geometry statements claiming that — K7 is not
nef, e.g., [124, Prop 1]. Our negativity statements point in this direction but
go further. However, it is not a coincidence that strong negativity statements
on —K x 7 did not show up earlier, as in fact Theorem 1.9 is not true for every
family of klt Fano varieties. Indeed, Example 12.1 shows that in Theorem 1.9
one cannot relax the K -semi-stable Fano assumption to just assuming kit Fano.
The development of the notions of K -stability in the past decade was essential
for creating the chance of proving negativity statements for —Kx,7 of the
above type.

We also note that as —Kx,7 is not nef usually in the situation of Theo-
rem 1.9, c.f., Theorem 1.20 and Example 12.2, the negativity of (—KX/T)”+1
is independent of the negativity of x (—Kx,7). In fact, assuming the former,
k(—Kx 1) canbe —oo (Example 12.4), dim X (Example 12.2), and also some-
thing in between —oo and dim X (Example 12.4).

Remark 1.15 There are two main reasons why our positivity statements (a),
(b) and (c) of Theorem 1.9 work in the uniformly K -stable case, but not in the
K -polystable case:

(a) Werely on the characterization of K -semistability and uniform K -stability
via the § invariant given by [18,52]. Such characterization is not available
for the K-polystable case.
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(b) Our Theorem 1.20 about the nef threshold, on which the above 3 points
of Theorem 1.9 rely, fails in the K-polystable case according to Exam-
ple 12.3. Hence, one would need a significantly different approach to
extend points (a), (b) and (c) of Theorem 1.9 to the K-polystable case.

Remark 1.16 One could make definition (1.7.a) also without requiring flatness.
We do not know if Theorem 1.9 holds in this situation. Nevertheless, we note
that it would be interesting to pursue this direction for example for applications
to Mori-fiber spaces with higher dimensional bases, see Corollary 1.17.

Also we expect that the reduced fiber assumption of point (a) of Theorem 1.9
can be removed, as we need it for technical reasons, namely we want the
base changes over normalizations of general elements of movable families of
curves to be nice, and also because the conjectured K-semi-stable reduction
should eliminate it. Here, K-semi-stable reduction means the conjecture that
K -semsitable families of Fano varieties over function fields of DVR’s can be
extended over the DVR after a finite base-change.

1.3 Boundedness of the volume

Fujita showed in [48, Thm 1.1] that vol(—Kx) < (n + 1)" for every K-
semistable Fano variety X of dimension n, see [83, Thm 3] for better bounds
in the presence of quotient singularities. Using Theorem 1.8 we can show
similar bounds for Fano varieties X admitting a Fano fibration structure with
K -semi-stable general fiber.

Corollary 1.17 If (X, A) is a normal Fano pair, and f : (X, A) — Plisa
fibration with K -semi-stable general geometric fibers (F, Ar), then

vol(—(Kx + A)) < 2dim (X) vol(—(Kr + AF)) < 2dim (X)4mO

Remark 1.18 Corollary 1.17 is sharp for surfaces and threefolds. Indeed, a del
Pezzo surface of degree 8 and the blow-up of P3 at a line, whose anti-canonical
volume is 54, can be fibred over P! with K -semis-table fibres.

Remark 1.19 CLASSIFICATION OF (UNIFORM) K -(SEMI/POLY)- STABLE FANO
VARIETIES: to explain which varieties Corollary 1.17 pertains to, we provide
a short list on Fano varieties that are either known to be K -semi-stable or not
K -semi-stable. In fact, one typically wants to figure out for a given Fano vari-
ety the behavior with respect to all four K -stability properties, see Sect. 1.6.
This has been an active area of research recently. To start with, let us recall
that K -semi-stable Fano varieties are always klt.

A Del-Pezzo surface is K-polystable if and only if it is not of degree 8 or 7
[112,116]. Smooth Fano surfaces with discrete automorphism groups are even
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uniformly K-stable, and their delta invariant, see Sect. 4, is bounded away from
1 in an effective way [96]. Smoothable singular K-stable Del-Pezzo surfaces
are classified in [93].

K-stable proper intersection of two quadrics in an odd dimensional projec-
tive space are classified in [108], see also [7]; in particular, smooth varieties of
these types are always K-stable. Cubic 3-folds are studied in [84], where again
smooth ones are K -stable, and so are the ones containing only Ay singularities
for k < 4. Under adequate hypotheses, in [38], it is shown that Galois covers
of K-semistable Fano varieties are K-stable. This can be applied for instance
to double solids. Furthermore, birational superigid Fano varieties are K-stable
under some addition mild hypothesis [91,110,126]. However, according to the
best knowledge of the authors, there is not a complete classification of K-stable
smooth Fano threefolds.

If one wants to study klt Fano varieties from the point of view of the MMP,
it is particularly relevant to see if one can apply Corollary 1.17 to the case of
Mori Fibre Spaces with one dimensional bases. In [32, Corollary 1.11], it is
shown that if a smooth Fano surface or a smooth toric variety can appear as a
fibre of MFS, then it is K-semistable. We do not know if the analogous result
holds in dimension 3. However, there are examples of smooth Fano fourfolds
with Picard number one, which then can be general fibers of MFS’s, that are
not K-semistable [47], see also [33].

1.4 Byproduct statements

As a byproduct of our technique for proving Theorem 1.8, we obtain the
following bound on the nef threshold of —(Kx,r + A) with respect to A ¢, A
in the uniformly K -stable case.

Theorem 1.20 Let f : X — T be a flat morphism with connected fibers from
a normal projective variety of dimension n + 1 to a smooth curve and let A
be an effective Q-divisor on X such that

o —(Kx/r + A) is Q-Cartier and f-ample, and

° (X;, ;) is uniformly K -stable for fibers X7 over general geometric points

teT.

Set

e setd =94 (X;, A;) fort very general geometric point, and

o letv = ((—KX/T — A);)nfor anyt eT.

Then, —Kx/r — A + Mﬁmf*Af,A is nef.

Recall that the uniformly K -stable assumption in Theorem 1.20 is equivalent
toassuming § > 1, see Definition 4.8 and Corollary 4.9. In particular,§—1 > 0
in the last line of the statement.
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Remark 1.21 The reason for assuming in Theorem 1.20 that (X;, A;) is uni-
formly K -stable for general geometric fibers, but setting § to be § (X7, Ay)
only for very general geometric fibers is technical. On one hand, uniform K-
stability is known to be an open property by [21, Thm A], and hence one
may assume it on the general geometric fiber without imposing any additional
assumption. On the other hand, only the function 7 — min{1, § (X;, A;)}, but
not 7 > 8 (X7, Ay) itself, is known to be constructible [22, Prop 4.3]. For
) (X;, A;), it is only known that it is constant on the complement of
countably many closed sets by Proposition 4.15.

Remark 1.22 One cannot have a nef threshold statement, as in Theorem 1.20,
for K-polystable Fano varieties instead of uniformly K -stable ones. Indeed,
take the family f : X — T given by Example 12.3. It has K-polystable
fibers, degA s = 0, but —Ky,7 is not nef. In particular, for any a € Q,
—Kx/r +af*ry = —Kx,r,and hence forany a € Q, —Kx,7 +af*ry is
not nef.

We also recover a structure theorem when the CM line bundle A ¢ is not
positive:

Theorem 1.23 Let f : X — T be aflat morphism of relative dimension n with
connected fibers between normal projective varieties and let A be an effective
Q-divisor on X such that —(Kx ;7 + A) is Q-Cartier and f-ample. Assume
that (X;, A;) is uniformly K -stable for fibers X7 over general geometric points
t € T. If H is an ample divisor on T, such that Ay, - HYmT=1 — 0 then for
every integer q > 0 divisible enough, f,Ox(q(—Kx;7 — A)) is an H-semi-
stable vector bundle of slope 0.

Corollary 1.24 Assume k = C, and let f : X — T be a surjective morphism
from a normal projective variety of dimension n + 1 to a smooth, projective
curve such that —Kxr is Q-Cartier and f-ample, and the general fiber of
f is uniformly K-stable. Then, deg Ay = 0 if and only if, f is analytically
locally a fiber bundle.

1.5 Similar results in other contexts

Roughly, there are three types of statements above: (semi-)positivity results,
moduli applications, inequality of volumes of fibrations. Although in the realm
of K-stability ours are the first general algebraic results, statements of these
types were abundant in other, somewhat related, contexts: KSBA stability, GIT
stability, and just general algebraic geometry. Our setup and our methods are
different from these results, still we briefly list some of them for completeness
of background. We note that KSBA stability is related to our framework as
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it is shown to be exactly the canonically polarized K -stable situation [88,89,
94]. Also, GIT stability is related, as K-stability originates from an infinite
dimensional GIT, although it is shown that it cannot be reproduced using GIT,
e.g., [120].

General algebraic KSBA stability GIT stability
geometry

(semi-)positivity [53,55,66,70, [46,71,76,100] [35]
117]

Moduli applications [118] [8,71,76] [35]

Volume and slope inequalities [122] [9,95]

1.6 Overview of K-stability for Fano varieties

In the present article we define K -semi-stability and uniform K -stability using
valuations, see Definition 4.8, which is equivalent then to the §-invariant defi-
nition given in Corollary 4.9. These definitions were shown to be equivalent to
the more traditional ones that use test configurations [18, Theorem B]. How-
ever, this approach has a considerable disadvantage: there is no known delta
invariant type definition of K -stability and K -polystability. While we do not
use these notions in any of the statements or proof of our results, we believe
that they are important notions in the study of Fano varieties. Hence, for com-
pleteness we state the classical definitions involving test configurations for all
the four notions of K -stability. We refer the reader to [40,41] or more recent
papers such as [25,39] for more details.
For a Fano variety X we mention the following notions of K -stability:

K-semi-stability For every normal test configuration of X, the Donaldson-
Futaki invariant is non-negative.

K-stability For every normal test configuration of X, the Donaldson-Futaki
invariant is non-negative, and it is equal to zero if and only if the test
configuration is a trivial test configuration. In particular, there is no 1-
parameter subgroup of Aut(X).

K-poly-stability For every normal test configuration of X the Donaldson-
Futaki invariant is non-negative, and it is equal to zero if and only if the
test configuration is a product test configuration, i.e. it comes from a one
parameter subgroup of the automorphism group of X.

Uniform K-stability There exists a positive real constant § such that for
every normal test configuration of X the Donaldson-Futaki invariant is at
least § times the L' norm (or, equivalently, the minimum norm) of the test
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configuration. This notion implies K-stability, and when X is smooth the
finiteness of the automorphism group of X, too [26, Cor E].

We also note that the Yau-Tian-Donaldson (in short, YTD) conjecture asserts
that a klt Fano variety admits a singular Kihler-Einstein metric if and only if it
is K-polystable. This is known to hold for smooth [28-30, 115] and smoothable
Fano varieties [81], and independently [109] in the finite automorphism case,
and for singular ones admitting a crepant resolution [82]. In the literature,
there are also many proposed strenghtenings of the notion of K-stability; they
should be crucial to extend the YTD conjecture to the case of constant scalar
curvature Kéhler metrics. In this paper we are interested in uniform K-stability
[10,25,39], which at least for smooth Fano manifold is known to be equivalent
to K-stability (we should stress that the proof is via the equivalence with the
existence of a Kihler-Einstein metric). One can also strenghten the notion
of K-stability by possibly looking at non-finitely generated filtrations of the
coordinate ring, see [31,111,121].

1.7 Outline of the proof

Our proof for the semi-postivity and the positivity statements for the CM line
bundle are different. Hence, we discuss the corresponding outlines separately
in Sect. 1.7.1 and in Sect. 1.7.3, respectively. Additionally, as itis an indispens-
able link between semi-positivity and positivity, we present the ideas behind
the nefness threshold statement of Theorem 1.20 in Sect. 1.7.2. For simplicity,
we restrict in all cases to the non-logarithmic situation, that is, to statements
about —K 7 instead of —(Kx,;7r + A). As all the assumptions and con-
sequences are invariant under base-extension to another algebraically closed
field, we may also assume that k is uncountable. In particular, the very general
geometric fibers whose existence is assumed in the statements also show up
as closed fibers.

1.7.1 Semi-positivity statements.

As nefness and pseudo-effectivity can be checked via non-negative intersection
with effective or moving 1-cycles, respectively, points (a) and (b) of Theo-
rem 1.8 can be reduced to the case of one dimensional base. Hence, we assume
that the base of our fibration f : X — T is a curve, in which case pseudo-
effectivity and nefness are both equal to the degree being at least zero. So, we
are supposed to prove that deg A > 0 or equivalently that (—Kx /T)”+1 <0,
see (1.7.a).

We argue by contradiction, so we assume that (—Kx /T)”Jrl > 0. If we fix
a Q-divisor H on T of small enough positive degree, then by the continuity of
the intersection product (—Kx /7 — f*H )"+ > 0 also holds. As X is normal
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and fibered over the curve T over which —Kx,7 is ample, this implies via a
Riemann-Roch computation that the Q-linear system |- K x ;7 — f* H|g is non-
empty, see Remark A.3. Our initial idea is to obtain a contradiction from this
fact: in fact, Proposition 7.2 shows that there areno I' € | — Kx/r — f*H|g
such that (X;, I'y) is kit for general + € T. The only problem is that there
are examples where | — Kx,r — f*H|g is non-empty such that for every
I' e | = Kx;7 — f*H]|q, the pair (X;, I';) is not kIt for general t € T. Indeed,
every family with negative CM line bundle has to satisfy the conditions stated
in the previous sentence, according to Proposition 7.2. An explicit example is
given in Example 12.1.

Our second idea is that maybe the K-stable assumption leads us to a
I' as above that also satisfies the kit condition when restricted to a gen-
eral fiber. According to the delta invariant description of K-semi-stability
(Corollary 4.9), if X; is K-semi-stable, then up to a little perturbation one
can obtain klt divisors the following way: for ¢ > 0, let Dy, ..., D; be

divisors corresponding to any basis of H° (X t,—qK X[); then the divisor
D := Xl: & € | — Kx,|q is such that (X, D) is klt.
i=1 9l t
Now, we would like to lift such a divisor to | — Kx,7 — f* H|g. To this end,
it is enough to lift for g >> 0, every element of a basis of A (X H»—qK X,) to

elements of H O(X ,q(—=Kx;r — f*H)). Using some perturbation argument,

it suffices to show the existence of linearly independent sections s, ..., s €
0 1 I .
H' (X;, —qKx,) such that s; lifts, and e close enough to 1.

This in turn would be implied by the followitng: let £, be the subsheaf of
f+Ox(—qKx/,7) spanned by the global sections, then

) tk &,
lim =1
q—ootk f,Ox(q(—=Kx/T — f*H))

(1.24.a)

For the readers more familiar with the language of volumes and restricted
volumes, we note that (1.24.a) is equivalent to showing that the restricted
volume of —Kx,7 over a general fiber is equal to the anti-canonical volume
of the fibers.

Unfortunately, (1.24.a) still does not hold. For example, if one takes the
isotrivial family

X =Pr(Or(—n)® Or (1) ® --- ® Or(1))

n times
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of P"’s over T := P! (as in Example 12.1 for n = 2), then
fOx(—qKx)r) Z S"TOr(=m) @ Or (D @ --- ® Or (1)),

In this situation &, is the direct sum of the factors with degree greater than
gdeg H ~ ge (here 1 > ¢ > 0). Then one can compute that (1.24.a) does
not hold. For example, in the case of n = 1,

MO (=) ®0r(1)) = 07 (—q) ® Or(—q + D ® - ® O1(q).

So, we see that the limit of (1.24.a) is % —&.

The idea that saves the day at this point is the product trick, which was
pioneered in the case of semi-posivity questions by Viewheg [117]. The precise
idea is to replace X by an m-times self fiber product X over T. Let f™ :
X™ — T be the induced morphism, Sect. 2.2. Then, one can replace the

initial goal with showing that there exists I' ‘—K X /T — ( f (m))* mH ‘Q
such that <X ,(m) , Ft> is klt for t € T general. Running through the previous
arguments for X ™ instead of X, this would boil down to showing that
tk &
lim 4.

where &; ,, is a subsheaf given by certain condition specified below of the
subsheaf generated by global sections of

*(m)(QX(m) <q <_KX(’”)/T — (f(m))* mH))
= Q) fOx(g(—Kxr— f*H)).

{m} times

=1, (1.24.b)

(1.24.c)

The extra condition in the definition of &, ,, is due to the need that I" has to be
kit on a general fiber. This would be automatic if the conjecture that products of
K -semi-stable kit Fano varieties are K -semi-stable was known. Unfortunately,
this is a surprisingly hard unsolved conjecture in the theory of K -stability!.

Hence, we elude it by considering only bases of H° (Xt(m), —qK X(m)) =
t
® H° (X,, —qKX,) that are induced from bases of H° (X;, —qKX[). As

m times
log canonical thresholds are known to behave well under taking products,

1 This conjecture has been proved in [125], published after the first version of this paper has
appeared.
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see Proposition 4.14, if the restriction I'| yom toa general fiber is a divisor
t

corresponding to such basis, the K -stability of X; implies that (X t(m), I X(m))

is kIt. Hence, the additional condition in the definition of & ;, is that it is the
biggest subsheaf as above such that (Eq,m) , is spanned by simple tensors for
abasisty,...,f; of (f*OX(q(—KX/T — f*H)))[ to be specified soon.

