
IFAC PapersOnLine 52-13 (2019) 511–516

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2019.11.117

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2019.11.117 2405-8963

Scheduling for last-mile meal-delivery
processes

Matteo Cosmi ∗ Gaia Nicosia ∗ Andrea Pacifici ∗∗

∗ Dipartimento di Ingegneria, Università degli Studi “Roma Tre”, via
della Vasca Navale 79, 00146 Rome, Italy (e-mail: {matteo.cosmi,

gaia.nicosia}@uniroma3.it)
∗∗ Dipartimento di Ingegneria Civile e Ingegneria Informatica,

Università degli Studi di Roma “Tor Vergata”, Via del Politecnico 1,
00133 Rome, Italy (e-mail: andrea.pacifici@uniroma2.it)

Abstract: We address a single machine scheduling problem arising in a last mile delivery setting
for a food company. The same problem finds obvious applications also in the context of internal
manufacturing logistics. A set of food orders are placed by the customers and are to be fulfilled
by the company. Each order comprises a delivery point and an ideal delivery time An order
is considered on time if it is delivered within a certain given time interval around the ideal
delivery time. All food is prepared in a single production facility (restaurant) and immediately
carried to the customers by a single courier, who may dispatch one or two different orders in
a single trip. Since late deliveries correspond to canceled orders and an economic loss for the
company, it is of interest to schedule orders so that the number of late orders is minimized.
We model the resulting decision problem as a special single machine scheduling problem and
propose different mixed integer programs to solve it. Their performance is assessed through a
computational study on a set of test instances derived by our real-world application.
c© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All
rights reserved.

Keywords: Scheduling, Integer Programming, Optimization Problems, Combinatorial
Mathematics, Internal Logistics, Food Delivery.

1. INTRODUCTION

The logistic sector has always been a source of demanding
problems and applications for automation and optimiza-
tion. In the last few years this sector has had an incredible
transformation due to the recent spreading of e-commerce,
which in turn has also been reflected in the exponential
growth of the food delivery sector as shown by the spread-
ing of companies like GrubHub, Just-Eat or Deliveroo.
This increasing interest for the food delivery logistic is also
witnessed by the large number of works published and/or
submitted in the last year: See, e.g., Cosmi et al. (2018);
Ozbaygin and Savelsbergh (2018); Reyes et al. (2018);
Steever et al. (2018); Yildiz and Savelsbergh (2018).

In this paper, we address a scheduling problem motivated
by an application for food pick-up and delivery in an urban
area. The company provides food transportation services
from restaurants to final customers who specify the restau-
rant to order at, their location (i.e., the food destination),
and the ideal delivery time, besides, of course, the type and
amount of required dishes. Orders are shipped by a number
of couriers who may dispatch multiple orders within the
same working shift but can only deliver a limited number
of orders (usually, one) in a single restaurant-to-client
trip. In this context, typical decisions concern the (i)
assignment to couriers and (ii) scheduling of orders so that
the maximum delay with respect to the desired delivery
time, or the number of late—and, possibly, withdrawn—

orders are minimized. Cosmi et al. (2018) present a novel
approach, based on a time-expanded network, capable to
solve instances with several restaurants and customers in
an amount of time compatible with an online application.

Here, we focus on the single-courier single-restaurant case,
which gives rise to a special single-machine scheduling
problem. Besides being an interesting problem in itself,
solving the latter one can also be exploited as a compo-
nent routine in more general procedures for the original
(multi-courier multi-restaurant) problem, or integrating
the corresponding mathematical program within a sim-
ulation framework (see, e.g., Alfieri et al. (2015)).

The paper is organized as follows. In Sections 2 and 3 we
rigorously describe the addressed problem and propose an
model that considers possible aggregation of orders in pairs
served in a single trip of the courier. We then present four
different Integer Linear Programming models (Section 4)
and compare their performance through the results of an
extended computational campaign illustrated in Section 5.
Finally, in Section 6 some conclusions are drawn.

2. PROBLEM DESCRIPTION

In the addressed problem, there is a single restaurant,
where the food is prepared, and a given set of meal-orders
J = {1, . . . , n}, with their ideal delivery times d′j and
restaurant-destination travel times tj , for all j ∈ J .

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 516

Scheduling for last-mile meal-delivery
processes

Matteo Cosmi ∗ Gaia Nicosia ∗ Andrea Pacifici ∗∗

∗ Dipartimento di Ingegneria, Università degli Studi “Roma Tre”, via
della Vasca Navale 79, 00146 Rome, Italy (e-mail: {matteo.cosmi,

gaia.nicosia}@uniroma3.it)
∗∗ Dipartimento di Ingegneria Civile e Ingegneria Informatica,

Università degli Studi di Roma “Tor Vergata”, Via del Politecnico 1,
00133 Rome, Italy (e-mail: andrea.pacifici@uniroma2.it)

Abstract: We address a single machine scheduling problem arising in a last mile delivery setting
for a food company. The same problem finds obvious applications also in the context of internal
manufacturing logistics. A set of food orders are placed by the customers and are to be fulfilled
by the company. Each order comprises a delivery point and an ideal delivery time An order
is considered on time if it is delivered within a certain given time interval around the ideal
delivery time. All food is prepared in a single production facility (restaurant) and immediately
carried to the customers by a single courier, who may dispatch one or two different orders in
a single trip. Since late deliveries correspond to canceled orders and an economic loss for the
company, it is of interest to schedule orders so that the number of late orders is minimized.
We model the resulting decision problem as a special single machine scheduling problem and
propose different mixed integer programs to solve it. Their performance is assessed through a
computational study on a set of test instances derived by our real-world application.
c© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All
rights reserved.

Keywords: Scheduling, Integer Programming, Optimization Problems, Combinatorial
Mathematics, Internal Logistics, Food Delivery.

1. INTRODUCTION

The logistic sector has always been a source of demanding
problems and applications for automation and optimiza-
tion. In the last few years this sector has had an incredible
transformation due to the recent spreading of e-commerce,
which in turn has also been reflected in the exponential
growth of the food delivery sector as shown by the spread-
ing of companies like GrubHub, Just-Eat or Deliveroo.
This increasing interest for the food delivery logistic is also
witnessed by the large number of works published and/or
submitted in the last year: See, e.g., Cosmi et al. (2018);
Ozbaygin and Savelsbergh (2018); Reyes et al. (2018);
Steever et al. (2018); Yildiz and Savelsbergh (2018).

In this paper, we address a scheduling problem motivated
by an application for food pick-up and delivery in an urban
area. The company provides food transportation services
from restaurants to final customers who specify the restau-
rant to order at, their location (i.e., the food destination),
and the ideal delivery time, besides, of course, the type and
amount of required dishes. Orders are shipped by a number
of couriers who may dispatch multiple orders within the
same working shift but can only deliver a limited number
of orders (usually, one) in a single restaurant-to-client
trip. In this context, typical decisions concern the (i)
assignment to couriers and (ii) scheduling of orders so that
the maximum delay with respect to the desired delivery
time, or the number of late—and, possibly, withdrawn—

orders are minimized. Cosmi et al. (2018) present a novel
approach, based on a time-expanded network, capable to
solve instances with several restaurants and customers in
an amount of time compatible with an online application.