So, we are left to specify a basis of (f*OX(q(—KX/T — f*H)))t =
HO(X,, —gKyx,) for which (1.24.b) holds. For that we use the Harder—
Narasimhan filtration 0 = F* € ... € F" of f+Ox(q(=Kx/r — f*H)).
Let the basis vy, ..., v; be any basis adapted to the restriction of this filtra-
tion over ¢, that is, to 0 = ]:? C ... C F/. The lower part of the filtration,
until the graded pieces reach slope 2g, where g is the genus of T, is globally
generated. Furthermore, there is an induced Harder—Narasimhan filtration on
the sheaf in (1.24.c). The part of slope at least 2g in the last filtration that
we defined is globally generated such that its restriction over t € T is gener-
ated by simple tensors in v;, Proposition 5.9. Hence, if 5;7 . 18 this part of the
Harder—Narasimhan filtraton, then it is enough to prove that

_ k&,
lim ) : "
m— 00 rk f*m Ox(m) (q <—Kx(m)/T — (f(m)) mH))

=1, (1.24.4)

The final trick of the semi-positivity part is then that (1.24.d) can be translated
to a probability limit, which then is implied by the central limit theorem of
probability theory, see Theorem 5.11.

We explain here the probability theory argument via the example of

Fn = Q) (Opi(=1) ® Opi (2)).

m times

The claim then is that as m goes to infinity the rank of the non-negative degree
part of F,, over the rank of F,, converges to 1. It is easy to see that this is the
limit of the left hand side of the following equation as m goes to infinity: use
author coding:

SO s 0

0<i<m,2i—(m—i)=>0 Ogigm,iz‘
m\ [ 1\"
> > )5
i 2
T OsiSm,iz%—A@

for m big enough, where A > 0Ois an arbitrary fixed
real number, independent of m
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The last summation appearing in the previous equation is equal to the proba-

bility of getting at least 5 — A‘/T'Z heads when flipping a coin m times. Note
that for this m-times flipping the expected value is %5 and /m-times the square

2
deviation is ‘/T"? Hence, the above probability converges to ffi ﬁe%dx
by the classical De Moivre-Laplace theorem, a special case of the central
limit theorem. We obtain (1.24.d) by taking A — oo limit, and using that the
above integral integrates the density function of the standard Gaussian normal
distribution.

1.7.2  Nefness threshold, that is, Theorem 1.20.

This part uses the same ideas as the above semi-positivity part, but in a differ-

ent logical framework. That is, the argument is not a proof by contradiction.
. . . A n+1
Instead, the starting point is that (—KX/T + (f(m))* (v(nfrl) + H)) > 0.
Hence, again up to a little perturbation and by using the ideas of the pre-
vious point, there is an integer m > 0 such that there exists a I' €
~8Kyon 7+ (f) " m (ot + H)‘Q for which (X", T) is Kit for
t € T general. Then standard semi-positivity argument (Proposition 6.4) shows

that

K — 8K + () L
X(m)/T X(’”)/T m v(n i 1)

* SA
o m) _OM
= (1= 8)Kxm 1+ (f > " (v(n +1) i H>

is nef. Lastly, one divides by 6 — 1, converges to O with H, and lastly by a
standard lemma (Lemma 8.1) removes the ().

1.7.3  Positivity.

The rough idea here is to use a twisted version of the ampleness lemma, c.f.,
[71, 3.9 Ampleness Lemma] and the slight modification in [76, Thm 5.1]. We
need a twisted version of the ampleness lemma as the techniques developed
until this point in the article do not work directly over higher dimensional
bases. The main idea here is that to get bigness of A ¢ it is enough to show
positivity of A ¢ over a very general element C of each moving family of curves
of T in a bounded way. Below we explain how we do this.

The main benefit of proving the result on the nefness threshold, Theo-
rem 1.20, is the following: one can prove, again using standard semi-positivity
arguments, see Proposition 6.4, that Q := f,Ox(—rKx/r + af*Ay) is nef,
for some constants r and «. Furthermore, these constants » and « can be cho-
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sen to be uniform, as f runs through all families obtained by base-changing
on a very general element C of a moving family of curves on 7. Then, the
ampleness lemma (Theorem 9.8) gives an ample line bundle B on 7" such that
for all curves C as above, C - B < C - det Q. Then one can use another trick
from (semi-)positivity theory, already contained in Viehweg’s work, which
shows that for ¢ := rk Q there is an embedding

det Q > Q) f:Ox(—rKx/T +of*is)

g times

*
= f;,fq)OX (—er(q)/T + qa (f(q)> )\.f) y

Using the adjunction of f*(q) and ( fl ))*, we obtain the inequality of divisors

* * *
(f(q)) B < (f(f1)> det Q < —er(q)/T +gu (f(q)) Af,

which survives the restriction over C by the genericity assumption in the choice
of C. From here, a simple intersection computation shows that C - B bounds
deg A ¢|c from below up to some uniform constants, not depending on the
choice of C, see the end of the proof of point (a) of Theorem 1.9.

1.8 Organization of the paper

See Section 1.7 for a thorough explanation on which part of the argument
can be found where. Here we only note that the actual argument, so what is
explained in Sect. 1.7, starts in Sect. 5, and lasts until Sect. 12, where we
construct some examples which show that the statements of the main results
are sharp. After Sect. 12, we only have “13”, with some computations related
to the definition of the CM line bundle.

Before the argument starts, in Sects. 2, 3 and 4 we present notation and
background, as well as, simpler statements. The division of this part between
the above 3 sections is based on topics. Section 2 contains general topics,
Sect. 3 contains the definition of the CM line bundle and the related state-
ments, and Sect. 4 contains the definition and the basics about the §-invariant
and K -stability.

We also include a table on the location of the proofs of the theorems stated
in the introduction.
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Statements of the introduction Their proofs
Theorem 1.1 Section 10
Theorem 1.8 Section 7.2
Theorem 1.9 Section 9.4
Corollary 1.12 and Theorem 1.23 Section 9.4
Corollary 1.17 Section 11
Theorem 1.20 Section 8

2 Notation

2.1 Base-changes

All base-changes are denoted by lower index. For example, if f : X — T
is a family, F is a coherent sheaf on X and § — T is a base-change, then
Fs:=h*F,where h : § x7 X — X is the projection morphism.

2.2 Fiber product notation

The most important particular notation used in the article is that of fiber prod-
ucts. That is, for a family f : X — T of varieties we denote the m-times fiber
product of X with itself over T by X ). As in our situation the base is always
clear, we omit it from the notation. Hence, X " denotes the fiber product over
T of m copies of X, and forapointz € T, X ,(m) denotes the fiber product over
t of m copies of X;. In this situation, p; : X — X denotes the projection
onto the i-th factor, and we set for any divisor D or line bundle £:

m

m
D™ = Z piD,and L™ := ® piL.
i=1 i=1

2.3 General further notation

A variety is an integral, separated scheme of finite type over k. We call (X, A)
a pair, if X is a normal variety, and A is an effective Q-divisor, called the
boundary. A projective pair (X, A) over k is a normal Fano pair, if —(Kx+ A)
is an ample Q-Cartier divisor. A normal Fano pair (X, A) is a Fano pair if
(X, A) has klt singularities. To avoid confusion, many times we say klt Fano
instead of Fano, nevertheless we mean the same by the two. If there is no
boundary, we mean taking the boundary A = 0.

A big open set U of avariety X is an open set for which codimy (X\U) > 2.

A vector bundle is a locally free sheaf of finite rank.
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The Q-linear system of a Q-divisor D on a normal variety is |D|g :=
{ L is an effective Q -divisor | Im € Z,m > 0 : mL ~mD }.

A geometric fiber of a morphism f : X — T is a fiber over a geometric
point, that is over amorphism Spec K — T, where K is an algebraically closed
field extension of the base field k. We say that a condition holds for a very
general geometric point/fiber, if there are countably many proper closed sets,
outside of which it holds for all geometric points/fibers. General point/fiber is
defined the same way but excluding only finitely many proper closed subsets.
The (geometric) generic point/fiber on the other hand denotes the scheme
theoretic (geometric) generic point/generic fiber.

2.4 Relative canonical divisor

For a flat family f : X — T the relative dualizing complex is defined by
oy = f '‘Or, where f' is Grothendieck upper shriek functor as defined in
[61].If f is also a family of pure dimension 7, then the relative canonical sheaf
is the lowest non-zero cohomology sheaf wy,7 := h™" (0% /T) of the relative
dualizing complex. To obtain the absolute versions of these notions one uses
the above definition for 7 = Spec k. The important facts regarding the relative
dualizing sheaf that we use in the present section are the following:

(a) The sheaf wy/r is reflexive if the fibers are normal [99, Prop A.10].

(b) If T is Gorenstein and X is normal, then wx;7 = wx ® f*a)}l [98,
Lemma 2.4], and then as wy is S [75, Cor 5.69], wx,r is also reflexive
in this case [63].

(c) By the previous two points, if f is flat, X is normal and either 7" is smooth
or the fibers are normal, then wx 7 is reflexive, and hence it corresponds
to a linear equivalence class of Weil divisors which we denote by Kx 7.

(d) On the relative Cohen-Macaulay locus U C X (that is, on the open set
where the fibers are Cohen-Macaulay), wy,r7 = wx,r|y is compatible
with base-change [34, Thm 3.6.1].

In particular, by the above we always have the following assumptions on our
families: f : X — T is flat with fibers being of pure dimension n, and either T’
is smooth, or the fibers of f are normal. In both cases we discuss base-change
properties of the relative canonical divisor below.

2.4.1 Base-change of the relative log-canonical divisor when the fibers are
normal

Let us assume that f : X — T is a projective, flat morphism to a normal

projective variety with normal, connected fibers. In particular then X is also
normal. Assume additionally that there is an effective (Q-divisor A given on X,
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such that A does not contain any fiber, and K x 7+ A is a Q-Cartier divisor. Let
U C X be the smooth locus of f, which is an open set, and by the normality
assumption on the fibers, U N X, is a big open set on each fiber X, see Sect. 2.3
for the definition of a big open set.

Let S — T be a morphism from another normal projective variety. Then,
we may define a pullback Ag as the unique extension of the pullback of A|y
to Ug; the key here is that A|y is Q-Cartier. Moreover, if o : X5 — X is the
induced morphism, then as Q-Cartier divisors

Kxg/s + As ~q o™ (Kx/r + A). (2.0.¢)

Indeed, it is enough to verify this isomorphism on U, as U is big in X and
Us is big in Xs. However, over U the linear equivalence (2.0.e) holds by
the definition of Ag and by the base-change property of point (d) above. In
particular, fs : X5 — S and Ag satisfies all the assumptions we had for
f:X — T and A.

2.4.2 Base-change of the relative log-canonical divisor when the base is
smooth

Let f : X — T be a flat morphism from a normal projective variety to a
smooth, projective variety with connected fibers. Let A be an effective Q-
divisor on X such Kyx,7 + A is Q-Cartier. Let Thorm € T be the open set over
which the fibers of X are normal.

Note that by the smoothness assumption on 7', at a point x € X, the fiber
X r(x) 1s Gorenstein if and only if X is relatively Gorenstein if and only if X
is Gorenstein. Let U € X be the open set of relatively Gorenstein points over
T.Lett: C — T be a finite morphism from a smooth, projective curve such
that ((C) N Thorm # ¥, and denote by o : X¢ — X the natural morphism.

We claim that o ~'U is big in X ¢. This is equivalent to showing that for each
c € C, X, is Gorenstein at some point, and that for general ¢ € C, there is a big
open set of X, where X, is Gorenstein. The former is true for all schemes of
finite type over k, hence also for X.. The latter is true by the ¢ (C) N Trorm # @
assumption. This concludes our claim.

Now, let # : Z — X be the normalization of X¢, p : Z — X and
g : Z — C the induced morphisms and set W := p~!U. The notations are
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summarized in the following diagram:

w o~ U U
/ﬂ/ /
ﬁg\x

RN

C . T O Tl’lOITl’l

zZ

Then, [76, Lem 9.13] tells us that there is a natural injection ww,c —
(W) wy-1 u/c- To be precise, [76, Lem 9.13] assumes o ~1U to be normal,
but as the proof does not use it, this is an unnecessary assumption. Combining
this injection with the isomorphism (cr|(,71U)>k wy/T = We-1y/c given by
point (d) above we obtain

ow/c = (T lw)* Op-1,c = @@lw)* (0l-1p) @usr = (olw)* wuyT,
(2.0.1)
which is an isomorphism over the locus Tieq over which the fibers of f are
reduced. Indeed, over Tiq the fibers of X — C are all reduced, and by the
t(C) N Thorm # ¥ assumption the general fiber of X¢ — C is normal. In
particular, over Tyeq, X is R and S», and hence normal. So, 7 is the identity
over Treq.

Let m > 0 be then an integer such that m(Kx,r + A) is Cartier. That
is, L := Ox(m(Kx,;r + A)) is a line bundle, and furthermore, mA yields
an embedding w%’/"T < L|y. Composing this with the m-th power of the
homomorphism of (2.0.f) we obtain:

W = (plw)*L = Ow(mp*(Kx 1 + A)lw), 2.0.9)

which map over Tiq is given by “multiplying with (plgfltfl Tred)* mA”.
Indeed, for the last remark, the main thing to note is that the regular locus
of X, over which mA is necessarily Cartier, pulls back to a big open set of
g_] 1" Ted, as general fiber of fc is normal and special fiber of fc over Tieq
are reduced. Hence 7 is an isomorphism over g_1 1~ T}eq and also the pullback
(p| g1 1T, d)* mA is sensible the usual way: restricting to the regular locus,
performing the pullback there, and then taking divisorial extension using big-
ness of the open set.

Lastly, the map (2.0.g) is given by an effective divisor D.If weset Az := %,
using that W is big in Z, we obtain:

Proposition 2.1 Consider the following situation:
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e let f : X — T be a flat morphism from a normal projective variety to a
smooth, projective variety with connected fibers,

o let A be an effective Q-divisor on X such Kx,;r + A is Q-Cartier,

e let Thorm € T and Treq C T be the open set over which the fibers of X are
normal or reduced, respectively,

e let 1 : C — T be a finite morphism from a smooth, projective curve such
that 1(C) N Thorm # 9, and

e letmw : Z — X be the normalization, and p : Z — X and g : Z — C be
the induced morphisms.

Then, there is an effective Q-divisor Az on Z such that:

(a) Kz/c + Az ~q p*(Kx/T + A),

(b) Xc is normal over Tyeq and Azlg—ll—led = (plg—1L—1de)* A, and

(c) Azlg-1,-17,., agrees with the pullback of Als-ig, —in the sense of
Sect. 2.4.1.

3 The definition of the CM line bundle

Here we present the definition of the CM line bundle in two cases:

(a) in the non logarithmic case for arbitrary polarizations, and
(b) in the logarithmic case for the anti-log-canonical polarization.

In the first case, we also connect it to the other existing definitions in the
literature. In the second case, we are not able to present such connections,
because the lack of literature would force us to work out many details about
the Paul-Tian type definition [101,102], and then prove the equivalence with
that: this would be beyond the scope of the present article.

In any case, it is important to stress that the definitions are different in the
two cases: One does not obtain the logarithmic version by simply plugging in
the logarithmic relative anti-canonical divisor into the polarization of the non-
logarithmic case. The reason for the difference is that that in the logarithmic
case the CM line bundle has to take into account also the variation of the
boundary, see the paragraph before Theorem 1.9.

Definition 3.1 CM LINE BUNDLE IN THE NON- LOGARITHMIC SETTING.
Let f : X — T be a flat morphism of normal projective varieties of relative

dimension n, and L an f-ample Q-Cartier divisor on X. For every integer g
divisible enough, the Hilbert polynomial of a (equivalently any) fiber X; is

x(X:,qL;) = apq" + a1qg" ' + 0(¢" 7). (3.1.a)
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Setur = za% We define the Chow—Mumford line bundle as the pushforward
cycle

App = fi (L™ + (n+ DL - Kx/7)

which is an abuse of language as it is not a line bundle but rather a Q-Cartier
divisor class, according to Proposition 3.7. We would also like to stress that
A7, 1s adivisor class (in the Weil group, or equivalently the first Chow group),
as opposed to a fixed divisor.

If L is not indicated, then we take L = —Kx,r, which we assume to be an
f-ample Q-Cartier divisor, and we use the notation A ¢ := A7 .

Remark 3.2 Note that in the L = —Kx /7 case:
Ar= fe (o (=Kx/r)" ™ + (n+ D(—Kx;7)" - Kx/1)

= fulur — (n+ 1)) (=Kx/7)"H!

As X in Definition 3.1 is assumed to be normal, so is X; for ¢ a general closed
point. In particular, Lemma A.2 implies that

Kx~Ln_1
2a; 2 (_ 2= D) ) —Kyx, - L}
= —_—= m =n .
s ag Ly L}
n!
In particular if L = —Kyx,7 we obtain that u; = n. Hence, we obtain the

definition we used in (1.7.a):

A= felpr — (n+ D) (=Kx/7)" ™ = — fu(—=Kx,7)" .

We only define the logarithmic version of the CM line bundle in the anti-
log-canonically polarized case. If A = 0, this definition agrees with the case of
L = —Kx/r of the non-logarithmic definition, according to the final formula
of Remark 3.2.

Definition 3.3 CM LINE BUNDLE IN THE LOGARITHMIC SETTING. If f :
(X, A) — T is a flat morphism of relative dimension n from a projective
normal pair to a normal projective variety such that —(Kx,7 + A) is Q-Cartier
and f-ample. Then we define the CM line bundle by

Ao = —f(=(Kx 7 + A",

Notation 3.4 In the set-up of Definition 3.1 (resp. of Definition 3.3, in which
case we setalso L := —(Kx,;7+A)), fix aninteger s such that s L is an f-very
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ample Cartier divisor. Following [85, Appendix to Chapter 5, Section D] and
[69, Theorem 4], consider the Mumford-Knudsen expansion of Ox (sL):

n+1 q
det f,Ox(gsL) = @Mff), (3.4.2)
i=0

where M; are uniquely determined line bundles on T .

For future reference, we note that as the left side of (3.4.a) is invariant under
base-change for ¢ >> 0, the above unicity of M; implies that:

Lemma 3.5 Inthe situation of Notation 3.4, the formation of M is compatible
with base-change. That is, if S — T is a base-change, and MlS are the

coefficients of the Knudsen—Mumford expansion of s L, then MZS = (M)s.