Here, we focus on the single-courier single-restaurant case,
which gives rise to a special single-machine scheduling
problem. Besides being an interesting problem in itself,
solving the latter one can also be exploited as a compo-
nent routine in more general procedures for the original
(multi-courier multi-restaurant) problem, or integrating
the corresponding mathematical program within a sim-
ulation framework (see, e.g., Alfieri et al. (2015)).

The paper is organized as follows. In Sections 2 and 3 we
rigorously describe the addressed problem and propose an
model that considers possible aggregation of orders in pairs
served in a single trip of the courier. We then present four
different Integer Linear Programming models (Section 4)
and compare their performance through the results of an
extended computational campaign illustrated in Section 5.
Finally, in Section 6 some conclusions are drawn.

2. PROBLEM DESCRIPTION

In the addressed problem, there is a single restaurant,
where the food is prepared, and a given set of meal-orders
J = {1, . . . , n}, with their ideal delivery times d′j and
restaurant-destination travel times tj , for all j ∈ J .

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 516

Scheduling for last-mile meal-delivery
processes

Matteo Cosmi ∗ Gaia Nicosia ∗ Andrea Pacifici ∗∗

∗ Dipartimento di Ingegneria, Università degli Studi “Roma Tre”, via
della Vasca Navale 79, 00146 Rome, Italy (e-mail: {matteo.cosmi,

gaia.nicosia}@uniroma3.it)
∗∗ Dipartimento di Ingegneria Civile e Ingegneria Informatica,

Università degli Studi di Roma “Tor Vergata”, Via del Politecnico 1,
00133 Rome, Italy (e-mail: andrea.pacifici@uniroma2.it)

Abstract: We address a single machine scheduling problem arising in a last mile delivery setting
for a food company. The same problem finds obvious applications also in the context of internal
manufacturing logistics. A set of food orders are placed by the customers and are to be fulfilled
by the company. Each order comprises a delivery point and an ideal delivery time An order
is considered on time if it is delivered within a certain given time interval around the ideal
delivery time. All food is prepared in a single production facility (restaurant) and immediately
carried to the customers by a single courier, who may dispatch one or two different orders in
a single trip. Since late deliveries correspond to canceled orders and an economic loss for the
company, it is of interest to schedule orders so that the number of late orders is minimized.
We model the resulting decision problem as a special single machine scheduling problem and
propose different mixed integer programs to solve it. Their performance is assessed through a
computational study on a set of test instances derived by our real-world application.
c© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All
rights reserved.

Keywords: Scheduling, Integer Programming, Optimization Problems, Combinatorial
Mathematics, Internal Logistics, Food Delivery.

1. INTRODUCTION

The logistic sector has always been a source of demanding
problems and applications for automation and optimiza-
tion. In the last few years this sector has had an incredible
transformation due to the recent spreading of e-commerce,
which in turn has also been reflected in the exponential
growth of the food delivery sector as shown by the spread-
ing of companies like GrubHub, Just-Eat or Deliveroo.
This increasing interest for the food delivery logistic is also
witnessed by the large number of works published and/or
submitted in the last year: See, e.g., Cosmi et al. (2018);
Ozbaygin and Savelsbergh (2018); Reyes et al. (2018);
Steever et al. (2018); Yildiz and Savelsbergh (2018).

In this paper, we address a scheduling problem motivated
by an application for food pick-up and delivery in an urban
area. The company provides food transportation services
from restaurants to final customers who specify the restau-
rant to order at, their location (i.e., the food destination),
and the ideal delivery time, besides, of course, the type and
amount of required dishes. Orders are shipped by a number
of couriers who may dispatch multiple orders within the
same working shift but can only deliver a limited number
of orders (usually, one) in a single restaurant-to-client
trip. In this context, typical decisions concern the (i)
assignment to couriers and (ii) scheduling of orders so that
the maximum delay with respect to the desired delivery
time, or the number of late—and, possibly, withdrawn—

orders are minimized. Cosmi et al. (2018) present a novel
approach, based on a time-expanded network, capable to
solve instances with several restaurants and customers in
an amount of time compatible with an online application.

Here, we focus on the single-courier single-restaurant case,
which gives rise to a special single-machine scheduling
problem. Besides being an interesting problem in itself,
solving the latter one can also be exploited as a compo-
nent routine in more general procedures for the original
(multi-courier multi-restaurant) problem, or integrating
the corresponding mathematical program within a sim-
ulation framework (see, e.g., Alfieri et al. (2015)).

The paper is organized as follows. In Sections 2 and 3 we
rigorously describe the addressed problem and propose an
model that considers possible aggregation of orders in pairs
served in a single trip of the courier. We then present four
different Integer Linear Programming models (Section 4)
and compare their performance through the results of an
extended computational campaign illustrated in Section 5.
Finally, in Section 6 some conclusions are drawn.

2. PROBLEM DESCRIPTION

In the addressed problem, there is a single restaurant,
where the food is prepared, and a given set of meal-orders
J = {1, . . . , n}, with their ideal delivery times d′j and
restaurant-destination travel times tj , for all j ∈ J .

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 516

Scheduling for last-mile meal-delivery
processes

Matteo Cosmi ∗ Gaia Nicosia ∗ Andrea Pacifici ∗∗

∗ Dipartimento di Ingegneria, Università degli Studi “Roma Tre”, via
della Vasca Navale 79, 00146 Rome, Italy (e-mail: {matteo.cosmi,

gaia.nicosia}@uniroma3.it)
∗∗ Dipartimento di Ingegneria Civile e Ingegneria Informatica,

Università degli Studi di Roma “Tor Vergata”, Via del Politecnico 1,
00133 Rome, Italy (e-mail: andrea.pacifici@uniroma2.it)

Abstract: We address a single machine scheduling problem arising in a last mile delivery setting
for a food company. The same problem finds obvious applications also in the context of internal
manufacturing logistics. A set of food orders are placed by the customers and are to be fulfilled
by the company. Each order comprises a delivery point and an ideal delivery time An order
is considered on time if it is delivered within a certain given time interval around the ideal
delivery time. All food is prepared in a single production facility (restaurant) and immediately
carried to the customers by a single courier, who may dispatch one or two different orders in
a single trip. Since late deliveries correspond to canceled orders and an economic loss for the
company, it is of interest to schedule orders so that the number of late orders is minimized.
We model the resulting decision problem as a special single machine scheduling problem and
propose different mixed integer programs to solve it. Their performance is assessed through a
computational study on a set of test instances derived by our real-world application.
c© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All
rights reserved.

Keywords: Scheduling, Integer Programming, Optimization Problems, Combinatorial
Mathematics, Internal Logistics, Food Delivery.

1. INTRODUCTION

The logistic sector has always been a source of demanding
problems and applications for automation and optimiza-
tion. In the last few years this sector has had an incredible
transformation due to the recent spreading of e-commerce,
which in turn has also been reflected in the exponential
growth of the food delivery sector as shown by the spread-
ing of companies like GrubHub, Just-Eat or Deliveroo.
This increasing interest for the food delivery logistic is also
witnessed by the large number of works published and/or
submitted in the last year: See, e.g., Cosmi et al. (2018);
Ozbaygin and Savelsbergh (2018); Reyes et al. (2018);
Steever et al. (2018); Yildiz and Savelsbergh (2018).

In this paper, we address a scheduling problem motivated
by an application for food pick-up and delivery in an urban
area. The company provides food transportation services
from restaurants to final customers who specify the restau-
rant to order at, their location (i.e., the food destination),
and the ideal delivery time, besides, of course, the type and
amount of required dishes. Orders are shipped by a number
of couriers who may dispatch multiple orders within the
same working shift but can only deliver a limited number
of orders (usually, one) in a single restaurant-to-client
trip. In this context, typical decisions concern the (i)
assignment to couriers and (ii) scheduling of orders so that
the maximum delay with respect to the desired delivery
time, or the number of late—and, possibly, withdrawn—

orders are minimized. Cosmi et al. (2018) present a novel
approach, based on a time-expanded network, capable to
solve instances with several restaurants and customers in
an amount of time compatible with an online application.

Here, we focus on the single-courier single-restaurant case,
which gives rise to a special single-machine scheduling
problem. Besides being an interesting problem in itself,
solving the latter one can also be exploited as a compo-
nent routine in more general procedures for the original
(multi-courier multi-restaurant) problem, or integrating
the corresponding mathematical program within a sim-
ulation framework (see, e.g., Alfieri et al. (2015)).

The paper is organized as follows. In Sections 2 and 3 we
rigorously describe the addressed problem and propose an
model that considers possible aggregation of orders in pairs
served in a single trip of the courier. We then present four
different Integer Linear Programming models (Section 4)
and compare their performance through the results of an
extended computational campaign illustrated in Section 5.
Finally, in Section 6 some conclusions are drawn.

2. PROBLEM DESCRIPTION

In the addressed problem, there is a single restaurant,
where the food is prepared, and a given set of meal-orders
J = {1, . . . , n}, with their ideal delivery times d′j and
restaurant-destination travel times tj , for all j ∈ J .

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 516

Scheduling for last-mile meal-delivery
processes

Matteo Cosmi ∗ Gaia Nicosia ∗ Andrea Pacifici ∗∗

∗ Dipartimento di Ingegneria, Università degli Studi “Roma Tre”, via
della Vasca Navale 79, 00146 Rome, Italy (e-mail: {matteo.cosmi,

gaia.nicosia}@uniroma3.it)
∗∗ Dipartimento di Ingegneria Civile e Ingegneria Informatica,

Università degli Studi di Roma “Tor Vergata”, Via del Politecnico 1,
00133 Rome, Italy (e-mail: andrea.pacifici@uniroma2.it)

Abstract: We address a single machine scheduling problem arising in a last mile delivery setting
for a food company. The same problem finds obvious applications also in the context of internal
manufacturing logistics. A set of food orders are placed by the customers and are to be fulfilled
by the company. Each order comprises a delivery point and an ideal delivery time An order
is considered on time if it is delivered within a certain given time interval around the ideal
delivery time. All food is prepared in a single production facility (restaurant) and immediately
carried to the customers by a single courier, who may dispatch one or two different orders in
a single trip. Since late deliveries correspond to canceled orders and an economic loss for the
company, it is of interest to schedule orders so that the number of late orders is minimized.
We model the resulting decision problem as a special single machine scheduling problem and
propose different mixed integer programs to solve it. Their performance is assessed through a
computational study on a set of test instances derived by our real-world application.
c© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All
rights reserved.

Keywords: Scheduling, Integer Programming, Optimization Problems, Combinatorial
Mathematics, Internal Logistics, Food Delivery.

1. INTRODUCTION

The logistic sector has always been a source of demanding
problems and applications for automation and optimiza-
tion. In the last few years this sector has had an incredible
transformation due to the recent spreading of e-commerce,
which in turn has also been reflected in the exponential
growth of the food delivery sector as shown by the spread-
ing of companies like GrubHub, Just-Eat or Deliveroo.
This increasing interest for the food delivery logistic is also
witnessed by the large number of works published and/or
submitted in the last year: See, e.g., Cosmi et al. (2018);
Ozbaygin and Savelsbergh (2018); Reyes et al. (2018);
Steever et al. (2018); Yildiz and Savelsbergh (2018).

In this paper, we address a scheduling problem motivated
by an application for food pick-up and delivery in an urban
area. The company provides food transportation services
from restaurants to final customers who specify the restau-
rant to order at, their location (i.e., the food destination),
and the ideal delivery time, besides, of course, the type and
amount of required dishes. Orders are shipped by a number
of couriers who may dispatch multiple orders within the
same working shift but can only deliver a limited number
of orders (usually, one) in a single restaurant-to-client
trip. In this context, typical decisions concern the (i)
assignment to couriers and (ii) scheduling of orders so that
the maximum delay with respect to the desired delivery
time, or the number of late—and, possibly, withdrawn—

orders are minimized. Cosmi et al. (2018) present a novel
approach, based on a time-expanded network, capable to
solve instances with several restaurants and customers in
an amount of time compatible with an online application.

Here, we focus on the single-courier single-restaurant case,
which gives rise to a special single-machine scheduling
problem. Besides being an interesting problem in itself,
solving the latter one can also be exploited as a compo-
nent routine in more general procedures for the original
(multi-courier multi-restaurant) problem, or integrating
the corresponding mathematical program within a sim-
ulation framework (see, e.g., Alfieri et al. (2015)).

The paper is organized as follows. In Sections 2 and 3 we
rigorously describe the addressed problem and propose an
model that considers possible aggregation of orders in pairs
served in a single trip of the courier. We then present four
different Integer Linear Programming models (Section 4)
and compare their performance through the results of an
extended computational campaign illustrated in Section 5.
Finally, in Section 6 some conclusions are drawn.

2. PROBLEM DESCRIPTION

In the addressed problem, there is a single restaurant,
where the food is prepared, and a given set of meal-orders
J = {1, . . . , n}, with their ideal delivery times d′j and
restaurant-destination travel times tj , for all j ∈ J .

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 516

Scheduling for last-mile meal-delivery
processes

Matteo Cosmi ∗ Gaia Nicosia ∗ Andrea Pacifici ∗∗

∗ Dipartimento di Ingegneria, Università degli Studi “Roma Tre”, via
della Vasca Navale 79, 00146 Rome, Italy (e-mail: {matteo.cosmi,

gaia.nicosia}@uniroma3.it)
∗∗ Dipartimento di Ingegneria Civile e Ingegneria Informatica,

Università degli Studi di Roma “Tor Vergata”, Via del Politecnico 1,
00133 Rome, Italy (e-mail: andrea.pacifici@uniroma2.it)

Abstract: We address a single machine scheduling problem arising in a last mile delivery setting
for a food company. The same problem finds obvious applications also in the context of internal
manufacturing logistics. A set of food orders are placed by the customers and are to be fulfilled
by the company. Each order comprises a delivery point and an ideal delivery time An order
is considered on time if it is delivered within a certain given time interval around the ideal
delivery time. All food is prepared in a single production facility (restaurant) and immediately
carried to the customers by a single courier, who may dispatch one or two different orders in
a single trip. Since late deliveries correspond to canceled orders and an economic loss for the
company, it is of interest to schedule orders so that the number of late orders is minimized.
We model the resulting decision problem as a special single machine scheduling problem and
propose different mixed integer programs to solve it. Their performance is assessed through a
computational study on a set of test instances derived by our real-world application.
c© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All
rights reserved.

Keywords: Scheduling, Integer Programming, Optimization Problems, Combinatorial
Mathematics, Internal Logistics, Food Delivery.