Notation 3.6 In the case of Definition 3.1, according to [102, Definition 1]
(seealso [101, Section 2.4, page 11] and [69, Theorem 4] for the role of M, 1 1),
the CM line bundle is defined as

+1)+ps —
LCM,f,sL = M:llg’j] )+isL ®Mn 2(n+l)’

where sz is the number defined in Definition 3.1. For simplicity we regard
Lcwm, f,se as a Cartier divisor. As we explained earlier in the case of Defini-
tion 3.3 a definition as above is not worked out in the literature to such an
extent, and hence we do not consider it here.

The proof of the following proposition will be given in “13”.

Proposition 3.7 (a) CONNECTION WITH THE PAUL- TIAN DEFINITION. In
the situation of Notation 3.6, if T is smooth or the fibers of f are normal,
then s"A s = ci(Lcm, f,s1)- In particular, A y,p is Q-Cartier.

(b) CONNECTION WITH THE LEADING TERM OF THE KNUDSEN- -
MUMFORD EXPANSION. In the situation of Notation 3.4, consider the
case of Definition 3.3, which includes the case of Definition 3.1 with
L = —sKx/r as well. Additionally, assume that either T is smooth
or the fibers of f are normal, and A does not contain any fiber. Then,
—s”“)»fA = c1(My41). In particular, Ay A is Q-Cartier.

Proposition 3.8 BASE- CHANGE FOR THE CM- LINE BUNDLE.

Let f : X — T be aflat morphism between projective normal varieties, let
A be an effective Q-divisor such that —(Kx;r + A) is an f-ample Q-Cartier
divisor, and let T : S — T be a morphism from a normal projective variety.
Assume either:
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(a) the fibers of f are normal and A does not contain any fiber, in which case
set g := fs,Z := Xgs, and let Az be the pullback of A as explained in
Sect. 2.4.1.

(b) T is smooth and 7 is a finite morphism from a curve, such that some of the
fibers of f over t(S) are normal and not contained in A. In this case, set
Z to be the normalization of Xs, p : Z — X and g : Z — S the induced
morphisms and A z the effective Q-divisor on Z given by Proposition 2.1.

Then, the CM line bundle satisfies the base-changes T*X s A = Ag A,

Proof SetV := Xg, L := —(Kx;7 +A)andleth:V — Sando : V — X
be the induced morphisms. Fix an integer s > 0 be such that s L and sp*L are
relatively very ample over 7" and S, respectively. Note that according, to point

(a) of Proposition 2.1, sp*L = —s(Kz,7 + Az). Furthermore, set M}{H’
Mﬁ 41 and MZ 1 be the leading terms of the Knudsen-Mumford expansions

of sL, sp*L and so* L, respectively. Then,

*

f ; g
oo_ma(Mi) ) am)
T f~A$ gt T oot T e F g0z

pgint (b) of Propo- Lemma 3.5 vacuous statement in the | | point (b)
sition 3.7 case of point (a), and A.4 O_f Proposi-
in the case of point (b) tion 3.7

4 The delta invariant and K -stability

Here we give the definitions and the properties used in the present article
of §-invariants, as well as we present the definition of K-semi-stability and
uniform K -stability in Definition 4.8. In the rest of the article we will use the
characterizations of K-semi-stability and K-stability via §-invariants given
in Corollary 4.9. We also prove in the present section that the §-invariant is
constant at the very general fibers of a log-Fano family, see Proposition 4.15.

4.1 Definitions

Basis-type divisors and the delta invariant have been introduced by K. Fujita
and Y. Odaka in [52], see also [18]; in this section we recall their definitions.

Definition 4.1 Assume we are in the following situation:

e Z is a variety over k,
e L is a (-Cartier divisor on Z, and
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e g > 0 is an integer for which gL is Cartier.

A divisor D € |L|q is of g-basis type if there are D; € |gL| (1 < i <
ho(X, gL)), for which the corresponding s; € HY(Z, gL) form a k-basis of
H%(Z,qL), and D can be expressed as

h(z,qL
1 (Z,qL)

D=——— D;.
qh®(Z,qL) ; ’

D is of basis type if it is of g-basis type for some integer g > 0.

Let A be a fixed effective Q-divisor on Z such that (Z, A) is a klt pair. Given
a Q-Cartier effective divisor D on Z, we define its log canonical threeshold as

Iet(Z, A; D) :=sup{t|(Z, A +tD) isklt }.

Remark that since (Z, A) is klt, the above threshold is a positive number. Let
us recall the definition of the « invariant.

Definition 4.2 Let (Z, A) be a kit pair and let L be an effective (Q-Cartier
divisor on Z. The alpha invariant of (Z, A; L) is

a(Z,A; L) .= inf lIct(Z, A; D).
De|L|g

We write a(Z, A) fora(Z, A; —Kz — A).

The o invariant has been introduced by Tian in relation with the existence
problem for Kihler-Einstein metrics. The delta invariant is a variation on the
alpha invariant. The main difference is that in the case of « invariant one
considers the log canonical threshold of all divisors in the Q-linear system,
while in the § invariant is defined using only basis type divisors. In particular,
while @ (X) > &in only implies K-semi-stability [92,113], §(X) > 1
happens to be equivalent to it [18, Theorem B], see also Corollary 4.9. The
delta invariant was introduced in [52, Definition 0.2]. In [18], although it was

also denoted by 4, it is called the stability threshold.

Definition 4.3 Let (Z, A) be a klt pair and let L be a Q-Cartier divisor on Z.

(a) For every positive integer ¢ for which gL is Cartier and h°(Z, gL) > 0,
the g-th delta invariant of L with respect to the pair (Z, A) is

6,(Z, A\; L) := inf Ict(Z, A; D).
q( ) De|L|q is of g -basis type ( )
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(b) Assume that L is big, and fix an integer s > 0 such that sL is Cartier
and h°(Z, sL) > 0, which conditions then also hold for every positive
multiple of s. The delta invariant of L with respect to (Z, A) is

8(Z,A; L) :==limsup s, (Z, A; L).

q—>00

(c) If (Z, A) is a kIt Fano pair, we let 8,(Z, A) :=§,(Z, A; =Kz — A) and
8(Z,AN):=8(Z,\;—Kz—A).

Remark 4.4 We note the following subtleties of Definition 4.3:

e According to [76, Lem 8.8], the infimum of point (a) is in fact a minimum.
e According to Corollary 4.7, the definition of point (b) does not depend on
the choice of s, and the limsup in point (b) is in fact a limit.

4.2 Relation to K-stability

In this section we follow closely [18], as we want to adapt some of their result
from Fano varieties over C to Fano pairs over k. Similar adaptation was done
also in [19]. Consider the situation:

Notation 4.5 (Z, A) is a klt pair, L is a Q-Cartier divisor on Z, and s > 0 is
an integer such that s L is Cartier and h°(Z, sL) # 0.

Let v be a non-trivial divisorial valuation on Z associated to a prime divisor
E over Z, we consider the filtration

F,HY(Z,gsL) = {t € H%(Z, gsL)| such that v(r) > i}
= H%V,gsn*L —iE),

m : V — Zis anormal model where
E lives

and the invariant
1
qsh%(Z, qsL)

1
~ qsh%(Z,qsL)

Sy (v) = > idimy (F,H(Z, qsL)/Fi41H*(Z. gsL))

i

> dimy FH(Z, gsL).
i>1

Denote by B, the set of g s-basis type divisors with respect to gs L. As observed
for instance in [52, proof of Lemma 2.2],

Sq(v) = II)neal;( v(D), (4.5.a)
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and the maximum is attained exactly for bases adapted to the filtration Fj.
When L is big, the asymptotic of S, is well-understood, see for instance [52,
proof of Theorem 1.3], [18, Corollary 2.12] and [25, Corollary 3.2]:

1 +o00
/ Vol(m*L — xE)dx (4.5.b)
Vol(L) /o

S) 1= lim S, () =

The next statement is a logarithmic version of [18, Theorem 4.4], following
very closely the arguments given there.

Theorem 4.6 (a) If L is a big Q-Cartier divisor, such that sL is a Cartier
divisor and h°(Z, sL) # 0, then the sequence 3,5(Z, A; L) converges
to 5(Z, A; L), i.e. the delta invariant is a limit and not only a limsup;

moreover
A(v)

Sw)’

8(Z,A; L) = inf
v

where A(v) is the log-discrepancy of v with respect to the kit pair (Z, A),
and the inf'is taken over all non-trivial divisorial valuations. In particular,
8(Z, A; L) is independent of the choice of s.

(b) Assuming furthermore that L is ample, the following bounds hold

dimZ + 1

- a(Z,\;L) <§(Z,A; L) < (dmZ+ 1) a(Z, A; L).
dim Z

Proof POINT (A).Seté; := 845(Z, A; L)and § := §(Z, A; L). We first prove
the inequality

: . AQ)
lim sup §, < inf (4.6.a)
g—00 v S(v)

Thanks to Egs. (4.5.a) and (4.5.b), we can write use author coding:

AW L A®)
inf =inf lim inf
v S(v) v g—o0 DeB, v(D)

. A
> limsup ( inf inf
/l\ q—00 DGBq v U(D)

AW A
v inf A g g AW
DeB, V(D) ~ DeB, v v(D)

AQ A
= v tim inf 2% 5 pimaup (it inf 22 ),
q—00 peB, v'(D) g—oo \DeB; v v(D)
and then take in/f (L) on the left side
v
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= limsup §,.
q—00
inf, f(% =Ict(Z, A; D)

We now prove the inequality

A
liminf 8, > inf A

im in S (4.6.b)

This inequality follows from the key uniform convergence result [ 18, Corollary
3.6]: for every ¢ > 0 there exists a go = qo(¢e) such that for all ¢ > g and all
divisorial valuations v we have

(I+8)S) = S4(v)

[18, Corollary 3.6] is stated over the complex numbers, however its proof
works verbatim over k, let us explain why. The core part of the argument is
[18, Lemma 2.2], which is about convergence of integrals of concave functions
over convex bodies in an Euclidean spaces, and this has nothing to do with the
base field of Z. Another key ingredient is [18, Lemma 2.6], which relies just
on the concavity of the volume function. The rest of the proof uses filtrations
of the coordinate ring and the Okunkov body of Z to reduce the claimed
approximation result to [18, Lemma 2.2].
Let us now finish the proof. For ¢ big enough we have

L. Aw) . AW . . A®V)
——in <in = inf inf = Jq
I+e v S v S, (v) v DeB, v(D) —

inf, ;‘(3';; =Ict(Z,A; D)

taking the liminf on ¢ on the right hand side, and then letting ¢ go to zero, we
get the requested inequality. We obtain point (a) combining Equations 4.6.a
and 4.6.b.
POINT (B). Given adivisorial valuation v, we define its g-th pseudo-effective
threshold as
v(D)
o

T, (v) := max{ D e |qsL|}

and we have

A
o(Z, A; L) = inf inf () .
q v Ty(v)

When L is ample, [18, Prop. 3.11] gives the following bounds

A2 b7, ) = S) = (

_cmma) inf T, (v),
dim(Z) + 1 4 it 74 ()

dim(Z) + 1) q
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which imply point (b) (again, the proof in [18] is over the complex numbers,
but it works also over k).

Corollary 4.7 (INVARIANCE OF THE DELTA INVARIANT BY SCALING)
In the situation of Definition 4.3.(b), for every positive integer r > 0,
8(Z,A; L) =ré(Z, A, rL). Equivalently,

lim sup 8,54 (Z, A; L) = limsup 6,4(Z, A; L). (4.7.a)

q—> 00 q—>0

Proof By Theorem 4.6, the limsup appearing in Equation (4.7.a) is a limit, so
the claim. o

We give the following definition of K-stability, which is equivalent to the
more classical one by [87, Theorem 6.1 (ii)] and [50, Theorem 1.5].

Definition 4.8 A normal Fano pair (Z, A) is

(a) K-semi-stable if it is kit and for every divisorial valuation v, one has
A(v) = S(v);

(b) uniformly K -stable if it is kit and there exists a positive constant & such
that for every divisorial valuation v, one has A(v) > (1 4+ ¢)S(v).

Here A(v) denotes the log-discrepancy of v with respect to the pair (Z, A).

The following corollary is now an immediate consequence of the above
definition and Theorem 4.6

Corollary 4.9 (CHARACTERIZATION OF K- STABILITY) Let (Z, A) be a nor-
mal Fano pair. Then, (Z, A) is

(a) K-semi-stable if and only if (Z, A) is kit and 6(Z, A) > 1,
(b) uniformly K -stable if and only if (Z, A) is kit and §(Z, A) > 1.

Moreover, if (Z, A) is kit and a(Z, A) > diilrilr?z()zll (resp. > % ,
then (Z, A) is K-semi-stable (resp. uniformly K-stable); if (Z, A) is kit and
a(Z,A) < m (resp. < m), then (Z, A) is not uniformly K-stable

(resp. not K-semi-stable).

4.3 Products

The following conjecture is motivated by the equivalence between K-stability
and Kihler-Einstein metrics in the Fano setting, it has been already proposed
in [96, Conjecture 1.11].

Conjecture 4.10 Given two kit Fano pairs (W, Aw) and (Z, Ay), one has

S(W x Z, Aw ® Az) = min{8(W, Aw), 8(Z, Az)}
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The analogue result for the alpha invariant and any polarization appeared
for example in [76, Proposition 8.11], but used to be present much earlier in a
smaller generality, i..e, in the smooth non-log case, for example in Viehweg’s
works. See also [96, Thm. 1.10] and [27, Lemma 2.29] for the Fano case. We
can prove a weaker result for the delta invariant in Proposition 4.14.

Definition 4.11 (Product basis type divisor) Let (W, Aw) and (Z, Az) be
two kIt pairs, let Ly and Lz Q-Cartier divisors on W and Z, respectively,
and let ¢ > 0 be an integer such that both gLw and gLz are Cartier and
both KO(W, gLw) and ho(z, gL 7) are non-zero. A divisor D on W x Z is of
q-product basis type if there exist g-basis type divisors Dy on W and Dz on
Z such that

D = py Dw + p; Dz
where pw and pz are the projections.

Remark 4.12 In Definition 4.11, if Dy is associated to a basis s; and Dz to a
basis #;, then D is associated to the basis s; X 7.

Lemma 4.13 Let (W, Aw) and (Z, Az) be two kit (resp. Ic) pairs, then also
(W x Z, Aw X Ay) is kit (resp. Ic).

Proof As we work in characteristic zero, we may take the product of a log
resolution of (W, Aw) and of (Z, Az). This will be a log-resolution for (W x
Z, Aw X Az), with the union of the discrepancies of the original two log-
resolutions, so the claim. O

Proposition 4.14 With the notations of Definition 4.11, let D be a q-product
basis type divisor. Then,

let(W x Z, Aw ¥ Az, D) = min{s,(W, Aw: Lw) . 84(Z. Az: Lz))

Proof Taket < min{d,(W, Aw; Lw), 8,(Z, Az; Lz)}. We have to show that
(W x Z, Aw X Az + tD) is log canonical. Recall that

WxZ AwNAz+1D) =W x Z,(Aw +1Dw) W (Az +1Dz))

and both (W, Aw + tDw) and (Z, Az + t D7) are log canonical because of
the hypothesis on ¢, so the claim follows from Lemma 4.13 O

The full Conjecture 4.10 has been proved in the preprint [125], published
after the first version of this paper has appeared.

@ Springer



G. Codogni, Z. Patakfalvi

4.4 Behavior in families

Here we prove that the é-invariant is constant on very general geometric
points. Recall that a geometric point of T is a map from the spectrum of
an algebraically closed field to T'. Key examples are the closed points and the
geometric generic point (i.e. the algebraic closure of the function fields) of T'.

Proposition 4.15 Let f : (X, A) — T be a flat, projective family of normal
pairs over a normal variety, that is, we assume that Kx,;r + A is Q-Cartier,
and Supp A does not contain any fiber. Additionally, let L be an f-ample Q-
Cartier divisor on X. Then there is a very general value of § (X;, Az; L;). More
precisely, there is a real number d > 0 and there are countably many Zariski
closed subsets T; C T such that for any geometric point 1 € T \ (U; T;).
) (X;, A;; L;) =d.

Proof We may fix an integer s > 0 such that sL is Cartier and f,Ox(gsL)
is non-empty and commutes with base-change for any integer ¢ > 0. In
particular, then for all t € T, sL; is Cartier and no(x,, gsL;) is positive and
independent of 7 for any integer ¢ > 0.

We claim that for each integer q > O there is a real number d > 0 and a
non-empty Zariski open set U, C T such that for each geometric pointt € U,
845 (X7, A Ly) = d. Assuming this claim, by setting T, := T \ U, we obtain
the statement of the proposition.

So, we fix an integer ¢ > 0, and in the rest of the proof we show the above
claim. We also set r := h%(X,, gsL;) and | := gsr, where the former is
independent of ¢t € T by the above choice of s.

Set W := P((fxOx (gsL))*). Then, for any geometric point 7 € T we have
natural bijections:

lines through the origin in
H® (Xk, Ox(gsL)|x,)

k(7)-rational points of Wy | <

< |D € |gsL|x,]| ,  (415.a)

where k(?) is the residue field of 7, and Xx and X7 are the corresponding
base-changes, as explained in Sect. 2.1. We consider the open subset

YCWxrWxr---x7 W

r times
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corresponding to linearly independent lines. That is, for any geometric point
t € T, using (4.15.a), we have a natural bijection

k(7)-rational points of ¥;

< |(Dj) = (Dy, ..., D) isabasis of |gsL|x,| (4.15.b)

Denote by yp,) the geometric point of ¥ corresponding to (D;) via the cor-

respondence (4.15.b), where D; € ‘qsLIX?’.