1. INTRODUCTION

The logistic sector has always been a source of demanding
problems and applications for automation and optimiza-
tion. In the last few years this sector has had an incredible
transformation due to the recent spreading of e-commerce,
which in turn has also been reflected in the exponential
growth of the food delivery sector as shown by the spread-
ing of companies like GrubHub, Just-Eat or Deliveroo.
This increasing interest for the food delivery logistic is also
witnessed by the large number of works published and/or
submitted in the last year: See, e.g., Cosmi et al. (2018);
Ozbaygin and Savelsbergh (2018); Reyes et al. (2018);
Steever et al. (2018); Yildiz and Savelsbergh (2018).

In this paper, we address a scheduling problem motivated
by an application for food pick-up and delivery in an urban
area. The company provides food transportation services
from restaurants to final customers who specify the restau-
rant to order at, their location (i.e., the food destination),
and the ideal delivery time, besides, of course, the type and
amount of required dishes. Orders are shipped by a number
of couriers who may dispatch multiple orders within the
same working shift but can only deliver a limited number
of orders (usually, one) in a single restaurant-to-client
trip. In this context, typical decisions concern the (i)
assignment to couriers and (ii) scheduling of orders so that
the maximum delay with respect to the desired delivery
time, or the number of late—and, possibly, withdrawn—

orders are minimized. Cosmi et al. (2018) present a novel
approach, based on a time-expanded network, capable to
solve instances with several restaurants and customers in
an amount of time compatible with an online application.

Here, we focus on the single-courier single-restaurant case,
which gives rise to a special single-machine scheduling
problem. Besides being an interesting problem in itself,
solving the latter one can also be exploited as a compo-
nent routine in more general procedures for the original
(multi-courier multi-restaurant) problem, or integrating
the corresponding mathematical program within a sim-
ulation framework (see, e.g., Alfieri et al. (2015)).

The paper is organized as follows. In Sections 2 and 3 we
rigorously describe the addressed problem and propose an
model that considers possible aggregation of orders in pairs
served in a single trip of the courier. We then present four
different Integer Linear Programming models (Section 4)
and compare their performance through the results of an
extended computational campaign illustrated in Section 5.
Finally, in Section 6 some conclusions are drawn.

2. PROBLEM DESCRIPTION

In the addressed problem, there is a single restaurant,
where the food is prepared, and a given set of meal-orders
J = {1, . . . , n}, with their ideal delivery times d′j and
restaurant-destination travel times tj , for all j ∈ J .

9th IFAC Conference on Manufacturing Modelling, Management and
Control
Berlin, Germany, August 28-30, 2019

Copyright © 2019 IFAC 516

512 Matteo Cosmi et al. / IFAC PapersOnLine 52-13 (2019) 511–516

The restaurant may be regarded as a depot from which the
courier starts when he is shipping, say, the j-th order, and
where he will go back immediately after the order has been
delivered to the customer. It is assumed that the selected
courier, once he has gathered the food at the restaurant,
will immediately deliver the food without any idle waiting
time. Therefore, the actual delivery time is given by the
pick-up time at the restaurant plus the travel time between
the restaurant and the destination. Moreover, an order
is considered on time if it is delivered in an interval of
δ minutes centered around the ideal time chosen by the
customer. (In the considered application δ = 30 minutes
which means that an early or late delivery is accepted if
it is not earlier or later than 15 minutes.) The courier is
considered a single moving resource and he is not available
for processing any other order i �= j until he will be back
again to the restaurant.

In conclusion, we may view the orders as jobs/tasks and
the single courier as a processing resource in a scheduling
system where each task j ∈ J is associated to the following
data.

The due date dj is the latest possible time for the courier to
be back to the restaurant after delivering the j-th order on
time to the customer and it is therefore dj = d′j +

1
2δ+ tj .

The release date rj is the earliest possible time for the
courier to start from the restaurant and deliver the j-
th order on time to the customer. It can be written as
rj = d′j − 1

2δ − tj . The processing time pj represents
the amount of time the courier is busy with order j and,
neglecting possible waiting times at the restaurantand at
the customer, it is given by the total travel time pj = 2tj
of the courier from the restaurant to the corresponding
customer destination and back to the restaurant. (We
assume the restaurant schedules the required preparations
so that the food is ready for immediate pick-up by the
courier, for any order j ∈ J .)

In this framework, an order j is on time if and only if the
corresponding task starts (i.e., the courier picks the food
at the restaurant) not before rj and completes (i.e., the
courier returns back to the restaurant and he is available
for another trip) not later than dj . Finding a sequence
of orders to minimize the number of late deliveries is
a special case of the single machine scheduling problem
with (arbitrary) release dates and due dates 1|rj |

∑
Uj .

The latter problem is, in general, strongly NP-hard (see,
e.g., Garey and Johnson (1979)). Algorithms to address
this problem (or its relaxations) have been presented
in, e.g., Dauzère-Pérès (1995); Baptiste et al. (2003);
Dauzère-Pérès and Sevaux (2004). A relevant application
is presented in, e.g., Adacher and Flamini (2014).

In our problem, as a consequence of the above definitions,
we have the relation:

dj = rj + pj + δ (1)

which makes our scheduling problem a special case of
1|rj |

∑
Uj , since due dates and release dates are inter-

dependent. We denote our problem as 1|rj , δ|
∑

j Uj . In
the literature, δ is the so-called slack and the problems
where dj ≤ rj + pj + δ (a relaxation of Equation (1)) are
often referred to as slack-interval scheduling problems. In
this context, Cieliebak et al. (2004) seek a schedule that
minimizes the number of machines necessary to complete

all jobs on time. The authors show that, recurring to
a suitable model on interval graphs, their problem can
be solved in polynomial time if δ ∈ {0, 1}. Otherwise,
they propose a solution algorithm that runs in O(n(δ +
1)HH logH), where n and H are the number of jobs and
overlapping intervals, respectively. A refined algorithm for
the feasibility version of the same problem is proposed in
van Bevern et al. (2017). Its cost is O(nδm log(δm)(δ +
1)m(2δ+1) + n log n), where m is the number of available
machines. As shown in the above papers, the problem is
already NP-hard when δ = 2 for arbitrary m, while it is
tractable for fixed parameter m + δ. The complexity for
the special case m = 1 and δ > 1 is still an open question.

3. ORDER AGGREGATION

We consider the problem in which the courier may not only
pick one order at a time, but he is also allowed to serve
two orders together, in order to save time. In this case, the
deliveries to the customers are performed in a single trip
from the restaurant to two different locations and back.
We look again at this composite service as a special task
(in the following equivalently referred to as a twin order or
a twin task or, simply, a twin). Hereafter, we suppose that
after the first delivery the courier immediately proceeds to
consign the second order of a twin:

No-wait assumption: When processing a twin, the courier
is not allowed to introduce idle time between the two
deliveries (and possibly wait for the second order not to
arrive too early).

Clearly, a courier may fulfil two orders i and j in a single
trip (and hence, tasks i and j are allowed to be in the
same twin) only if it is possible to meet the corresponding
delivery-time constraints under the no-wait assumption.
In this case, the twin composed by the ordered pair of
tasks (i, j) (hereafter, for notation simplicity, indicated by
ij) is called a feasible twin, so that it may be regarded
as a single aggregated task. If tij denotes the travel time
between clients i and j, the following proposition holds.