Consider the universal family of g-basis type divisors, where Ay is the
base-change divisor as defined in Sect. 2.4.1,

g:(Z=XxrY,AN:=Ay;T)—>Y
such that for any geometric pointy :=ypy € ¥, 'y = il %. Denote by
7 : Y — T the natural projection.
According to [76, Lem 8.8] , the log canonical threshold function y

Ict <I’y; Zy, A’y), which takes values on the geometric points of Y, is lower
semi-continuous. Furthermore, the second paragraph of [76, Lem 8.8] shows
that there is a dense open set Yy € Y such that Ict (Fy; Zy, A%) is the same
for every ¥ € Yy. Applying this iteratedly to the complement of Yy, we obtain
that y — Ict (Fy; Z5, A/y) takes only finitely many values on Y, say r; >
rp > --- > ry, and the level sets are constructible subsets of Y. Hence,

Li={F e |let(ry: zy. AL) = i}
are open sets, and for any geometric point y :=y D)) of Y,

,
D
Iet (X3, Ay; Iy) = lot | Xy, Ay: > Tj = max{r;|(D;) € L;}.
j=1

It follows that for any geometric point € T,

845 (X7, A7) = max{r;|¥; C (Lj)5}. (4.15.¢c)

After the above discussion, our claim follows immediately. Indeed, we just
need to choose a to be the smallest integer such that L, contains the generic
fiber of 7. Then there is a non-empty open set U C T contained in

(T\m(Y\ Ly))N7w(Lag \ Lg—1).
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In particular, for any geometric point 7 € U':

(a) Y7 € (Lg)7, and
(b) (Lg \ Lg—1)7 # ¥ and hence Y7 € (Ly—1)5.

Therefore, by setting d := rq, (4.15.¢c) implies that 5, (X;, A;) = d for all
geometric points 7 € U. a

Remark 4.16 We note that one could define the §-invariant also over over
non algebraically closed base fields, with verbatim the same definition as
Definition 4.3. If (Yx, Ag) is a projective klt pair and Nk is a QQ-Cartier
divisor defined over a non-closed field K, and furthermore we choose a
basis type divisor D = Z?i(IYK 4NK) % (that is, D; form a K-basis of
HY(Yk, gNg)), then lct(Yg, A, D) = lct (Yg, Ag, Dg), where Dy is
a basis type divisor for Ng. Hence, é,(Yx, Ax, Nx) > 44 (Yf, Ax, Nf).
However, §,(Yk, Ak, Ng) > &, (Yf, Ax, Nf) could happen as not all basis
type divisors of N¢ come from basis type divisors of Ng. A simple example
is if Yk is a conic not isomorphic to JP’}{, Ag = 0,and Ngx = K;KI Then,
Sq(YK, Ag; Ng) = 3, but 8q (Yf, Af; Nf) =1.

In particular, if one takes a conic bundle f : X — T without a section, and
n is the generic point of 7', then for the generic fiber we have § (X ,7) = 2,
but for all geometric fiber (including the geometric generic fiber) outside of
the discriminant locus we have § (X;) = 1. So, the §-invariant is not the same
for a general and for the generic point (in general). In particular, one cannot
replace “any geometric point 7 € T in Proposition 4.15 with just “any point
teT”.

Remark 4.17 The special case of Proposition 4.15 whend = 1 and A = 0 (so
for K-semi-stability via [18]) was shown in [20, Thm 3] with other methods.

Remark 4.18 Proposition 4.15 is very weak version of what is expected to hold.
It is conjectured, cf., [20], that § is lower semi-continuous, and furthermore
the § > 1 set is also open. Some of this has been proven in [81, Thm 1.1(i)]
and [20]. The full conjecture has been proven recently in [22], after the first
version of this paper was published.

5 Growth of sections of vector bundles over curves

In this section, we present results about the growth of the number of sections
of vector bundles over curves. We apply these in Sects. 7 and 9 to vector
bundles of the form f,Ox(q¢(—Kx,7 — A — f*H)) to obtain many sections
of divisors of type g(—Kx;7 — A — f*H)(m), where f : (X,A) > T isa
log-Fano family, H is an auxiliary ample divisor on T, and (L) is the fiber
product notation of Sect. 2.2. The precise statement is given in Theorem 5.11.
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Notation 5.1 Let T be a smooth projective curve of genus g over k, let £ be a
vector bundle on T. Let 1 (€) be the slope of £, namely u(€) :=deg&/rk €.

First we recall well known statements in Propositions 5.2, 5.3 and 5.4 con-
cerning semi-stable bundles.

Proposition 5.2 In the situation of Notation 5.1, given two vector bundles £
and &', we have u(€ ® £') = n(€) + n(&'); moreover, if both £ and &' are
semi-stable, then so is € ® £'.

Proof For the first statement, just remark that det(€ ® &) = det(€ YOTK(E) &
det(£)®™(E) The second statement is [78, Corollary 6.4.14].

Proposition 5.3 In the situation of Notation 5.1, if £ is semi-stable with
w(&) >2g =2, then h' (£) = ho(wr ® £%) = 0.

Proof We prove the h° vanishing, and then the /! vanishing follows by Serre-
duality. The bundle wr ® £* is also semi-stable and p(wr @ £*) = u(wr) —
w(€) < 0. Hence, h¥(wr ® £*) = 0, as a section would give a subbundle of
£ of slope 0.

Proposition 5.4 In the situation of Notation 5.1, if £ is semi-stable with
(&) > 2g, then & is globally generated.

Proof Fix aclosed pointt € T, and let G be either £ or £(—t). Riemann-Roch
tells us that

h(G) T hO(G) — h'(G) = deg G + 1k (G)(1 — g) = tk(G)(u(G) + 1 — g).

Proposition 5.3

In particular, h°(€) = h°(E(—1)) + 1k(G). So, by looking at the usual exact
sequence:

0—— HNT, E(—1)) —— HYT, &) —— HOk(1), £ ® k(1))

we see that £ is in fact generated at 7. As ¢ was chosen arbitrarily, £ is globally
generated. |

Notation 5.5 In the situation of Notation 5.1, let 0 = 70 C F! C ... C
Ft=1 C F* = £ be the Harder—Narasimhan filtration [60, Lem 1.3.7 & 1.3.8]
of €. Set pu; := p (G') and r; := 1k (G'), where G' := F' /F~!. In particular,
we have (1 > up > -+ > ue [60, Lem 1.3.8].
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Remark 5.6 When T = P!, we have a canonical decomposition
£= P or@pe o,

l=j=I

witha; < ajy;.Inthis case, the Harder-Narasimhan filtration turns out to be

Fi= @ OT(aj)(X)O;‘?nj,

l<j=i

and the slope u; is just a;.

In the study of K-stability, a key situation is when T = P! is the base of
a test configuration f: (X, L) — T trivially compactified at infinity, and
E = fi(gL) for some ¢ > 0. The classical localization formula, see for
instance [119, Example 1], implies that the Harder—Narasimhan filtration of £
is equal to the weight filtration with respect to the G,,-action induced by the
test configuration. We can thus think at the Harder—Narasimhan filtration as a
generalization of the weight filtration.

On the other hand, we also note that the Harder-Harasimhan filtration is
much more general than the weight filtration as it exists for any family not only
for test configuartions, in particular for non-isotrivial families over arbitrary
curve bases. This is a crucial point for our argument.

Proposition 5.7 In the situation of Notation 5.5, if u; > 2g for every i, then:

(a) H(T,E) =0
(b) & is globally generated.

Proof We prove both statements at once, by induction on the length £ of the
Harder—Narasimhan filtration of £. If £ = 1, both statements were shown in
Proposition 5.3. So, we may assume that £ > 1. However, then we may include
£ in an exact sequence

0 g & g 0, (5.7.a)

where G is semi-stable of rank at least 2g and £’ also satisfies the assumption of
the proposition, but with £ replaced by £ — 1. Hence we know both statements
for £ replaced by £’. Applying now long exact sequence of cohomology to
(5.7.a) yields:

0— HYT,G)—= HYT, &) —= HY(T, &)

—~0=HWT,G)=HNT, & =~ H\T,E) =0,
(5.7.b)
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where the two vanishings are due to Proposition 5.3 and induction, respectively.
This proves our cohomology vanishing statement.

For the global generation statement, we just use that both G and &’ are
globally generated again by Proposition 5.7 and induction respectively. Hence,
according to (5.7.b), the sections generating these two bundles at a given ¢ give
a section generating £ at t. O

After the above basic statements, we work towards Theorem 5.11. This
is a statement about tensor powers of vector bundles of positive degree. In
particular, we need to understand the Harder—Narasimhan filtration of a tensor
power, in terms of the Harder—Narasimham filtration of the original vector
bundle. The necessary notation is introduced in Notation 5.8.

Notation 5.8 In the situation of Notation 5.5, fix also a closed point ¢t € T,
which will be the point at which the global sections we are interested in would
need to become simple tensors. Then the Harder Narasimhan filtration induces
afiltration0 = FO C F! € --- C ]-"f_l C Ff =& . Let {e;} be a basis of &
adapted to this filtration. By this, we mean that the intersection of F; and {e;}
gives a basis of F] for every j.

Fix an integer m > 0, which will be the power of the tensor-power of £
that we are examining. We will parametrize subsheaves of £ that are tensor
products of the F*’s by elements of {1, ..., £}"". Because of Proposition 5.7,
we will be particularly interested in subsheaves with slope at least 2g. So,
consider the subset of {1, ..., £}" defined by:

m

Sm = (slv"'vsm)e{l""’e}m Zﬂyjzzg
j=1

As we are interested in a filtration of £®™, we will need an ordering
on {1,...,£}". First we introduce a partial ordering: for any two s,s’ €
{1,..., €}, we say that

o s >sifs; Zs} forall 1 < j < m,and
e s >s'ifs > s andthereisal < j < m such thats; >s}.

Note that S, is closed in the downwards direction, that is, whenever s € S,
and s’ < s, thens’ € S,,.

We also assign a minimal slope v(s)tos € {1, ..., £} given by Z’}’:l s;»
which will be the actual minimal slope of the corresponding sheaf in the
Harder—Narasimham filtration of £2™. Note that v(s) > 2g if and only if
s €S,
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After the above, we arrange the elements of {1, ..., £}" in a decreasing
order with respect to v(_), such that S,,, consists of the first d elements

sz{sl,...,sd},and{l,...,ﬁ}m=SmU{sd+1,...,se},

where v (s€) is a (not necessarily strictly) decreasing function of c. In particular,
whenever s¢ < s¢ then ¢’ < c. As expected, sjc. denotes the coordinates of s°¢,
that is, s = (s{, ..., s5)-

For any integer 1 < ¢ < e, we define then the following subbundles of £

m c
Fe = ®.7-"s5', and H¢ := Z]?’
j=1 i=1

In fact, it is not clear from the definition that 7{¢ is a subbundle as oppoed
to just a coherent subsheaf. We prove in Proposition 5.9 that it is indeed a
subbundle. For simplicity we also define

G =G
j=1
Recall that
- m - m ¢ m
tk (G) = [Treand (@) =D 0 (67) =D ne (580
j=1 j=1 j=1

After the above notational preparation, it is quite straight-forward to state
and prove the description of the Harder—Narasimham filtration of £ that we
need:

Proposition 5.9 [In the situation of Notation 5.8:

(a) For each integer 1 < ¢ < e, H is a subbundle of E&™.

(b) The filtration 0 C H' C H> C --- C H? is a refinement of the Harder-
Narsimhan filtration of HY. More precisely, the quotients are semi-stable
with (not necessarily strictly) decreasing slopes. Furthermore, all these
slopes are at least 2g. Even more precisely, for each integer 1 < c < e,

HC/HC—I ~ gc‘

(c) For each integer 1 < c¢ < e, H; C 5,®m is spanned by simple tensors of
é;j.

@ Springer



Positivity of the CM line bundle

Proof For each integer 1 < ¢ < e we have a surjective homomorphism:
Hc/Hc—l — (Hc—l +.%C)/HC_1
/]\
<P JF ) - F / > 7

T S <Sc
isomorphism theorem‘ S, F¢' < Feane-l
=g (5.9.a2)
So,
e e N
tk (£9") =Y ok (HO/HTY) = 3wk (G)
e=1 T =1
m
- 1_[ Tij
(i1serim)€{l,....0)m \ j=1
l m
i=l
= rk (£%"). (5.9.b)

Hence, we have equality in the middle of (5.9.b), and hence the last homo-
morphism in (5.9.a) is an isomorphism for all c.
In particular, for all 1 < ¢ < e, there is an exact sequence:

~

00— H! He Ge 0 (5.9.c)

This concludes (a), as both H¢ and £% /HC are iterated extensions of vector
bundles, hence they are both vector bundles.

Point (c) also follows immediately from the definition of H¢ as it is a sum
of product type subbundles. Lastly, (b) also follows directly from (5.9.c). O

Notation 5.10 In the situation of Notation 5.8 (in fact, for introducing the
following notation we only need the first two paragraphs of Notation 5.8), let
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G.; be the k-linear subspace of

im (H(T, £%™) — (£%™),)

evaluation map

spanned by pure tensor in the e;.
Theorem 5.11 In the situation of Notation 5.10, if deg £ > 0, then

. dimg Gy
lim ———a =
m—00 dimy, &;

Proof Combining Propositions 5.7 and 5.9 yields Hfl C Gy ;- So,itis enough
to prove that

) tk H4
lim =
m—o0 tk £®M

r:

By Proposition 5.9, item (b), and by Eq. (5.8.a) if we setr := 1k £ and p; := -+
then

k H? d rk G¢ 4 morg "y n
—ger =g =2 1= 117=2Ilr

c=1 c=1 j=1 seSy j=1 seSy j=1
(5.11.a)
As Zle pi = 1, we may define a discrete probability space X on £ elements
{1,...,1} with measures pi, ..., p; respectively. Let X; be a sequence of

independent identically distributed random variables of X that take value u;
oni,and let Z,, := Zl'»"zj X ;. With this language, (5.11.a) tells us that

k H?

m
W:P Zijzg =P(Zn=12g)),

i=j

where P(...) denotes the probability of the given condition. Hence we are
left to show that
lim P(Z, =2g)=1. (5.11.b)
m—o0

Consider now, the Central Limit Theorem of probability theory as for example
in [42, Thm 3.4.1]. Note that as X is a finite metric space both the expected
value u and the variance o2 of X j are finite. Then the central limit theorem
states that the random variable Z’”JIT’ZW

weakly converges to a normal distribu-

tion ® with expected value 0 and covariance 2. In particular, this induces a
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convergence on the level of distribution functions, or more precisely we would
like to use the following convergence, which holds for each real number A and
it is shown for example in [42, Thm 3.2.5.iv]:

lim P(Zm_—mM>A>:P(CD>A) (5.11.¢)
T 2 > 11,

m—0o0

Claim 1 For each fixed real number A there is an integer m4 > 0 such that
for all integers m > my:

Ly —mu

Jm

Proof of the claim For this, note first that

>A = Zn>2g (5.11.d)

L L
o miri deg&
M=Zmpi=2’ L = rkgg > 0.
i=l

Hence, if we assume that LJ# > A then there is an integer m 4 such that

2g < A\/E'i‘mﬂ <Zn.
T i

form > m4 Zn—mp o 4
f -

m

O

We continue the proof of Theorem 5.11: Combining our claim and (5.11.c)
we obtain that

liminf P (Z, > 2g) > P(® > A)

m—00

As this is true for all real numbers A, and limg_, _o P (P
obtain that

v

A) =1, we

liminf P (Z,, >2¢)=1= lim P (Z, >2g) =1
m— 00 /]\ m—00

[V : P(Zn >2g) < 1]

This is exactly the statement of (5.11.b), which was our goal to prove. O

Remark 5.12 We note that in the proof of Theorem 5.11, one can replace the
Central Limit Theorem by the weaker statement of Chebyshev’s inequality.
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Indeed, using the notation of the proof, as the variance of Z,, is mo?:

—A
1= P(Zy—mp = /mA) < P<|Zm —mu| > —\/ma)
o
2

S%—)O (as A — —o0).
/]\

‘ Chebyshev’s inequalty ‘

6 Ancillary statements

Here we gather smaller statements that are used multiple times in Sects. 7, 8
and 9.

6.1 Normality of total spaces

In the next sections we work mostly in the following setup:

Notation 6.1 Let f: (X, A) — T satisfy the following assumptions:

(a) T is a smooth, projective curve,

(b) X is a normal, projective variety of dimension n + 1,

(c) f isaprojective and surjective morphism with connected fibers,
(d) A is an effective QQ-divisor on X,

(e) —(Kx + A) is an f-ample Q-Cartier divisor.

(f) (X¢, Ay) is kit for general t € T'.

Lemma 6.2 In the situation of Notation 6.1, there exists a finite morphism
from a smooth projective curve T : S — T such thatif g : Y — S is the
normalization of the pullback of f, and w : Y — X the induced morphism,
then g has reduced fibers, and there is an effective Q-divisor I on Y such that

(a) m*(Kx/r + A) = Ky;s + T,
(b) Ly = 0™\, where Ag is the CM line bundle for g.

Proof Let T be any finite cover such that at the closed points ¢t € T over
which the fiber X; is non reduced, the ramification order of 7 is divisible
by all the multiplicities of all the components of 7. Then, g will have reduced
fibers, and Sect. 2.4.2 implies the existence of I', denoted by A 7 there. Finally,
Proposition 2.1.(a) yields point (a), and Proposition 3.8.(b) yields point (b). O

Lemma 6.3 If f : X — T is a surjective morphism from a normal variety
to a smooth projective curves with reduced fibers, m > 0 is an integer and
T : S — T is a finite morphism from another smooth curve, then
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(a) X x1 S is normal, and
(b) X" is normal, see Sect. 2.2 for the product notation.

Proof First we note that f is flatand hence sois £ : X — T by induction
on m and the stability of flatness under base-change.

We know that a variety Z is normal if and only if it is S> and R;. In the
particular case, when Z maps to a smooth curve U via a flat morphism g, then
Z is S, if and only if the general fibers of g are S, and the special ones are
S1 (so without embedded points) [56, 6.3.1] [57, 12.2.4.i], and it is R; if the
general fibers are R and the special ones are Ry (so reduced) [57, 12.2.4.ii].
It is immediate then that this characterization of S and R propagates both to
fiber powers and to base-changes. m|

6.2 Semi-positivity engine

Proposition 6.4 Let f : (X, A) — T be a surjective morphism from a nor-
mal, projective pair to a smooth curve such that (X;, A;) is kit for general
t € T (recall that X, is normal fort € T general, A is Q-Cartier at the codi-
mension 1 points of X;, and hence A; makes sense), and let L be a Cartier
divisor on X suchthat L— Kx,;r — A is an f-ample and nef Q-Cartier divisor.
Then, f.Ox (L) is a nef vector bundle.

Proof According to Lemma 6.2 we may assume that the fibers of f are reduced.
According to [97, Lem 3.4], it is enough to prove that for all integers m > 0,
the following vector bundle is generated at a general t € T by global sections:

or (20 ® @) fO0x(L) >orne £ O (L)

i=l

m — 1-times use of [76, Lem 3.6], and see
Sect. 2.2 for the fiber product notation

*
= MO m <L<m) + (f“’“) Kr+ 2X,('")) .

‘ projection formula ‘

For that it is enough to prove that the natural restriction homomorphism
HO (X('"), N) — H° (Xt(m), N,) is surjective, where

*
N =L 4 () Ky +2x"

= Ky + A" + (L — Kxj7 — &)™ 42X,
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We note here that according to Lemma 6.3, X (M) is normal. Furthermore,
Kym + A = (Kx;r + A (f(’”))* K7 is Q-Cartier. We also note
that the only generality property of ¢ that we use below is that X; is normal,
X; € Supp A; and (X;, A,) is klt. Hence, at this point, we fix a ¢ with such
properties.

Set Z = j(X(,n)’ A(mp, where J denotes the multiplier ideal of the cor-
responding pair. Then for the above surjectivity the next diagram, the top
row of which is exact, shows that it is enough to prove the vanishing of

H' (X, 78 Oy (N = X™)).

HO (XM, T ® Oy (N)) = HO (Xf’”), N|X<m)> —H (X“"), T® Oyim (N - Xﬁ””))
t

/

HO (X N)

We note that here we used that (X,(m), A,(m)) is kit by Lemma 4.13, and

hence by inversion of adjunction [75, Thm 5.50] so does (X (m) A(’")) in a
neighborhood of X t(m). This then implies that 7 is trivial in a neighborhood of
xM.

We conclude by noting that the above cohomology vanishing is given by
Nadel-vanishing as

N—X"™ =Ky +A™ + (L — Kxjr — O™+ x™

— ~——
nef and £ -ample ()" ample
ample

O

Corollary 6.5 Let f : (X, A) — T be a surjective morphism from a normal,
projective pair to a smooth curve such that (X, A;) is kit for some (or equiv-
alently general)t € T, and let L be an f-nef Q-Cartier Q-divisor on X such
that

(a) there is a Q-Cartier Q-divisor N on T such that L + f*N is Cartier,
(b) Ly = (L + f*N), is globally generated fort € T general, and
(¢c) L —Kx/r — Aisan f-ample and nef Q-Cartier Q-divisor.

Then L is nef.
Proof According to Lemma 6.2 we may assume that the fibers of f are reduced,
and by further pullback using Lemma 6.3.(a), we may also assume that N is

Cartier, whence L is also Cartier. Then, we may apply Proposition 6.4 yielding
that f,Ox (L) is nef.
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Note now that cohomology and base change always holds over a dense open
set. So, for general t € T we have a commutative diagram as follows:

f*fOx(L)]x, Ox(L)|x, (6.5.2)

|= -

Ox, ® H'(X,, L|x,) — Ox,(Llx,)

Assumption (b) tells us that the bottom arrow of diagram (6.5.a) is surjective.
Hence, so is the top arrow, and then the natural homomorphism f* f,Ox (L) —
Ox (L) is surjective over a dense open set of 7.

As L is f-nef, we only have to show that if C is a horizontal curve, then
C-L > 0.However, by the previous paragraph, f* f,Ox (L)|c = Ox(L)|c =
Oc(L|c) is generically surjective. Hence, Oc (L|c) is a generically surjective
image of a nef vector bundle. So, we obtain that 0 < degO¢(L|c) =C-L.O

7 Semi-positivity

In this section we prove our semi-positivity results. Here, and also in Sect. 9
we use extensively the fiber product notation explained in Sect. 2.2.

7.1 Framework and results

The main result of the section is the following, from which the statements of
the introduction will follow in a quite straightforward manner.

Theorem 7.1 In the situation of Notation 6.1, if § (X;, A;) > 1 for a very
general geometric pointt € T, then degA s A > 0.

7.2 Proofs

The proof of Theorem 7.1 will be by contradiction with the next proposition.

Proposition 7.2 In the situation of Notation 6.1, let H be an ample Q-divisor
on T. Then, there do not exist Q-Cartier divisors I" and T" on X such that:

(@) T+T ~g —Kx/r — A= f*H,
(b) T is nef, and
(c) (X¢, Ay +Ty) iskltfort € T general.

Proof Assume that there exist I' and I as above. Let @ > 0 be a rational
number such that —Ky,7 — A 4 af™* H is ample. Fix a rational number & > 0
such that ea — (1 — ¢) < 0. Apply then Corollary 6.5 by setting the L, N and
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A of Corollary 6.5 to be respectively (ca — (1 —¢)) f*H, —(ea — (1 —¢))H,
and A + (1 — &)I". These choices satisfy the assumptions of Corollary 6.5
by the right hand side of Eq. (7.2.a), and it yields a contradiction as indicated
under the left hand side term of (7.2.a).

(ea—(l—e))f*H ~Q KX/T+A+(1 —e)l
ga—(1—&)<0= this is not nef (X1, A+ (1—e)Ty) is kit
+(—eF +e(—Kx/r — A+af*H)

ample

(7.2.a)

O

Proof of Theorem 7.1 As both the consequences and the conditions of the the-
orem are invariant under base-extension to another algebraically closed field,
we may assume that k is uncountable. In particular, whenever a property is
true for very general geometric fibers, it is also true for some closed fibers.
That is, by removing countably many proper closed sets from a variety over
k, there are some closed points left. The reason is the following: by cutting
down with hyperplanes, this statement can be reduced to curves, where it is
true because removing countably many closed points from a curve over an
uncountable field leaves uncountably many points of the curve intact.

First, according to Lemma 6.2 we may assume that all fibers of f are
reduced. This is to guarantee that the m-times iterated fiber product X ™ is
normal for any integer m > 0, according to Lemma 6.3.

We argue by contradiction, so assume that deg A s, o < 0. For m big enough,
we are going to produce divisors I" and I on X whose existence contradicts
Proposition 7.2.

Fix a closed point ¢ in T such that X; is normal, X/ g Supp As, (X;, Ay) is
kit and §(X;, A;) > 1, using Proposition 4.15. Let H be an ample line bundle
on 7. Fix rational numbers a,¢ > 0 and 0 < ¢ < 1 and an integer ¢ > 0,
such that:

(a) the intersection product inequality (—Kx,7 — A —ef*H yr+1 > 0 holds.
This is possible because Definition 3.3 and the assumption degA ;A < 0
imply that (—Kx,7 — A)"T!' > 0.Set M := —Kx;7 — A —ef*H.

(b) D :=—Kx;7 — A +af*H is ample.

(©) c < a%

(d) gM is Cartier, which is possible, as M is Q-Cartier.

(e) R f.Ox (gM) = 0 for all i > 0, which is possible, as M is f-ample.

(®) deg (f«Ox(gM)) > 0, using Lemma A.2.

(g) 64(X;, Ay) > 1 — ¢, using Theorem 4.6.
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Fromnow on, let £ := f,Ox (¢ M). Remark that according to [76, Lemma 3.6]
for every integer m > 0,

gem — f*(m)(’)x(m) <qM(m)>
*
= 1 O (4 (— Ko yr = A = me (1) 1)),
and by item (e), the following base change holds
gom — go (X,(’“), q (—KX;m) . Af””)) .

In general, it is not possible to lift a basis of & to sections of £. However,
thanks to Theorem 5.11, we can choose a basis ¢; of &, an integer m > 0, and
¢ global sections s; of £2™ so that the sections s;, when restricted over ¢, are
linearly independent pure tensor in the ¢;, and furthermore

12 1—

> < (7.2.)
ho <Xl(m)a _q <KX(m) + At(m)>) 8q (Xtv Al‘)
t [ J

< | according to assump-
tion (g)

We are now ready to construct I" and I on X as in Proposition 7.2. We let

1 ¥4
.= (1—c)q—£l;{si=0},

and

~

[:=cD™ .

To complete the proof of Theorem 7.1, we have to prove that I" and T are as
in Proposition 7.2, with f replaced by . To check item (c), remark that

~ *
C+ T ~g =Ky, — A +m (ca— (1 - c)e) (f(’")) H.

Furthermore, because of assumption (b), ca — (1 — ¢)e < 0 holds; so, we
may apply Proposition 7.2 replacing H by —m (ca — (1 — ¢)¢) H. Item (b) of
Proposition 7.2 follows from the ampleness of D.

To prove of item (c) of Proposition 7.2, we compute the log canonical
threshold. We first remark that, since the sections s; restricted to X ,(m) are
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linearly independent pure tensors in the e;, we have that
14
(m) )
1 (X", g (K g +A"))

I''=d-oP

for the g-product basis type divisor P on Xt(m) associated to {e;}, as in
Definition 4.11 and Remark 4.12. Using Proposition 4.14, we obtain that

let (X,(’"), INGE P,) > §,(X;. A,). This yields

fet (X, A1) = % (i, A0)¢

> 1.
- (
(lfc)hO(Xi’")ﬁq(th(,,,)+A,'"))) T

‘ rearranging inequlaity (7.2.b)

Hence, all assumptions of Proposition 7.2 are verified, implying that I" and r
cannot exist. Therefore, we obtained a contradiction with our initial assumption
that deg A s, A < 0. O

Proof of Theorem 1.8 The proof of point (a): As at the beginning of the proof
of Theorem 7.1, we may assume that & is uncountable. According to [24, Thm
0.2],1itis enough to show that A 7, o -C > 0 for every morphism¢ : C — X from
a smooth projective curve such that C — ¢(C) is the normalization and ¢(C)
is a very general curve in a family covering T'. In particular, for a very general
closed point t € ((C), X; is normal, (X;, A;) is klt and 6 (X;, A;) > 1. Let
Z — X be the normalization, g : Z — C the induced morphism and A z the
boundary induced by A on Z as explained in Sect. 2.4.2. According to Propo-
sition 2.1.(a), g : (Z, Az) — C satisfies the assumptions of Theorem 7.1.
Hence the following computation concludes the proof of point (a):

0< deg)»g’AZ =C ’)Mf,A-
0 T

Theorem 7.1 ’ Proposition 3.8.(b) ‘

The proof of point (b): In this case for each finite morphism C — T from a
smooth projective curve, according to Sect. 2.4.1, fc : (X¢, Ac) — C satisty
the assumptions of Theorem 7.1. So:

0<deghf..ac =C-Aga.
T T

Theorem 7.1 ‘ Proposition 3.8.(a)

O

Proof of points (a) and (b) of Theorem 1.8 These are special cases of Theo-
rem 1.8. O
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8 Bounding the nef threshold

Lemma 8.1 If f : X — T is amorphism between projective varieties, m > 0
is an integer and M is a Q-Cartier divisor on X, then M is nef if and only if
M s pef.

Proof If M is nef, M™ is nef by definition. For the other direction, assume
that M is nef. Let ¢ : C — X be a morphism from a smooth, projective
curve. Take then the diagonal morphism A : C — X, which is defined by
the equality p; o A = ¢ for each i. Then:

0< M™ . AC) = (Z p,f‘M) LAC) =Y ((pFM) - AC)
i=1

i=1

Il
NWE

M-C)=mM -C).
1

~.

Hence, M - C > 0. As this works for any curve C in X we see that M is nef. O

Proof of Theorem 1.20 As both the consequences and the conditions of the
theorem are invariant under base-extension to another algebraically closed
field, we may assume that k is uncountable. In particular, as at the beginning
of the proof of Theorem 7.1, whenever a property is true for very general
geometric fibers, it is also true for some closed fibers.

According to Lemma 6.2 we may assume that all fibers of f are reduced. In
particular then for all integers m > 0, X is normal according to Lemma 6.3.
Setd :=AfA.

Fix the following:

(a) let H be an ample divisor on T of degree 1,

(b) lett € T be aclosed point such that X; is normal, X; C Supp A, (X;, A;)
is klt and §(X;, A;) =6,

(c) let 0 < ¢ < 6 — 1 be an arbitrary rational number, and

(d) let 0 < &’ « ¢ be another rational number.

It is enough to prove that

(I +¢&)dega

Ni=elRyr =&+ < vin+1)

+ e/) f*H (8.1.2)

is nef, as we may converge with ¢ and ¢’ to § — 1 and to 0, respectively. Set

(1 +¢)dega

M = (1+8)(—KX/T—A)+< st D)

+8/) f*H = N—KX/T—A.
(8.1.b)
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Note that

pil B B (1+e)degr )\ ... \""
M —((1+8)( Kx/r A)+(—v(n+1) +8)fH>

= (14 &)"(—Kx/7 — A" (1 +&)(—Kx/T — A)
(1+¢&)degh AN
0+ 1) <W+s>f H>
=(1+¢&)"(degh(—(1+&) + (1 +¢&)) + (n+ 1)ve)
=({0+e&)"n+1ev>0. (8.1.0)

We now fix a positive integer g so that the following hold:

(e) gM is Cartier,

(f) ge €N,

(2) R f.Ox(gM) = 0 for all i > 0, which is doable as M is f-ample,

(h) deg (fxOx(gM)) > 0, which is doable according to Lemma A.2 and
(8.1.c), and

(1) 84 (Xs, Ay) > 1 + &, where q' = q(1 + ¢). This is doable according to
Corollary 4.7 and assumption (c).

Fromnow on, let £ := f,Ox(¢gM).Remark that according to [76, Lemma 3.6]
for every integer m > O,

£®¥m ~ f*(m)OX(m) <qM(m)>

= f*(m)OX(m) (q/ <_Kx(m)/T - A(m))
(1+e)degh , m\*
—_— H
+qm( o+ 1) +¢ (f )

and, by item (g), the following base change holds

gl®m = HO (Xz(m), q/ <_er(m) - A;m))) .

According to Theorem 5.11, we may find a basis {¢;} of &, an integer m > 0,
and ¢ global sections s1, . . ., s¢ of £2™ so that the sections s j, when restricted
over t, are linearly independent pure tensor in the ¢;, and furthermore

L 1+e¢
> (8.1.d)
O g (K A7) 3K B
t

<1 by assumption (i)
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Define I as

l
1
= p) > fsi =0} ~g M.

Note that according to (8.1.b),
Ky, 7+ A"™ +T ~g N™.

So, to show (8.1.a), according to Lemma 8.1 it is enough to prove that
Kx(m)/T + A™ 4 T is nef, and for that according to [46, Thm 1.13] it is
enough to show that (X t(m), Aﬁ’") + Ft) is klt for some (equivalently, a gen-
eral) ¢ € T. For this we compute the log canonical threshold. We first remark
that, since the sections s; restricted to X t(m) are linearly independent pure ten-
sors in the ¢;, we have that

ql

q/ho (Xlgm), —q/ <KX(m) + A;m)))
t

I'y <

for the ¢’-product basis type divisor P on X,(m) associated to {e;}, as in
Definition 4.11 and Remark 4.12. Using Proposition 4.14, we obtain that

It (X,(’”), A P) > 8,/ (X, A,); this yields

8y (X, Ar)lg
P (Fg - )7
_ Ly (X1, A) L,
Tr0 (X, —g' (Koo +A™)) (1 +2) T

by the definition of ¢’ in (i) \ by (8.1.d)

let (X", A"™: 1) =

9 Positivity
9.1 Variation

Definition 9.1 Let f : X — T be a flat morphism between normal pro-
jective varieties, with —Kx,7 Q-Cartier and f-ample. Let go be an integer
such that goKx,r is Cartier, and for all positive integers golg, set L, =
Ox(—qKx,r). As L, provides a relatively ample polarization, the Isom
scheme I := Isom7x7(p] f, p5 f) exists together with the two natural pro-
jections g; : I — T [72,1.10.2]. Let I’ be the image of (q1,¢2) : I — T x T.
Then, there is a non-empty open set U C T where the fibersof py|; : I’ — T
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have the same dimension, say d. This dimension is the dimension of a gen-
eral isomorphism equivalence class of the fibers of f. As these isomorphism
equivalence classes (at least general ones) would be exactly the fibers of any
reasonable moduli map, one defines the variation of f as

Var(f) :=dimT —d. (9.1.a2)

f has maximal variation, if Var(f) = dim T.

9.2 Curve base

Notation 9.2 In the situation of Notation 6.1, assume that

(a) 6 > 1, whereé =4 (X;, A;) for very general geometric points z € T, and
(b) degAra =0.

Theorem 9.3 In the situation of Notation 9.2, for each ample Q-divisor L on
T,|—Kxyr —A— f*Llg=9.

Proof Assume thatI" € | — Kx;r — A — f*L|. Using [49, Thm 1.2], Corol-
lary 4.9 and Proposition 4.15, choose a small rational number & > 0 such that
for very general geometric points 7 € 7 we have § (X7, A7 + ¢I'7) > 1. Then,

0> (—Kxr —A—eD)"™ = (=Kx;r — A+e(Kxyr + A+ f*L)"™!

by Theorem 7.1

= (—(1 —&)(Kx/r + A) +ef*L)""!
= (1= &)" ((1 = e)(=Kx/r = &Y™+ (1 + De(—Kx/r = A" f°L)
=m+ De(l —e)"(—Kx, — A;)"deg L > 0.