Proposition 1. Given two orders i, j ∈ J × J , the twin ij
is feasible if and only if:

δij
def
= δ − |tij − dj + di + 1/2(pj − pi)| ≥ 0 (2)

Proof. If a courier starts the trip associated to twin order
ij at time θ, then, in order to have an on-time twin, the
following must hold:

θ ≥ ri
θ + 2ti ≤ di
θ + ti + tij ≥ rj − tj
θ + ti + tij + tj ≤ dj

where the first two inequalities guarantee that the first
order i is on time, while the last two take into account
that the delivery point of order j, due to the no-wait
assumption, is reached after ti + tij time units.

Recalling that, for a task j ∈ J , the processing time pj
equals twice the travel time from the restaurant to the
delivery point of order j and that Equation (1) holds, the
thesis follows. �

We denote the set of feasible twins by

D = {ij : (i, j) ∈ J × J, δij ≥ 0}. (3)

2019 IFAC MIM
Berlin, Germany, August 28-30, 2019

517

For notational convenience, we include in D, the special
symbol jj (for any j ∈ J) in order to represent a single
task j as a twin (but not aggregated to another task).
Clearly, jj ∈ D for all j ∈ J .

Naturally extending the concept of on-time order, we say
that a twin order ij ∈ D is on time if both its component
are so. Obviously, feasibility condition (2) is only necessary
for a twin to be on time.

We are now in the position to define a release date rij
and a due date dij associated to any feasible twin task
ij ∈ D so that, if the starting time of twin ij belongs to
the interval [rij , rij + δij], then ij is on time.

The above mentioned parameters can be computed as
shown below, depending on the sign of the quantity:

τij
def
= tij − (dj − di)−

1

2
(pi − pj).

With some algebra, it is not hard to show that the release
date of a twin ij can be expressed as

rij
def
= di − δ − pi (= ri) if τij > 0 (4)

rij
def
= dj − δ − 1

2
(pj + pi)− tij if τij ≤ 0. (5)

Due to the no-wait assumption, the amount of time in
which the courier is busy with a twin ij is given by the
the overall travel time:

pij
def
= tij + ti + tj = tij +

1

2
(pi + pj). (6)

As a consequence of Equations (4) and (6), the definition
of the due date of a twin ij follows:

dij
def
= rij + δij + pij . (7)

Observe that, if τij > 0, then dij = dj .

4. OPTIMIZATION MODELS

Hereafter, we propose four different ILP models that we
have developed to solve the above described scheduling
problem. The first two programs fall in the class of
Natural-date/Sequencing Models, while the third model is
a positional type of ILP and the fourth is a time-indexed
formulation based on “pulse” start variables (Artigues
et al. (2015)).

Our objective function aims at minimizing the number of
late tasks, so in the objective in the programs below we
use binary variables yij (representing whether a twin order
is late or not) multiplied by a weight wij that takes into
account if the task corresponds to a twin order or not.
More precisely, for each ij ∈ D, we set wij = 2 if i �= j,
i.e. if ij is a twin order, and wij = 1 if i = j. Hence, the
definition of wij represents the fact when a twin order is
late, we consider as late both of its orders. Note that this
assumption can be made since, whenever there exists a
schedule σ containing a twin order with only one order
on time (while the other one is late), it is possible to
prove that such schedule is always dominated by another
schedule σ̄ where the twin order is split into two single
orders, one on time and one late, and the value of the
objective function is such that f(σ̄) ≤ f(σ).

4.1 ILP1: Twin Sequencing Model

In our first model, ILP1, besides the yij variables intro-
duced above, we use as decision variables:

• sij ∈ R+, representing the starting time of the pair
of tasks ij;

• zhkij ∈ {0, 1}, encoding whether hk immediately pre-
cedes ij.

Moreover, we introduce two additional “dummy” orders,
that correspond to the first and the last scheduled tasks.
We call them α and ω, respectively, and we consider also
the twin orders (α, α) and (ω, ω).

ILP1 is as follows:

min
∑
ij∈D

wijyij (8)

s.t. sij ≥ rij ij ∈ D (9)

sij ≥ shk + phk − (1− zhkij)M hk, ij ∈ D (10)

sij + pij ≤ dij +Myij ij ∈ D (11)∑
hk∈D

(zhkii +
∑

j:ij∈D

zhkij +
∑

j:ji∈D

zhkji) = 1 i ∈ J ∪ {ω} (12)

∑
hk∈D

(ziihk +
∑

j:ij∈D

zij
hk

+
∑

j:ji∈D

zji
hk

) ≤ 1 i ∈ J ∪ {α} (13)

∑
hk∈D

(zhkij − zij
hk

) = 0 ij ∈ D (14)

∑
hk∈D

zh,kαα = 0 (15)

yij , sij ∈ {0, 1} ij ∈ D (16)

zhkij ∈ {0, 1} ij, hk ∈ D (17)

Constraints (9)-(10) impose that a twin ij starts after
its predecessor has been completed and after its release
time rij . If it is not possible to complete a twin ij before
its delivery time, constraints (11) set yij = 1 counting
the delay in the objective function. Constraints (12)-(13)
force each order j ∈ J to have exactly one predecessor
and successor (they also impose that α has to have one
successor and ω one predecessor). In addition, if hk is the
predecessor of ij, then ij is the successor for hk, so if
zhkij = 1 then we must have zijhk = 1 and this is imposed by
constraints (14). Finally, constraint (15) prevents the fake
task α from having a predecessor.

4.2 ILP2: Task Sequencing Model

The model below is quite similar to the one described
above. The main difference lies in the starting-time and
precedence variables that, in this model, always refer
to single tasks. Moreover, here we consider task i as a
predecessor of j if the former comes before the latter in
the schedule.

We define the following decision variables:

• si ∈ R+, representing the starting time of task i;
• xij ∈ {0, 1}, encoding whether task i precedes task j;
• βij ∈ {0, 1}, indicating whether tasks i and j are

scheduled as a twin order ij.

Formulation ILP2 is illustrated below.

2019 IFAC MIM
Berlin, Germany, August 28-30, 2019

518

 Matteo Cosmi et al. / IFAC PapersOnLine 52-13 (2019) 511–516 513

For notational convenience, we include in D, the special
symbol jj (for any j ∈ J) in order to represent a single
task j as a twin (but not aggregated to another task).
Clearly, jj ∈ D for all j ∈ J .

Naturally extending the concept of on-time order, we say
that a twin order ij ∈ D is on time if both its component
are so. Obviously, feasibility condition (2) is only necessary
for a twin to be on time.

We are now in the position to define a release date rij
and a due date dij associated to any feasible twin task
ij ∈ D so that, if the starting time of twin ij belongs to
the interval [rij , rij + δij], then ij is on time.

The above mentioned parameters can be computed as
shown below, depending on the sign of the quantity:

τij
def
= tij − (dj − di)−

1

2
(pi − pj).

With some algebra, it is not hard to show that the release
date of a twin ij can be expressed as

rij
def
= di − δ − pi (= ri) if τij > 0 (4)

rij
def
= dj − δ − 1

2
(pj + pi)− tij if τij ≤ 0. (5)

Due to the no-wait assumption, the amount of time in
which the courier is busy with a twin ij is given by the
the overall travel time:

pij
def
= tij + ti + tj = tij +

1

2
(pi + pj). (6)

As a consequence of Equations (4) and (6), the definition
of the due date of a twin ij follows:

dij
def
= rij + δij + pij . (7)

Observe that, if τij > 0, then dij = dj .

4. OPTIMIZATION MODELS

Hereafter, we propose four different ILP models that we
have developed to solve the above described scheduling
problem. The first two programs fall in the class of
Natural-date/Sequencing Models, while the third model is
a positional type of ILP and the fourth is a time-indexed
formulation based on “pulse” start variables (Artigues
et al. (2015)).

Our objective function aims at minimizing the number of
late tasks, so in the objective in the programs below we
use binary variables yij (representing whether a twin order
is late or not) multiplied by a weight wij that takes into
account if the task corresponds to a twin order or not.
More precisely, for each ij ∈ D, we set wij = 2 if i �= j,
i.e. if ij is a twin order, and wij = 1 if i = j. Hence, the
definition of wij represents the fact when a twin order is
late, we consider as late both of its orders. Note that this
assumption can be made since, whenever there exists a
schedule σ containing a twin order with only one order
on time (while the other one is late), it is possible to
prove that such schedule is always dominated by another
schedule σ̄ where the twin order is split into two single
orders, one on time and one late, and the value of the
objective function is such that f(σ̄) ≤ f(σ).

4.1 ILP1: Twin Sequencing Model

In our first model, ILP1, besides the yij variables intro-
duced above, we use as decision variables:

• sij ∈ R+, representing the starting time of the pair
of tasks ij;

• zhkij ∈ {0, 1}, encoding whether hk immediately pre-
cedes ij.

Moreover, we introduce two additional “dummy” orders,
that correspond to the first and the last scheduled tasks.
We call them α and ω, respectively, and we consider also
the twin orders (α, α) and (ω, ω).

ILP1 is as follows:

min
∑
ij∈D

wijyij (8)

s.t. sij ≥ rij ij ∈ D (9)

sij ≥ shk + phk − (1− zhkij)M hk, ij ∈ D (10)

sij + pij ≤ dij +Myij ij ∈ D (11)∑
hk∈D

(zhkii +
∑

j:ij∈D

zhkij +
∑

j:ji∈D

zhkji) = 1 i ∈ J ∪ {ω} (12)

∑
hk∈D

(ziihk +
∑

j:ij∈D

zij
hk

+
∑

j:ji∈D

zji
hk

) ≤ 1 i ∈ J ∪ {α} (13)

∑
hk∈D

(zhkij − zij
hk

) = 0 ij ∈ D (14)

∑
hk∈D

zh,kαα = 0 (15)

yij , sij ∈ {0, 1} ij ∈ D (16)

zhkij ∈ {0, 1} ij, hk ∈ D (17)

Constraints (9)-(10) impose that a twin ij starts after
its predecessor has been completed and after its release
time rij . If it is not possible to complete a twin ij before
its delivery time, constraints (11) set yij = 1 counting
the delay in the objective function. Constraints (12)-(13)
force each order j ∈ J to have exactly one predecessor
and successor (they also impose that α has to have one
successor and ω one predecessor). In addition, if hk is the
predecessor of ij, then ij is the successor for hk, so if
zhkij = 1 then we must have zijhk = 1 and this is imposed by
constraints (14). Finally, constraint (15) prevents the fake
task α from having a predecessor.

4.2 ILP2: Task Sequencing Model

The model below is quite similar to the one described
above. The main difference lies in the starting-time and
precedence variables that, in this model, always refer
to single tasks. Moreover, here we consider task i as a
predecessor of j if the former comes before the latter in
the schedule.

We define the following decision variables:

• si ∈ R+, representing the starting time of task i;
• xij ∈ {0, 1}, encoding whether task i precedes task j;
• βij ∈ {0, 1}, indicating whether tasks i and j are

scheduled as a twin order ij.

Formulation ILP2 is illustrated below.

2019 IFAC MIM
Berlin, Germany, August 28-30, 2019

518

514 Matteo Cosmi et al. / IFAC PapersOnLine 52-13 (2019) 511–516

min
∑
ij∈D

wijyij (18)

s.t. si ≥
∑
ij∈D

rijβij i ∈ J (19)

sj ≥ ci −M(βij − xij + 1) i, j ∈ J : i �= j (20)

si ≥ cj −M(βij + xij) i, j ∈ J : i �= j (21)

sj ≥ si −M(1− βij) ij ∈ D (22)

si + pij ≤ dij +M(yij + 1− βi,j) ij ∈ D (23)

sj + pij ≤ dij +M(yij + 1− βi,j) ij ∈ D (24)

cj = sj +
∑

i:ij∈D

pijβij j ∈ J (25)

xij + xji = 1 ij : i �= j ∈ D (26)

xjh ≥ xih −M(1− βij)
ij ∈ D

h ∈ J : h �= i, j
(27)

∑
j:ij∈D

βij ≤ 1 i ∈ J (28)

∑
i:ij∈D

βij ≤ 1 j ∈ J (29)

∑
j:ij∈D

βij +
∑

h:hi∈D,h �=i

βhi = 1 i ∈ J (30)

si ∈ R+ i ∈ J (31)

βij , xij , yij ∈ {0, 1} ij ∈ D (32)

Constraints (28)-(30) impose that each task i must always
be associated and hence scheduled within a twin order
(comprising order (i, i)). Constraints (19) force each task
i to always start after the release time of the twin order
which it is associated to. Constraints (20)-(21) are stan-
dard disjunctive constraints imposing precedences between
each pair of tasks i and j not belonging to the same twin
order. These constraints do not hold if i is scheduled as
single task, whereas, in the latter case, constraint (22)
holds. Each single task has to be completed before its twin
order delivery time otherwise the twin order is considered
late (23)-(24). Constraints (26) impose that if i precedes
j then it is not possible that j precedes i. Constraint (27)
sets that if i and j are scheduled in the twin order ij then
if i precedes h also j has to precede h.

4.3 ILP3: Positional Model

The third ILP model that we propose is a Positional Model
where the main variables are binary variables xjh that
indicate whether task j is scheduled in position h and a
variable stating if in posistion h there is as single task or a
twin order. By using these variables it is possible to derive,
for each task scheduled in position h, its completion time
and, hence, whether it is late or not.

For brevity we avoid describing the whole formulation
and limit ourselves to present the experimental results
concerning ILP3 in Section 5.

4.4 ILP4: Time-indexed Model

Hereafter, we illustrate a time-indexed formulation for our
problem which is based on binary variables xt

ij , such that

xt
ij = 1 if and only if the pair ij starts at time t (this

type of variables are often referred to as pulse variables).

We also define a set of tasks Dθ = {ij ∈ D s.t. rij ≤ θ}
containing only tasks having a release time not greater
than θ. As in the above models, we also use yij binary
variables to keep track of the number of the late tasks.

min
∑
ij∈D

wijyij (33)

s.t.

T∑
t=rij

txt
ij + pij ≤ dij +Myij ij ∈ D (34)

T∑
t=1

∑
hk∈Dt:i∈{h,k}

xt
hk = 1 i ∈ J (35)

∑
hk∈D
hk �=ij

min{T,θ+pij−1}∑
t=θ

xt
hk ≤ n(1− xθ

ij)
ij ∈ D

θ = 1, 2, . . . T
(36)

xt
ij , yij ∈ {0, 1}

ij ∈ D,

t = 1, 2, . . . T
(37)

Constraints (34) impose that each twin order which is
completed after its due date is considered late. Constraints
(35) guarantee that each task i is scheduled in a twin
order ik (or hi) starting after its release time rik (or rhi).
Constraints (36) imply that if an order ij starts at time
θ, then no other task can start in the succeeding pij time
periods.