(—Kx/r =" =0

This is a contradiction. O

Notation 9.4 In the situation of Notation 9.2,

(a) let go > O be an integer such that go(—Kx,7 — A) is Cartier,

(b) for each integer qolq, define £, := f,Ox(q(—Kx,7 — A)), and set 0 =
ff]) C .7-"q1 cC... C f:;"_l C ]-';" be the Harder—Narasimhan filtration of
Eq-Set Gl = Fi/Fi~L,

(c) let g be the genus of T'.

Lemma 9.5 In the situation of Notation 9.4, for every positive integer qolq,
W(FD < 2g.
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Proof Assume the contrary, that is, u(F, ql) > 2g,and lett € T be an arbitrary
closed point. According to Proposition 5.4, F, ql (—1) is globally generated. So,
thereisaI” € |g(—Kx/r —A)— f*L’|, where L' is the divisor determined by
tonT.Hence, for " := 5 and L := % wehaveI" € |- Kx/7 — A — f*L|qg.
This contradicts Theorem 9.3. O

Proposition 9.6 In the situation of Notation 9.4, for every positive integer
dlg, 1(F)) < 0.

Proof Assume that p <]~'€}) > (, and let H be the image of

&: (}"ql>®m —= Eqm

for some m > 0. We claim that 'H is not zero because of the following: Let
n be the generic point of 7. Then any x € <.7-"ql)n can be identified with some
¥ e H° (Xn, q (_KXn — An)), in which case § (x®m) gets identified with
i e HO (X,,, mq (—KX,7 — An))' In particular, the following implications
conclude our claim: x # 0 = X # 0 = " # 0 = & (x®") # 0.

Let then j be the smallest integer such that .7-“qjm contains H, and let ' be
the image of H in Q({m. By the choice of j, H' # 0, and as H’ is a surjective

Qm
image of (]-';) :

() 2 (o)

by the definition of the
Harder-Narasimhan fil-

tration

> ()
/]\

Ging is

semi-
stable
= (%)
/]\
(f(}>®m is semi-

stable according to
Proposition 5.2
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? muy (.7-";) ? 2g.

Proposition 5.2 m > 0, and we assumed

that 1t (f,}) >0

This contradicts Lemma 9.5. O

Theorem 9.7 In the situation of Notation 9.2, if ¢ > 0 is an integer such that
—q(Kx 1+ A)is Cartier, then f,Ox(—q(Kx,T +A)) is a semi-stable vector
bundle of slope 0.

Proof First, Theorem 1.20 yields that —Kx,7 — A is nef. Then, f.Ox(q
(—=Kx,r — A)) is also nef, by Proposition 6.4 taking into account the Q-linear
equivalence

q(=Kx/r — A) ~q Kx)r + A+ (g + D(=Kx/T — A).

Finally, Proposition 9.6, concludes our proof. O

9.3 Ampleness lemma

Theorem 9.8 is an extract of the argument of the ampleness lemma of [71] (one
assumption removed in [76]). It will be one of the main technical ingredients
for the proof of items (a) and (b) of Theorem 1.9 given in Sect. 9.4. We
denote by Gr(w, w — ¢, k) the Grassmanian parameterizing linear subspaces
of dimension w — ¢ in the w dimensional k-vectorspace k%% .

Theorem 9.8 Let V be a vector bundle of rank v on a normal projective
variety T over k, and let ¢ : W = Sym%(V) — Q be a surjective
homomorphism onto another vector bundle, where the ranks are w and
q, respectively. Assume that there is an open set, where the map of sets
T (k) - Gr(w,w — g, k)/ GL(v, k) induced by ¢ is finite to one. Then, for
each ample Cartier divisor B on T there is an integer m > 0 and a non-zero
homomorphism

Sym¢4™ (@ W) — O7(—B) ® (det Q).

i=1

Proof We explain how to turn the proof of [76, Thm 5.5] into a proof of the
above statement.

First, specialize [76, Thm 5.5] to the case of projective base and, thanks to
[76, Rem 5.3], to the special choices of W = Symd(V) and G = GL(w, w —
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q, k). At this point the assumptions of [76, Thm 5.5] become identical to ours,
except that in [76, Thm 5.5] was assumed to be weakly positive.

The first, and actually main, step of the proof of [76, Thm 5.5] is to construct
a non-zero homomorphism as the one whose existence we have claimed. This
homomorphism is displayed in [76, Equation (5.5.5)]. In the remaining part
of the proof, which is actually just the the few lines after Equation (5.5.5), the
authors use the weakly positivity assumption to deduce weakly positivity of
the domain and bigness of the codomain of the morphism, and this is the only
place where weakly positivity is used.

We conclude that the argument given in the proof of [76, Thm 5.5] to show
the existence of the homomorphism displayed in [76, Equation (5.5.5)] also
proves our claim. m|

9.4 Arbitrary base

Proof of point (a) of Theorem 1.9 As in the proofs of Theorem 7.1 and Theo-
rem 1.20, we may assume that k is uncountable. Let 1 be the generic point of
T.

(a) Setn :=dimX —dim 7T, v := K;l(n, 8§ =68 (Xy5).
(b) Fix arational number « such that « > max {1, @—Dgw }

Throughout the proof ¢ : C — T denotes the normalization of a very general
member of an arbitrary covering curve family of 7. Very general here means
that it is not contained in countably many divisors S;, which we will specify
during the proof explicitly. Set:

e 1) to be the generic point of C,

e Z := X (note that as the fibers of f are reduced, and the general ones are
normal, Z is normal),

e 0:Z — Xandg:Z — C be the induced morphisms,

o A= Ag.

Then the following holds:

e 0*Kx;7 = Kgz/,c by Proposition 2.1.(a), and A = Ar|c by Proposi-
tion 3.8.(b).

e a Q-Cartier divisor L is pseudo-effective if and only if L - C > 0 (for any
such C),

e according to Proposition 4.15, § (XnT) = § (assuming we add the count-
ably many divisors to S;, over which §(X;) < §, which are given by
Proposition 4.15). In particular, as § > 1 the very general fibers of g are
uniformly K -stable, and hence klt, see [89, Theorem 1.3].

e in particular, by Theorem 7.1, deg A > 0,
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e by Theorem 1.20, —Kz,c + ag*A is nef and g-ample.

It is important that throughout the proof all constants, so all rational numbers,
will be fixed independently of the particular choice of C (for which there
are two choices, first one choses a covering family, and then a very general
member of that). For this reason, whenever such a constant is fixed, we do it
in a numbered list item, see points above and below.

Choose integers r > 2 and d > 0 such that

(¢) rKx/r and rah y are Cartier,

(d) h'(X;, —jrKx,) =0 for all integers i, j > Oandallt € T,

(e) —rKyx, is very ample forall t € T,

(f) the multiplication maps W := Symd fxOx(=rKx;7) — f«Ox
(—=drKx,r) =: Q are surjective, and

(9) forallt € T, K, := Ker (Sym? H® (X,, —rKx,) - H®(X,, —drKyx,))
generates Z(d), where 7 is the ideal of X, via the embedding P|—rky,| :
X, —» P! where v :=rk f+Ox(=rKx,7) and P|-rky, | is defined only
up to the action of GL(v, k) on the target. Note that this is achievable
because Z form a flat family as ¢ varies.
In particular, if we set w := rk W and g := rk Q, then for every ¢t € T (k),
K, € W, determines X; < PV~! up to the action of GL(v, k), which
then means that the orbit of K; in Gr(w, q)/ GL(v, k) determines X; up
to isomorphism. Therefore if we apply Theorem 9.8 for W — Q, then the
fibers of the classifying map 7' (k) — Gr(w, q)/ GL(v, k) are contained
in the isomorphism classes of the fibers of f and hence, by the maximal
variation assumption, there is an open set where these fibers are finite.

As,

I’(—KZ/C + ZO(g*)L) = KZ/C + (r + 1)(_KZ/C +O{g*k) + (7 — 1o g*)\.,
——

>1

nef and g-ample

by Proposition 6.4, g0z (r(—Kz,c + 2ag*A)) is a nef vector bundle. Set
M :=r(—Kx,r + 20[f*)»f).

Note that the conclusions of point (g) about the finiteness of the classifying
map hold also for —r Ky replaced by M, as f,Ox (M) and f,Ox (d M) differs
from f,Ox(—rKx,r) and f,Ox(—rdKx,7) only by a twist with r2cA y and
dr2al g, respectively. So, Theorem 9.8 yields an ample divisor B on T, an
integer m > 0 and a non-zero homomorphism as follows (see point (g) above
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for the definition of w and ¢g):

£ : Sym?" (EB Symd(f*OX(M))) — Ox(~B) ® (det fLOx(dM))".

i=l

As the target of £ is a line bundle, there exists a divisor, on the complement
of which £ is surjective. Let us add this divisor to S;. Then & |¢ is a non-zero
homomorphism as follows:

§c : Sym™™ (@ Symd(g*OZ(Mc))> — Oc(=Bc)®(det g.0z(dMc)™ .

i=1

Define
A :=det f,Ox(dr(—Kx;r + 20f*L5)) = det f,Ox(dM),

and let A be a divisor corresponding to A. As g.Oz(M) is nef and hence so
is every bundle that admits a generically surjective map from the left side of
&c, we obtain that

B-C
deg A|¢c = degdet g, Oz(dM¢)) > ——. (9.8.2)
m

Consider now, the natural embedding:

q
o : det £,Ox(@AM) — Q) f.Ox(@dM) = [ Oy (dMD),

i=1

given by the embedding of representations det — ®;’:1 of GL(q, k).
Hence, by adjunction of f*(q)(_) and ( f (‘”))k () one can write ( f (q))* A+
D = dMY, where D is an effective divisior on X%). We claim that,
since Ox(dM) is compatible with base change, D does not contain any
fiber. Indeed, assuming by contradiction that D contains a fiber X;, we
obtain a basis s; of HY(X,, Ox (dM)|x,) whose determinant vanishes in
X H 0(X;, Ox(dM)| x,), and this is a contradiction as the s; are linearly
independent. |

By the continuity of log canonical threshold, there is a 0 < & < -7 such

that (X ,(61), 6‘Dt) is klt for general closed points ¢ € T. In particular by the

genericity of C the same holds also for general + € C. Then, if we define
N :=dr(—Kx/r +3af*kf), according to Corollary 6.5, the following divisor
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is nef (Z9) is normal by Lemma 6.3.(b)).

Kz(q)/c +¢eDc
— ———

<Zr(q)‘£ (DC)z) iskitfort € C

* %
+dr+1—e¢rd) (—Kz(q)/c + 2aq (g(q)) k) + (dr —2)ag (g(‘”) A

nef and f-ample (r > 2,d > 0)
(@)
* &

Set &’ = —£-. Then we have that 2 75 —&'g* Ac is nef according to Lemma 8.1.
So,

0< (_KZ/C + 30lg*k — S/g*A(;)n_H
n+1

= —ch+g*—)\+ 3a—; g h—€gtAc
/ vin+1) vin+1)

top self-intersection is O by the definition of

1 /
f— (I’l + 1)Udeg ((30[ — m) A—¢& AC)

1 ,BC

<@+ Dvdeg( (30— —— ) 1a——=

0 vin+1) m
equation (9.8.a)

Hence, <3a

v(n+1)
with each movable class). Therefore, A r is the sum of an ample and a pseudo-
effective Q-divisor, so A is big.

> Ap—e= 1s pseudo-effective (as it dots to at least zero

Proof of point (b) of Theorem 1.9 By Nakai-Moishezon it is enough to prove
dim V

that for all normal varieties V mapping finitely to X, (A £l V) > (. How-
ever, using Proposition 3.8, this we may obtain by replacing f : X — T with
fv : X xr V — V,and applying point (a) to fy. O

Proof of point (c) of Theorem 1.9 Let A be the CM line bundle on T'. Accord-
ing to [80, Thm 6.1], it is enough to prove that for every irreducible closed

subspace Z of T we have (1|z)3™Z > 0, with strict inequality if Z intersects
U.
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The algebraic space Z has a finite cover m: V — Z by a scheme [1,
Tag 04V1], and by Nagata’s theorem and resolution of singularities we may
also assume that V is projective and smooth. To prove (A|z)%™Z > 0, it is
enough to show (7*A|z)%™Y > 0. As V is smooth and projective, this is
equivalent to show that w*1| 7 is nef. Since X is compatible with base-change
(Proposition 3.8 (a)), this follows from our semipositivity result Theorem 1.8
(b).

To prove the strict inequality, as 7 * 1|z is nef, we have to show that 7*A| 7 is
big. This follows from our positivity result Theorem 1.9 (a), remarking that, as
the isomorphism class of the family f are finite, the family f7 is of maximal
variation, and a finite cover does not affect this maximality. O

Proof of Theorem 1.23 Choose g big enough such that —g(Kx,r + A) is
Cartier and without higher cohomology on the fibers. Let H; € |H | be general
fori =1,...,dim7T — 1, and set C := ﬂ;h:n}T_l H,. By the above generic
choices, Z := X is normal. Furthermore, C lies in the smooth locus of T,
hence for base-change properties along C — T we may assume that T is
smooth. In particular, there is an induced boundary Az on Z (Sect. 2.4.2), for

which Kx,7 + Alz = Kz,c + Az (Proposition 2.1), and consequently

[:O0x(—q(Kx;1 + M)lc = () Oz (—q (Kz/c + Az)).  (9.8.b)
Furthermore,

0 ? kf,A . [‘IdimT_1 = deg)\-f,A|C ?deg)\‘fc,AZ'

\ Proposition 3.8.(b) \

Therefore, according to Theorem 9.7, (f¢), Oz (—q (Kz/c + Az)) isasemi-
stable vector bundle of slope 0. However, then the isomorphism (9.8.b) implies
that £,Ox(—q(Kx;r + A)) is H-semi-stable of slope 0: if it had a subsheaf
F of H-slope bigger than 0, then for the saturation ' of F, F'|c would be
a subbundle of positive degree of (fc), Oz (—q (Kz/c + Az)), which is a
contradiction. O

Proof of Corollary 1.24 First, assume that f is analytically locally a fiber
bundle. Then, all fibers are isomorphic, and hence uniformly K-stable. In
particular, there is an induced moduli map 7' — Mﬁ{fs As MQIU(S isaD-M
stack, it has a finite cover § — /\/lzlfg bya scheme. Let T’ be the normal-

ization of a component of 7 X yuk-s S that dominates 7. As T" — ME-Kes

factors through S, the family f x7 T’ corresponding to 7’ — Mﬁ{fs is a

trivial family. In particular, deg A ¢, .77 = 0. However, by Proposition 3.8.(b),
deg Ay, = (deg f) - (deg A ¢). In particular, we conclude that deg A r = 0.
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Second, assume that deg) s = 0. By Theorem 1.23, the vector bundles
&y = f«Ox(—qKx/ 1) are semistable of slope zero for all ¢ divisible enough.
Now, we have to use the language of Higgs bundle to use a result from [107].
Consider the functor from the category of semistable bundles of slopes zero on
T to the category of semistable Higgs bundle on 7' with ¢; = 0 associating to £
the pair (£, 0), where 0 be the zero homomorphism £ — £® Q}( This functor
is fully faithfull. By [107, Corollary 3.10], its codomain is equivalent to the
category of local systems. Moreover, by the remark at the end of subsection
“Examples’ ’of [107, Section 3], the local system associated to a semistable
Higgs bundle £ is isomorphic to £ as holomorphic vector bundle.

We conclude that the multiplication map

m: Sym" & — &,

is a actually a morphism of local systems, and its kernel X , is a local system
too. Taking r = 2, and ¢ big enough such —gKx/,r is very ample and the
ideals defining the fibers in P&, are defined by quadrics, we conclude that the
fibration is locally trivial in the analytic topology.

Proof of Corollary 1.12 The proof is very similar to that of point (c¢) of The-
orem 1.9 above. As in the above proof, T has a generically finite cover by a
smooth, projective scheme. By base-changing over this cover one may assume
that the base is smooth and projective. By Proposition 3.7, we may replace N
by the CM-line bundle notion used in the present article, see Definition 3.1,
and then point (b) of Theorem 1.8 and point (a) of Theorem 1.9 concludes the
proof. O

10 Proof of the main theorem

For the precise definition of the functor of M,If,fs we refer to [5,23]. For the
present article, the important facts are the following:

e According to [22, Thm 1.3] and [123, Thm 1.5], M,Ifjs is a separated Artin
stack of finite type over k.

° M,Ifjs admits a separated good moduli space M,If °, the k-points of which
parametrize K -polystable Fano varieties of dimension 7 and volume v over
k. We note that M,I,(, % is only known to be an algebraic space at this point,
as opposed to a scheme.

e Given a flat morphism f : X — T between normal, projective varieties
with normal klt fibers and — K x,7 being Q-Cartier and ample, there is an
induced modulimap v : T — M,Ifl? That is, the Kolldr condition in the
definition of M,Ifjs is automatically satisfied for such families [73, thm
3.68].
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We start with Lemma 10.1. In the proof of Theorem 1.1, where we apply
Lemma 10.1, we want to show the descent of the CM line bundle has positive
self-intersection over a proper subspace V of M,E 7. Hence, we want to con-
struct a generically finite cover of V that supports a universal family. Because
/\/an;g is an Artin stack, this is not possible. However, we can cook up one
cover (T — V in the lemma) that supports a universal family over a big open
set of V, and this universal family extends on the whole cover to a family
f : X — T to which our theorems apply. That is, f is flat, X is normal and
klt and —Kx,7 is Q-Cartier. It is a delicate task to find such an extension, so
the second part of the proof of Lemma 10.1 is dedicated to this. The rough
ideais to find a flat f : X — T, such that

(a) Kx + A ~qg0,and
(b) (X, (1 +¢&")A) is a KSBA stable family.