5. COMPUTATIONAL RESULTS

Hereafter we describe the results of a computational cam-
paign aimed at comparing the quality of the four proposed
ILPs. The tests were run on instances derived from real
world scenarios in which the number of orders n varies
from a minimum of 5 to a maximum of 31. The considered
time horizon is roughly a courier shift, 4 hours, and cor-
responds, in all instances, to the busiest hours of the day,
namely those spanning over dinner time. Instances refer
to a number of different restaurants and relate to different
days of the year, therefore they may vary in geographical
and temporal distribution of orders.

Models were built using the JuMP package (Dunning et al.
(2017)) for Julia and solved by Gurobi (ver. 8.0.0). All
tests were performed on a computer equipped with an Intel
Xeon E5-2643v3 3.40 GhZ CPU and 32 GB RAM.

In all computational experiments we set a time limit of 300
seconds (an instance not solved within this limit is declared
unsolved). In Table 1 we report on the number of instances
solved within the time limit for each ILP (columns 3-6).
Instances are grouped so that in each class the instances
have the same number n of orders (reported in column 1).
Note that, since all the instances are derived from a real
world application, we do not have the same numbers of
instances in each class (see column 2).

These results show that the Task Sequencing model, ILP2,
performs better than the other ILPs solving more than
92% of the considered instances. Regarding computation
times, ILP2 appears to be a quite efficient model: it is
able to solve each instance in less than 5 seconds on the
average, see Tables 2 and 3. Table 2 also shows that ILP2 is
the fastest model in terms of average number of explored

2019 IFAC MIM
Berlin, Germany, August 28-30, 2019

519

Table 1. Number of optimally solved instances

n # Inst Twin Seq Task Seq Posit Time-Ind

5 1 1 1 1 1
7 2 2 2 2 2
9 2 2 2 2 2
10 113 113 113 113 108
11 91 91 91 91 88
12 63 63 63 63 57
13 42 40 42 38 39
14 27 22 27 17 23
15 25 17 25 8 22
16 15 7 14 5 12
17 20 12 20 8 15
18 18 5 16 3 7
19 12 4 11 3 4
20 12 1 8 1 0
21 5 1 3 0 0
22 8 1 4 1 1
23 3 0 1 0 0
24 2 0 0 0 0
25 2 0 0 0 0
26 4 0 1 0 0
27 5 0 0 0 0
29 2 0 0 0 0
30 2 0 0 0 0
31 2 0 0 0 0

Overall 478 382 444 356 381

nodes. Moreover, ILP2 takes less than 10% of the time
needed by the Time-Indexed formulation, less than 37.5%
of the Positional model and 64% of ILP1. Looking at Table
3, we may also observe that for instances with less than 17
orders, ILP2 solves 99.73% of the available instances in an
average time lower than 3 seconds. Even when the number
of orders is between 17 and 20 this model is able to solve
88.71% of the instances on an average time of 53 seconds.
When the size of the problem increases to over 21 orders,
ILP2 becomes less effective finding the optimal solution in
less than 5 minutes only in the 25.71% of the tests. Table 3
reports also maximum, minimum and average time spent
by ILP1 to find the optimal solution. (The acronym TL
means that no optimal solution was found within the time
limit.)

Table 2. Computation times and number of
explored nodes (averages)

Formulation Time (s) Explored Nodes 1

Twin sequencing 7.704 2331
Task sequencing 4.923 482

Positional 13.128 16126
Time-Indexed 56.755 3576

In order to find out how effective is order aggregation, we
have compared the solutions obtained in two settings: the
first one permitting order aggregation and the others in
which twin orders are not allowed (i.e. when there are only
single tasks). As illustrated by Figure 1, the experiments
show that:

• In 224 out of 444 (i.e., 50.45% of the) optimally solved
instances, order aggregation reduces the number of
late tasks (compared to the single-task setting) and

1 This column reports the average number of explored nodes for
those instances optimally solved by all models.

Table 3. Computation times (sec) of Twin
(ILP1) and Task Sequencing (ILP2) models

Twin Sequencing Task Sequencing
n Tmax Tmin Tmean Tmax Tmin Tmean

5 0.004 0.004 0.004 0.004 0.004 0.004
7 0.069 0.022 0.045 0.062 0.004 0.033
9 0.308 0.161 0.234 0.053 0.023 0.038
10 225.843 0.0170 2.686 1.388 0.014 0.119
11 91.533 0.0250 3.540 1.398 0.018 0.158
12 66.241 0.099 2.650 2.169 0.020 0.284
13 TL 0.138 5.881 4.526 0.025 0.581
14 TL 0.319 7.004 17.773 0.035 1.564
15 TL 1.350 39.046 8.943 0.044 2.139
16 TL 1.136 31.335 TL 0.078 1.774
17 TL 1.319 18.462 183.590 0.079 20.302
18 TL 29.085 60.099 TL 0.081 25.716
19 TL 9.043 31.231 TL 0.145 22.467
20 TL 81.851 81.851 TL 0.277 52.894
21 TL 64.300 64.300 TL 0.938 113.741
22 TL 84.064 84.064 TL 0.409 27.074
23 TL - - TL 15.130 15.130
24 TL - - TL - -
25 TL - - TL - -
26 TL - - TL 42.434 42.434
27 TL - - TL - -
29 TL - - TL - -
30 TL - - TL - -
31 TL - - TL - -

the average reduction in the objective function value
is around 61%.

• The reduction in the objective caused by order aggre-
gation becomes more relevant together with the size
of the instances (i.e. number of tasks).

Finally, it is also worth to mention that in 28 over 34
(i.e., 96.55% of the) instances the best (sub-optimal)
solution obtained in the order aggregation case, within
the 300 seconds time limit, improves upon the optimal
solutions found with the standard single-task model. This
proves that order aggregation is effective compared to the
single delivery model, even when the system imposes short
computation times for finding feasible solutions.

Fig. 1. Order aggregation vs. Single-task model: Objective
values comparison

6. CONCLUSIONS

We address a single-restaurant single-courier last-mile-
delivery scheduling problem in which the objective is the

2019 IFAC MIM
Berlin, Germany, August 28-30, 2019

520

 Matteo Cosmi et al. / IFAC PapersOnLine 52-13 (2019) 511–516 515

Table 1. Number of optimally solved instances

n # Inst Twin Seq Task Seq Posit Time-Ind

5 1 1 1 1 1
7 2 2 2 2 2
9 2 2 2 2 2
10 113 113 113 113 108
11 91 91 91 91 88
12 63 63 63 63 57
13 42 40 42 38 39
14 27 22 27 17 23
15 25 17 25 8 22
16 15 7 14 5 12
17 20 12 20 8 15
18 18 5 16 3 7
19 12 4 11 3 4
20 12 1 8 1 0
21 5 1 3 0 0
22 8 1 4 1 1
23 3 0 1 0 0
24 2 0 0 0 0
25 2 0 0 0 0
26 4 0 1 0 0
27 5 0 0 0 0
29 2 0 0 0 0
30 2 0 0 0 0
31 2 0 0 0 0

Overall 478 382 444 356 381

nodes. Moreover, ILP2 takes less than 10% of the time
needed by the Time-Indexed formulation, less than 37.5%
of the Positional model and 64% of ILP1. Looking at Table
3, we may also observe that for instances with less than 17
orders, ILP2 solves 99.73% of the available instances in an
average time lower than 3 seconds. Even when the number
of orders is between 17 and 20 this model is able to solve
88.71% of the instances on an average time of 53 seconds.
When the size of the problem increases to over 21 orders,
ILP2 becomes less effective finding the optimal solution in
less than 5 minutes only in the 25.71% of the tests. Table 3
reports also maximum, minimum and average time spent
by ILP1 to find the optimal solution. (The acronym TL
means that no optimal solution was found within the time
limit.)