Indeed, in this situation — K x is up to a scaling Q-linearly equivalent to K x +
(1+¢")A, which is ample over T. Although, invoking the KSBA moduli space,
guaranteeing condition (b) is quite straightforward, guaranteeing condition (a)
is much harder. Hence, in the finishing part of Lemma 10.1, we need to invoke
passing to a Q-factorialization, and running an adequate MMP. Additionally,
in each step of this process we will need to show that flatness is preserved.

Lemma 10.1 Let V C M,If 2% be proper closed subspace. Then there is a
diagram as follows

‘ smooth, projective variety ‘

T

2
himtiomzll¢ / ig open set in

J
[proper vomatvari > § L o M
! 2 open nv
& \L finite
finite | & ~
‘pmper algebraic space ‘ -V MK_ps

¢ closed v

(10.1.a)

where the family induced by T? — M,Ifgs extends to f : X — T such that

(a) X is normal and klt,

(b) f is flat,

(c) the fibers of f are reduced, and
(d) —Kxr is Q-Cartier and f-ample.
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Proof Set X .=V x e M 5. According to [4, p 2351, Main Properties

3),X — Visa good moduli space as well. Additionally, as V is proper, by [6,
Thm A], X satisfies the existence part of the valuative criterion of properness.
As M,If;j's is an Artin stack, there is a smooth, surjective morphsim Ze —
MESS from a scheme. Set Z' to be the normalization of a component of
a general complete intersection of an affine chart of Zpe x M V of that

dimension such that Z' — V is dominant and generically finite.

LetY - M, < % be a finite cover by a scheme, which exists by [1, Tag

04V1]. Replacmg Z' by a component of the normalization of ¥ x pKeps zZ'

dominating V we may assume that Z’ factors also though Y. That is, we have
acommutative diagram as follows, where Z' — V is dominant and generically

finite:
generically finite and dominant

scheme

|
closed finite
Y V
\ closed
M,]f:l?s K ps

As Y x kps V is a scheme, finite over V, it is proper. Define Z first to be the

normalization in the functionfield of Z’ of a reduced structure of a component

of ¥ x, kps V dominating V. Then, Z is a normal proper variety with a

rational map Z --» MK, such that the composition Z --» M,E s a finite
morphism with image being V. With other words, we have a commutative
diagram as follows:

_/\/lrll(‘gs < — —7Z< ‘ normal, proper variety
l lﬁnite, surjective
K-ss D

M nv \%4

As X satisfies the existence part of the valuative criterion for properness, after
replacing Z by a finite cover we may assume that Z --» MK'SS is a morphism

in codimension 1. Hence, there is a big regular open set ZC Zanda family
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f : X — Z of K-semi-stable Fano varieties. In particular, f is flat, X is
normal, —K 3 is Q-Cartier and ample over Z, and X is klt. We may also
assume that Z maps finitely to an open set VofV.

We claim that by possibly shrinking Z, but still keeping it big in Z, we may

find a Q-divisor A on X such that K+ A ~o.z 0 and (f(z, AZ) is kit for

every z € Z. For this choose an integer m > 0 and an ample Cartier divisor
H on Z such that _me(/Z + f*H is very ample, and that

2 -
— < min{l,min{a(X§>
m

7 € Z is a geometric point }} , (10.1.b)

which minima exist by [22, Thm 1.1]. Choose now general elements I'! of

_’"K)Z/Z + fN*H‘ fori = 1,..., m. We show our claim by choosing A :=
I ;—; ~o.z Kz To show that this is a good choice, it is enough to show
that for every codimension 1 point & of Z, (f( £ Ag) is kit. By the genericity
assumption on I'!, using Bertini on the general fiber, there are only finitely

many codimension one points of Z over which (f( , Fi) is not lc. Using the

genericity assumption again, we can also assume that these codimension one
points are different for different values of i. Hence, for a fixed codimension 1

point £, there is at most one index, say j, such that ()N( £ Fl&) is not Ic. If there
is no such index, set j to be a random one. Then, we may write

< ¢ 120 :
As = ZW =5+ Zmrg. (10.1.c)

g) is Ic for all

J # i by the choice of j. Then, the fact implied by (10.1.b) that % + ol o,

m

- ord - .
Note now that (Xg, m—f) is kit by (10.1.b), and that (Xg, It

together with equation (10.1.c) yields that <)~(§, Ag) is klt. Hence we have
showed our claim.
Note that our claim above also implies that for every 0 < ¢ <« 1,

()? ,(1+¢) A) is alog canonical model over Z. Additionally, by the claim, we

may consider the moduli map ¢ : Z — MXSBA induced by (f( , (1 + 8)&)

to the moduli space of stable log-varieties, for some 0 < ¢ < 1. As MKSBA

is a proper DM stack with projective coarse moduli space, there is a finite
surjection W — MXSBA from a projective scheme. Then, by taking the main
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component of the normalization of W x ,,kssa Z we obtain a normal variety
79 fitting in a commutative diagram

TO

W+<— | projective scheme

finite, surjection J/

7 MKSBA

By replacing both Z and T° by one of their big open sets, we may assume that
79 is also regular. Then, by compactifying 7° resolving the indetermnancies of
the map from this compaticifcation to both Z and W and finally also resolving
the compatification itself we obtain a smooth compatification T 2 TO:

OI){O—\

D)
L

smooth, projective variety ‘ - T

N

w

finite \L

MKSBA

proper & generically finite

-

big open set 3

N
N

finite finite

-

big open set

Y 2P

<t

In particular, 7 — MXSBA induces fpre @ (Xpres (1 +€)Apre) — T) such
that (Xpre, Apee) [0 = (X, &) x5 70 Additionally (Xpre, (1 + &) Apee) is
kit as it is a family of stable log-varieties with klt general fiber.

Note that fpre : Xpre — T is flat. We are going to take Q-factorialization of
Xpre and then we will run a particular MMP and finally we will take a particular
canonical model. The point is that all these operations preserve flatness. The

reasons is that at each step the statement corresponding to the following one
holds, where d :=dim T:

For each closed t € T and general hyperplanes Hy, ..., H; through t :

d
(Xpre, (14 &) Apre + Z f;‘reH,-) is log canonical. (10.1.d)
i=1

Then, equidimensionality of fyre follows from [36, Prop 34], as X; = ﬂl | Hi
is a union of Ic-centers of codimension d, and [36, Prop 34] states that an lc-
center is contained in the intersection of d Q-Cartier divisors of coefficient 1
from the boundary (here the H;), then the codimension of the Ic-center has to
be atleastd. As (Xpre, Apre) is klt, Xpre is Cohen-Macayulay, an hence by the
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above shown equidimensionality, fpre is indeed flat. Additionally, [36, Prop 34]

tells us that locally there is a finite cover where the pullbacks of the H; become

simple normal crossing. This shows that ﬂflzl H; is reduced, otherwise the
intersection of the above pullbacks would be non-reduced. Hence, we obtain
that the fibers of fje are reduced.

By doing a Q-factorialization we obtain a Q-factorial model /' : (X', (1 +
¢)A") — T witha proper, small birational morphism X’ — X.Hence the strict
transform from X to X’ of every Q-Cartier divisor is crepant. In particular,
(a) X'1is Q-factorial
(b) (X', (1 +&)A)isKlt,

(c) the condition correpsonding to (10.1.d) is satisfied for fpre, Xpre and Apre
replaced by f’, X’ and A’, respectively; hence f’ is flat and has reduced
fibers,

(d) Ky + (1 + &)A’ is only big and nef over T, and

(e) over TV, we have Kx' + A’ ~g.1 0.

Hence, by points (d) and (e), A’ is big over T, and therefore we may run an

(X', A"y MMP [17, Thm 1.2]. As we have already a minimal model over T,

this MMP is an isomorphism over 70. Let Smin : (Xmin, Amin) — T be the

outcome of this MMP. Hence:

(f) (Xmin,» Amin) is kIt as we are running an MMP on (X', A’), which is Kt
by point (b),

(g) with notation as in (10.1.d): using point (c) and the fact that our MMP
is also an an MMP for (X’, AN+ () Hi), we obtain that the
condition correpsonding to (10.1.d) is satisfied for fpre, Xpre, Apre and
(1 + &) replaced by fmin, Xmin, Amin and 1, respectively; in particular,
fmin 1s flat and has reduced fibers.

(h) As over T° we have Kx i + Amin ~Q,7 0,and as Ky, + Amj, is semi-
ample over T by [59, Thm 1.1], we obtain using the Rigidity lemma [75,
Lem 1.6] that Kx . + Amin ~@,7 0 holds over the entire 7.

Now, we pass to the log canonical model f : (X,(1 + &)A) — T

of (Xmin, (1 +&)Amin) over T for some 0 < & <« e. Note that

the latter pair is klt by point (f). We have (Xmin, 1+¢) Amin) |70 =

(X/, 1+ A/) |70. Hence, over T, (X, (14-&’) A) is the log canonical model

of (X', (14 &)A") |0, that is, it agrees over T% with (Xpre, (1 + &) Apre).

Hence, (X, (1 + &¢)A) is a compactification of <)~(, (1 + s’)&) X 5 70 with

the additional feature that

1
Kx+A~qr0 = —Kx ~o.r A ~qQ.r ;(KX + (1 +&HA)
/]\

-Cartier, ample over T’
by (h) Q P
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Also, (X, A) and (Xmin, Amin) are crepant, by point (h). Hence, by point
(g), (10.1.d) is satisfied for fpre, Xpre, Apre and (1 + ¢€) replaced by f, X, A
and 1, respectively. In particular, f is also flat and has reduced fibers.

We also note that as (X, (1 +¢&’)A) isklt and K x is Q-Cartier, X is also kIt.

Take now the Stein factorization of T — V. As T is finite over an open
set of V, we obtain diagram (10.1.a) from our statement. O

Lemma 10.2 The CM line bundles . on MY descends to M,IE 5. That is,

there is a Q-line bundle L on M,If S such that w*L = A, where 7 - M,Ifjs —
M,If % is the natural morphism.
Proof By [4, Theorem 10.3], it is enough to show that for every closed k-point
zof M,Ii'ss, the stabilizer of z acts trivially on the fiber A?N , for some integer
N which does not depend on z.

The k-points of M,Il(sq correspond to K-semistable Fano varieties over k,
and their stabilizers correspond to the automorphism group of the variety.

Fix a K-semistable Fano variety F, its automorphism group G = Aut(F)
is a linear algebraic group, and the fiber A[r; of the CM line bundle over
[F] e M,If;“ is aone dimensional representation of G. Let G be the connected
component of the identity of G, and Gg = R x U be its Levi decomposition.

We first show that G acts trivially on A[rj. The unipotent part U acts
trivially because all one dimensional representations of unipotent groups are
trivial. To prove that also the reductive part R acts trivially, we have to show
that for every one parameter subgroup y : G,, — R, the weight of the action
of y on A is zero. This weight equals the Donaldson-Futaki invariant of the
product test configuration of X induced by y . This invariant vanishes because
F is K-semistable.

The quotient G/ Gy is a finite group, it does not necessarily act trivially on
A[F], however it acts trivially on A%A]/[ for every integer M divisible by the
cardinality of G/Gyg. To conclude, we have to show that the cardinality of
G /Gy is bounded as we vary [F'] in M,Ifjs

By the boundness of K-semistable Fano varieties of dimension n and volume
v proved in [64], there exists a projective family f: } — T of Fano varieties
over a smooth base with the following property: for every [F] € M,Iff (k)
there exists a a point ¢ (F) € T with f‘l(t(F)) = F. As —Ky is ample, the
relative polarzied Isom scheme [ := Isom7 (), —K7y) is a finite type group
scheme over T [72, Exc 1.1.10.2]. We can then look at the Stein factorization
19 of I — T and at the quotient A := I/I°. By the definition of the Stein
factorization and by the functoriality of 7, for each [F] € /\/lflfg (k) we have
I;ry = Aut(F), and [ to( P = Aut(F)°. Additionally, as I and T are of finite
type over k, the group scheme A is finite over the variety 7', hence the cardi-
nality of the fibers is bounded by an integer M. Given [F] € M,Ifjg (k), the
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group G/Gog = Aut(F)/ Aut(F)? is isomorphic to the fiber of A over ¢ (F),
hence its cardinality is bounded by M. O

Proof of Theorem 1.1 Let L be the descent of A to M,If, s According to [80,

Thm 6.1], it is enough to show that L is nef on M,E % and that on every proper

irreducible closed subset V' C V intersecting M,;l:llf‘s, L]y is big.

First, we show that L is nef on M,If P LletC — M,I,(, ¥ be a finite morphism
from a smooth projective curve. Let us apply Lemma 10.1to C — M,E > As
dim C = 1, in Lemma 10.1 most things collapse. That is, using the notations
of Lemma 10.1, we have T = T° = S. Hence, by calling D the above three

spaces that agree, we obtain a diagram as follows

smooth, projective curve ‘ - D — > _/\/lrlfsb (10.2.a)

ﬁnitel T \L]‘[

K_
C——=M, "

The morphism D — M,vass corresponds to a flat family fp : Xp — D of
K -semistable Fanos. Then, by (10.2.a), we have Ay, = A|p = (7*L)|p =
7*(L|c), and therefore, it is enough to show that deg A s, > 0. However, this
is exactly the statement of Theorem 7.1. This concludes our first claim.
Second let V/ C V be an irreducible closed subset of V such that V' N
M,‘:llfs = . In our second, and final claim, we show that L|y: is big. Let us

apply Lemma 10.1to V' — M,If, 7%, and let us use the notations of Lemma 10.1
for the obtained spaces and morphisms.

AsT — M,E P is generically finite, f : X — T has maximal variation.
Hence, Theorem 1.9.(a) applies saying that A ¢ is big. Note that by (10.1.a), if
A denotes the CM line bundle on MX-5% then we obtain:

n,v

CEFL = jFUERL = EFL = Ao = j*As T b f (10.2.b)
/]\

‘ ¢ is birational and ¢| ; 70 is an isomorphism ‘ ‘ cycle theoretic pushforward ‘

As, T is a big open set in S, (10.2.b) implies that £*L = P r. As Ay is big,
S0 1S ¢4\ ¢, and then by the finiteness of & so is L|y-. This concludes the proof
of our second claim.
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11 Boundedness of the volume
Proof of Corollary 1.17 We have

vol(—Ky — A) ? (—Kyx — A)dimX

‘—KX — Aisample‘

= ((—Kx/pt — A) — f*Kpi
= (—Kx/p — A)I™X + (dim X)2 vol(—Kf — Af)
= —deghsa + (dim X)2vol(—KFr — Ap)

< (dim X)2vol(—Kr — AF)

Theorem 1.8

For the second inequality, if F is smooth and A = 0, we apply the bound on
the volume of K-semi-stable Fano varieties obtained in [48, Thm 1.1] to F'; if
F is singular but still A = 0, we apply [83, Thm 3]. In the log case, we can
obtain the requested inequality applyng [79, Proposition 4.6] to case where
v is a valuation by vanishing order at a smooth point outside the support of
AFr, and recalling that Ding semistability is equivalent to K-semistability, as
shown for instance in [51, Section 6] O

)dimX

12 Examples

In this section, we give examples showing the sharpness of our theorems.

Example 12.1 Here, we give an example of a family of Fano varieties which are
not K-semistable and such that the degree of the Chow—Mumford line bundle
is strictly negative. The members of this family are smooth del Pezzo surfaces
of degree 8, and the family is isotrivial but not trivial. The relevance of this
example for the study of the Chow—Mumford line bundle was already pointed
out by J. Fine and J. Ross in [43, Example 5.2]. Let us warn the reader that,
in contrast with [43], our projective bundles parametrizes rank one quotients
rather than sub-bundles. Let

(a) T := P!,

b)) V:i=07r(=2)d Or(1) & Or(1) (note that deg V = 0),

(¢) p: Y :=PV — T the natural projection,

(d) C the curve on Y defined by the quotient V — Or(-2),

(e) X :=BlcY, n: X — Y the natural morphism, and E the exceptional
divisor of 7z, and

(f) f: X — T the natural morphism.
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Then, f is afamily of smooth degree 8 del Pezzo surfaces. We want to compute
3 3
deg A s :_(_KX/T) =—(7T*Oy(3)—E)

We compute the four monomials appearing in the above expression separately.
o (T*0y(3))’ = Oy(3)* = —c1(p*V)Oy (1)* = 0.
T T T
‘ projection formula ‘ dim 7 = 1, and [54, degV =0
Rem 3.2.4]
o (T*Oy(3))?-E T Oy (3)? - n.E T 0.

‘ projection formula ‘ ‘ e E =0 ‘

Before describing the other two terms we need to have a better understanding
of E. The ideal J¢ of C corresponds to the graded ideal I of Sym V gener-
ated by the degree 1 "monomials” O7 (1) & Or(1). Hence, the sheaf J¢/ jg
corresponds to the rank 2 locally free graded module over Sym (O7(—2))
generated again by O7 (1) @ Or (1) in degree 1, or equivalently to the rank 2
locally free graded module generated by Or (3) @ O7(3) in degree 0. Hence,
E=PW,for W :=Oc3)® Oc(3),and Og(—E) = Opw(1). In particular,
the natural map PW — C can be identified with 7|g: P! x C — C = P!,
and Opw (1) = D + 3F (see [62, Lemma 11.7.9]), where D and F are the
horizontal and the vertical rulings of E over C. We have:

o 7*0Oy(3) - E? T Oy (3) - m(E?) T Oy(3) - (=D — 3F)

‘proj. formula‘ ‘ Op(—E) = Opw() =D +3F ‘
= 0y(3)-(—0) =6.
/]\

o« E3=(-D-3F)*=6.
Wrapping up, we obtain

deghy = —(@*Oy(3))* + 3(x*Oy(3))* - E — 37*Oy(3) - E* + E?
=—0+3-0-3.6+6=-12<0.

Example 12.2 In this example we exhibit a family f : X — T of smooth
degree 8 del Pezzo surfaces over a curve such that deg A y > 0, or equivalently
(—KX/T)3 < 0, but —Kx,r is big. So, the statement (—KX/T)3 < 0Oisa
negativity condition independent of —Kx,r being big or not. However, let
us also note that there is one missing piece of our example: it is a family of
non- K -semi-stable Fano varieties, although we suspect that a K-semi-stable
one exists also.
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Modify Example 12.1 replacing V with its dual; so we take V = Or(2) &
Or(—1) & Or(—1) and we blow-up the curve defined by the quotient V —
Opi1(2). In this case, deg A y = 12 > 0. However, —K /7 is still big. Indeed,
write V. = L K & M, where L = O7(2) and X = M = Or(—1). Then
for every integer m > O:

H(X, —mKx/7) = H (X, 7*Oy(3) — E)
= H(Y, Oy (3) RIM)
= & # (T, g‘;ngz)
i,j,1=0

i+j+I=3m,

2i—j—1=0

3m |
- @ HO(T, OT(3[ — 3m))@3m—1+1

i=m

As Z¢ is generated in Sym V by X @ M, we obtain that

HO (X, —mKxr) = @ HO(T. L M)
i,j,[>0
i+j+I=3m,
2= j—1>0
JjH=m
2m

=P HOT, Or Bi — 3m)P3" L (12.2.0)

i=m

. . h%(—mKx7)
To show that — K x 7 is big, itisenough to prove that lim —————— > 0.

m— 00 m3

Equation (12.2.a) yields:

RO (X, —mKx;r) Y Gi—3m+ 1)@m—i+1)

WL3 m3
2m .
1 I 1 I 1
3B 0E+2)0-5)
m m m m
1=m
Hence, o
h (X, —mK 2
fim " : X/T)zf(sx—3>(3—x)dx=2
m— 00 m 1

So, we showed indeed that —Kx,7 is big, and we even computed that
vol(—Kx,7) = 12 (a coincidence with the previous number 12 above).
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Example 12.3 Here we give an example of a family f : X — T of smooth
Del-Pezzo surfaces of degree 6 such that §x, = 1 for all closed pointt € T,
degAy = 0 but —Kx,7 not nef. This shows that the hypothesis § > 1 in
Theorem 1.20 is necessary.

For this, we modify Example 12.1 in two respects:

(a) We take V to be the dual vector bundle, thatis, V := Or2)® Or(—1) &
Or(—1).

(b) Instead of one curve, we blow up 3 curves. That is, we set X :=
Blc,.c,.c; Y, where C; is the curve defined by the quotient V. — L,
where L; is the i-th direct summand of V.

Let E;, F; and W; (and for i = 1 also D) to be defined for each C; as E, F
and W (and for i = 1 also D) was defined for C in Example 12.1. We do not
define D; also as in Example 12.1 because fori = 2,3, W; = Oc¢, ® O, (3),
so En, Ez 2 P! x P!, Instead, for i = 2, 3, set D; to be the divisor class of
Opw, (1).

Note that the E; are disjoint, and hence any intersection product involving
different E; is automatically 0. We write out below the computations where
the result is different than in Example 12.1, where i = 2 or 3:

o 7*0Oy(3) - E? ? Oy (3) - m(E?) ? Oy(3) - mu(—Dy + 3F))

proj. formula ‘ Og,(=E1) = D1 = 3F, ‘

=0y(@3)-(=Cy) = —6.
/]\

o E} = (—D; +3F)*=—6.
o 7*Oy(3)-E} = Oy(3)-m.(E}) = Oy (3)-m4(—D;) = Oy (3)-(—=C;) = 3.
° El3 = (—D,‘)2 = Di2 ? c1(m*W;)D; = deg(W;)F; - D; = deg W; = 3.

[54, Rem 3.2.4]

Set E := E| + E> + E3. Then, we conclude that

deg s = —3(7*O0y(3) — E)?
= —7*0y(3)- E>+ E°
= 370y (3) - (E? + E3 + E3) + (E} + E3 + E3)
=-3-(—=6)—2-3-34+(=6)+2-3)
=0

The fibres of f are smooth del Pezzo surfaces of degree 6, they are well-
known to be K-poly-stable (so, in particular, K-semi-stable), but they are not
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uniformly K-stable because they have a positive dimensional automorphism
group. The delta invariant is thus equal to 1 (e.g., Corollary 4.9). Furthermore,
fori =2, 3:

(—KX/T|E,~)2 = ((Oy(3) - C)F; — Ei|E;)2

= (D; —3F)*
= D? — 6F; - D
=3-6

= -3.

Hence, —Kx/r|E; is not nef, and then also — K, is not nef.

Example 12.4 In this example, for each choice of an integer d > 0 we exhibit
families f : X — T of uniformly K-stable del Pezzo surfaces of degree 4
over a smooth projective curve. In this situation, Theorem 1.9.(a) tells us that
degAy > 0, or equivalently (—KX/T)3 < 0. So, one would expect —Kx,/r
to have only a few sections. Here, we show that both the expected and the
unexpected behavior can happen. More precisely, | — Kx,7|g = ¥ ford > 3,
and k (—Kx,7) > 1 ford = 1.

Let p1, ..., ps be four points in P? in general position, and denote by L; j
the line trough p; and p;. Let .: T — P? be a degree d smooth curve in
P2 which avoids the four points. Let I' = T be the graph of ¢ in P> x T,
and let T; be the curve {p;} x T in P? x T. We want to look at the blow-up
7:Y — P2 x T of T and T;,fori = 1,...,4. Denote by g: ¥ — T the
natural projection.

The family g: ¥ — T is generically a family of degree 4 smooth del Pezzo
surfaces of maximal variation. The only exception is at the points ¢ € T where
t(T) intersects one of the lines L;;. In these cases, Y; = Bly, 1, ps,pa.p P2,
where p lies on L;;. In particular, —Ky, is big and semi-ample, and there
is a unique curve C for which C - —Ky, = 0: the proper transform of L;;.
The anti-canonical model is the contraction of L;; to an A singularity, so in
particular it has canonical singularities.

Let f: X — T be the relative anti-canonical model of g (remark that
Rig.(—mKy yr) = 0 fori > 0 and m big enough, by Kawamata-Viehweg
vanishing theorem, so we do have base change). The family f satisfies the
hypotheses of Theorem 1.9(a), so deg ¢ > 0.

We show that, if d > 3, then | — Kx,7lg = ¥ and if d = 1, then
k(—Kx,7) > 1.Ineither case the crucial remark is that HO(X, —mKx,r) can
be identified with the subspace of HO (P2 x T', Op2,, 7 (3m)) = HO (P2, Op2 (3m))
which vanish along ¢(7) and p; with multiplicity at least m. Hence:

e If d > 3, then there are no such sections, as d is exactly the degree of «(T').

@ Springer



Positivity of the CM line bundle

o Ifd =1,then«(T)isaline L. So, | — Kx,7| is the set of cubics C on P2
such that C goes through p; and Supp C contains L. Hence, C = L + C’,
where C’ is a conic through p;. There is a one parameter family of such
conics.
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13 Appendix A Computations concerning the definition of the CM line
bundle

The following work is needed to prove the statements of Sect. 3. These are
verifications of technical issues concerning the singular situation.

We need the following lemmas as we work with singular varieties, and hence
Riemann-Roch computations do not work directly. It turns out that if the spaces
are normal then singularities do not mess up any of the terms involving any of
the definitions of the CM line bundle. However, in the non-normal situation,
which we do not deal with in the present article, Lemma A.2 seems to suggest
that one has to face extra difficulties.

Lemma A.1 Consider the following situation:

e f: X — T is aprojective morphism to a normal quasi-projective variety
(allowing T = Speck),

e M isan f-ample Q-divisor on X,

e & is a coherent sheaf on X, and

e r > 0 is an integer such that dim Supp & < r fort € T the generic point
and dim Supp & <r + 1 fort € T a codimension 1 point.
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Then there are Q-divisors D; (resp. d; € Q), determined uniquely up to Q-
linear equivalence (resp. determined uniquely), such that for all q divisible
enough, if dim T > 0, then

1+r
c1(f(Ox(@M) ® ) =Y q'D;,
i=0
(resp. if T = Speck, then
dim Supp &

X, 0x@M =Y. d'd).
i=0

Proof In the case of T = Speck, h°(X, Ox(gM) ® £) equals the Hilbert
polynomial for ¢ divisible enough, and hence the statement follows. So, from
now we assume that dim 7 > 0.

Let s > 0 be an integer such that sM is relatively very ample. As the
statement is for all ¢ divisible enough, by replacing M with sM we may
assume that M is relatively very ample and f,,Ox (M) is locally free, in which
case we will exhibit Z-divisors D;. Furthermore, as the statement is about
codimension 1 behavior over 7', and T is a big open set of 7', by replacing
T with Tieg we may assume that 7 is regular.

As M is relatively very ample, it induces an embedding ¢ : X «— P :=
Proj; f«Ox(M).Let w : P — T be the natural morphism. As P is regular,
1+€ has a locally free resolution P*, which in particular is a perfect complex
on P. Hence, for ¢ divisible enough, the following holds (where, following
[69], det is the alternating tensor product of the determinants of the elements
of a locally free resolution, which exists as 7 is regular):

c1(f«(Ox(@M) ® £)) = ci(det f,(Ox(qM) ® &)
= c1(det Rf,(Ox (gM) ® £))

‘ relative Serre vanishing ‘

= ci(det R4 (Op(q) ® 1))

*Op(l) = Ox (M), and
projection formula

= c1(det R, (Op(q) ® P'))
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2o (@)

for some line bundles M; according to [69, Thm 4, p 55] (see p 50 for
the definition of Oay» which is the same as the last itemized condition
in the statement of our lemma)

14+r

=ZqiDi.
Tis

Note thatin the following lemma we do not assume any Q-Cartier hypothesis
on Ky, 7. Still, our intersection in (13.2.a) is well defined as M is Q-Cartier.

Lemma A.2 Let f : X — T be a surjective morphism from a normal projec-
tive variety of dimension n + d to a smooth variety of dimension d > 0 with
n > 1, and let M be a Q-Cartier f-ample divisor on X.

(a) If dim T > O, then for all divisible enough integers g > 0,
n+1

(n+1)!

Fo () =S o (K- M)+ @),

2.
(13.2.a)
where p"~1(x) is polynomial of degree at most n — 1 with x as a variable
and Q-divisors as coefficients.

n =1
(b) If T = Speck, then x (X, qM) = 4rq" — BLMorqn=l 4 0(g"72).

In particular, if T is a curve and M"T! > 0, then deg f,Ox(gM) > 0 for all
positive integers q divisible enough.

c1(fxOx(@M)) =

Proof As Grothendieck-Riemann-Roch works directly only for smooth X (or
also on locally complete intersection singularities, which does not include kit
singularities with Cartier index greater than 1), we need to compare X with a
resolution. Let o : Z — X be a resolution of singularities and set g := foo.

First, we claim that for all integers i > 0 and 1||q, in the respective cases:
(a) deg R'g.O0z(qo*M) = pf'_l(q)for some polynomial p;’_l(x) of degree

at most n — 1 and Q-divisor coefficients, and
(b) h'(Z,qo*M) = 0(¢" 7).
Indeed, fix an integer i > 0. There is a spectral sequence with E2-terms
R? £.(Ox(gM) ® R"0,07z) abutting to R’ g.O0z(qo*M) fori = p +r. As
M is f-ample and ¢ is divisible enough, this spectral sequence degenerates.
Therefore, . .
R'¢:0z(qo*M) = f(Ox(gM) ® R'0,07).

Then Lemma A.1 applied to & := R'0,07 concludes our claim, using that
Supp R'0,O7 is contained in the non-normal locus, which is at most n — 2
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dimensional in the generic fiber and at most » — 1 dimensional over the fibers
over codimension 1 points.

Having shown our claim, in the dim 7" > 0 case the statement of the propo-
sition is shown by the following computation, which holds for every ¢ divisible
enough (so g M is f-very ample, Cartier and without higher cohomologies on

the fibers):
c1(f«Ox(gM)) = chi (f,Ox(gM))

= chi (8. 0z (qo* M)

‘ X is normal, and hence 0,07 = Ox ‘

i>1

/T\Ch](gloz(qo M))_Z( 1)1 n— ](q)

the above claim, where p” ! (g) are the polynomials the

existence of which is stated in the claim

= 8x ((Ch(OZ(lIU*M)) td(Tg))nJrl) + pn—l(q)

Grothendieck-Riemann-Roch, as Z and T are smooth,
and setting P lx)

D ST ) L 69)

n+1 (o* M)
=8 (((Zq’ ("l., D)y +0" @)
i=0 ’ n+l

qn+]

/:r (n+ 1!

f*a*<o*M>"*‘+—f*o* ((*M)" - (=Kz;1) + 5" (q)

(o M)

td 11— (Tg)

P = pt ) + )

n+1

'T\ h.ﬂ« (M"H)*gfmf* (M" - Kx7)+5"""(9).

ox(@*M)" T =M™+ and oy ((0*M)" - (=K z/7)) =
M" - 0x(=Kz;T7) = —M" - Kx,T by the projection
formula

In the case of T = Speck, a similar computation concludes the proof:

x(X,qM) = h°(X, gM) ? h(Z, qo*M) ? X(Z,q0*M) + 0(¢"~?)

‘ X is normal ‘ ’ our claim above ‘

T [ ¢h(Oz(qo*M)) Wd(Tz) + O(q"~2)

‘ Grothendieck-Riemann-Roch, as Z is smooth ‘

= [, (S 4" A ) (T + 0¢" )
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n n—1

T L@* M) + g5 (0* M)~ - (=K 2) + 0(¢" )
(c*M)" = M", using our assumption and that
o is birational, and (c*M)"~! . (—=K,) =
—M"~1. Kx by the projection formula

n n—1
= %Mn - z(qn_l)!Mnil . KX/T + O(qn72) O
Remark A.3 In the situation of Lemma A.2, we also have that if T is a curve
and M"T! > 0, then M is big on X. Let us stress that M is not assumed to
be nef on X, hence this does not follow directly from standard criteria such as

[77, Theorem 2.2.14]. Indeed:

hO(X,qM) = h%(T, f,Ox(gM)) = x(T, f.Ox(gM))
? deg fxOx(gM) + 1k f,Ox(gM)(1 —g)

’ Riemann-Roch on T ‘

qn+l

= 1!
/]\

Proof of Proposition 3.7 STEP 1: WE MAY ASSUME THAT T IS SMOOTH. If
T is already smooth, there is nothing to prove, so assume that it is not smooth.
Hence, by our assumptions, the fibers are normal and Supp A does not contain
any of the fibers. Take aresolution T : 7" — T. Then, according to Sect. 2.4.1,
in the respective cases,

(@ frr: Xy — T'and Ly, and
(b) fT/ . (XT/, AT/) — T’ and LT/,

MrH-l + O(Qn).

satisfy all our original assumptions, including that sL ~ —(Kx,;7 + A) in
the case of point (b) by Proposition 2.1.(a). We claim that Ty, 1L, = AL
(resp. Tuhfr Ay = AfA)- This is verified in the following computations,
where o : X7/ — X is the induced morphism:

@ Tty = T ) (KL 4+ 4 DL, - Ky )
= o (1o L 0 0L " K

TO fT’ = foo,and G*Kx/]‘ = KXT//T’ by Sect. 2.4.1 ‘

T fx (/,LL’;—,H + @+ I)L’}, . KX/T) = AsL,and

ox0* =1id
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(b)

+1
Tk fr Ay = —Ta (JT7) (- (Kx,./m + Arr)" )
1
= — [0 <— (Kxpy1 + Ap)"* )

= —f« (— (Kx/r + A)n+1) = AfA-

Having shown our claim, Step 1 follows. Indeed, if we prove, in the case of
point (a), that s"A ¢, 1., = c1(LcM, £,/.sL,/)» then

Sn)»f’L = Snl'*)»fT,’LT,
= wc1(LeM, frr,sLp0)
= 1. v¥c1(Lewm, fis1)

=ci1(Lem, f5L)

The case of (b) is verbatim the same with 5", Az and Lcwm, 51 replaced by
—sntl Afa and M, 1, respectively.

STEP 2: THE PROOF ASSUMING THAT T IS SMOOTH. Set M; := c¢1(M;).
Taking into account that

n+l S —-n na"
q AR (g—m _nq" 0" D).
(n+ 1) (n+1)! 2 n!
according to Lemma A.2,
—(sL)" - Kx/

Myt = f*(SL)n+1a and M,, = fi < ! + g(SL)n—H .

(13.3.a)
(where L = —(Kx,r + A) in the case of point (b).) Hence, the next compu-
tation concludes the proof in the respective cases:

(a)

2

ci(Lem, fsp) = (n(n + 1) + pusp) Myt —2(n + 1M,
= (n(n+ 1) + usr) fu((sL)"h

-K C(sI)"? n—1
—2(n+1)f*( = GL) +"(SL2) )

— %S’H_lf*l,n—'—l _ Sn(n + l)f*(KX/T . Ln) — Sn)hf,L
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(b)
Myi1 = fi ((—s(KX/T + A))n+1) _ —S"H)»f,x

The next lemma is a technical statement used in Proposition 3.8.

Lemma A4 Let h : V — S be a flat n-relative dimensional morphism from
a reduced projective scheme to a smooth projective curve, and let L be an
h-very ample line bundle on V. Let m : Z — V be the normalization of V
with g : Z — § being the induced morphism, and assume also that t*L is
g-very ample. Then the n + 1-th (so highest) Knudsen—Mumford coefficients
of L with respect to g (as in Notation 3.6) agrees with that of 7* L.

Proof Consider the exact sequence on V given by the normalization:
00— 0y — 1,07 —=E& ——0

This yields a natural inclusion &, (£L?) < g, (;w*£?). Hence, it is enough to
prove that for ¢ divisible enough, deg h,.(L? ® £) = O(q"), which is given
by Lemma A.1 as dim Supp £ < n. O
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