Table 2. Computation times and number of
explored nodes (averages)

Formulation Time (s) Explored Nodes 1

Twin sequencing 7.704 2331
Task sequencing 4.923 482

Positional 13.128 16126
Time-Indexed 56.755 3576

In order to find out how effective is order aggregation, we
have compared the solutions obtained in two settings: the
first one permitting order aggregation and the others in
which twin orders are not allowed (i.e. when there are only
single tasks). As illustrated by Figure 1, the experiments
show that:

• In 224 out of 444 (i.e., 50.45% of the) optimally solved
instances, order aggregation reduces the number of
late tasks (compared to the single-task setting) and

1 This column reports the average number of explored nodes for
those instances optimally solved by all models.

Table 3. Computation times (sec) of Twin
(ILP1) and Task Sequencing (ILP2) models

Twin Sequencing Task Sequencing
n Tmax Tmin Tmean Tmax Tmin Tmean

5 0.004 0.004 0.004 0.004 0.004 0.004
7 0.069 0.022 0.045 0.062 0.004 0.033
9 0.308 0.161 0.234 0.053 0.023 0.038
10 225.843 0.0170 2.686 1.388 0.014 0.119
11 91.533 0.0250 3.540 1.398 0.018 0.158
12 66.241 0.099 2.650 2.169 0.020 0.284
13 TL 0.138 5.881 4.526 0.025 0.581
14 TL 0.319 7.004 17.773 0.035 1.564
15 TL 1.350 39.046 8.943 0.044 2.139
16 TL 1.136 31.335 TL 0.078 1.774
17 TL 1.319 18.462 183.590 0.079 20.302
18 TL 29.085 60.099 TL 0.081 25.716
19 TL 9.043 31.231 TL 0.145 22.467
20 TL 81.851 81.851 TL 0.277 52.894
21 TL 64.300 64.300 TL 0.938 113.741
22 TL 84.064 84.064 TL 0.409 27.074
23 TL - - TL 15.130 15.130
24 TL - - TL - -
25 TL - - TL - -
26 TL - - TL 42.434 42.434
27 TL - - TL - -
29 TL - - TL - -
30 TL - - TL - -
31 TL - - TL - -

the average reduction in the objective function value
is around 61%.

• The reduction in the objective caused by order aggre-
gation becomes more relevant together with the size
of the instances (i.e. number of tasks).

Finally, it is also worth to mention that in 28 over 34
(i.e., 96.55% of the) instances the best (sub-optimal)
solution obtained in the order aggregation case, within
the 300 seconds time limit, improves upon the optimal
solutions found with the standard single-task model. This
proves that order aggregation is effective compared to the
single delivery model, even when the system imposes short
computation times for finding feasible solutions.

Fig. 1. Order aggregation vs. Single-task model: Objective
values comparison

6. CONCLUSIONS

We address a single-restaurant single-courier last-mile-
delivery scheduling problem in which the objective is the

2019 IFAC MIM
Berlin, Germany, August 28-30, 2019

520

516 Matteo Cosmi et al. / IFAC PapersOnLine 52-13 (2019) 511–516

maximization of the orders on time. To improve the quality
of the solutions we consider the possibility of merging two
orders, so that a single courier can deliver one or two meals
in each trip.

The results are promising. In particular, they show that
serving more than one customer in a single trip con-
siderably reduces the number of late tasks (and this is
also true for the instances not solved to optimality). This
means that solving the problem with order aggregation is
a matter of interest to improve the quality of service for a
restaurant or a food delivery company.

The experiments also suggest that the classical sequencing
models (ILP1 and ILP2) appear to be the most effective
ones, immediately followed by the Time-Indexed formula-
tion. It would be interesting to compare the performance
of the proposed ILPs to other integer programs, such as,
for instance packing formulation as in Agnetis et al. (2009)
and/or a combinatorial branch and bound able to exploit
some non-trivial lower bounds which may be derived with
arguments similar to those illustrated in Nicosia and Paci-
fici (2017).

Additional promising directions of research may include
(but are not limited to): (i) Investigating polynomially
solvable sub-cases possibly induced by bounding the num-
ber of possible travel lengths (like, e.g., in Detti (2008)).
(ii) The design of a branch and price ad-hoc algorithm
using either the time indexed formulation or a packing
formulation. (iii) Studying a last mile delivery problem
in which the courier works for more than one delivery
company. In this case, the problem becomes a multi-agent
scheduling problem where different agents compete for the
usage of a single machine (see e.g. Nicosia et al. (2018);
Agnetis et al. (2013, 2015); Marini et al. (2013)).

REFERENCES

Adacher, L. and Flamini, M. (2014). Aircraft ground
routing and scheduling optimization. In UKSim-AMSS
16th International Conference on Computer Modelling
and Simulation, UKSim 2014, 45–350.

Agnetis, A., Alfieri, A., and Nicosia, G. (2009). Single-
machine scheduling problems with generalized preemp-
tion. INFORMS Journal on Computing, 21(1), 1–12.

Agnetis, A., Nicosia, G., Pacifici, A., and Pferschy, U.
(2013). Two agents competing for a shared machine.
In P. Perny, M. Pirlot, and A. Tsoukiàs (eds.), Algorith-
mic Decision Theory, 1–14. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Agnetis, A., Nicosia, G., Pacifici, A., and Pferschy, U.
(2015). Scheduling two agent task chains with a central
selection mechanism. Journal of Scheduling, 18(3), 243–
261.

Alfieri, A., Matta, A., and Pedrielli, G. (2015). Math-
ematical programming models for joint simulation–
optimization applied to closed queueing networks. An-
nals of Operations Research, 231(1), 105–127.

Artigues, C., Koné, O., Lopez, P., and Mongeau, M.
(2015). Mixed-integer linear programming formulations.
In C. Schwindt and J. Zimmermann (eds.), Handbook
on Project Management and Scheduling Vol.1, 17–41.
Springer International Publishing.

Baptiste, P., Peridy, L., and Pinson, E. (2003). A branch
and bound to minimize the number of late jobs on a

single machine with release time constraints. European
Journal of Operational Research, 144(1), 1 – 11.

Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., and
Widmayer, P. (2004). Scheduling with release times
and deadlines on a minimum number of machines. In
J.J. Levy, E.W. Mayr, and J.C. Mitchell (eds.), Explor-
ing New Frontiers of Theoretical Informatics, 209–222.
Springer US, Boston, MA.

Cosmi, M., Oriolo, G., Piccialli, V., Terranova, S., and
Ventura, P. (2018). Last-mile delivery for a food com-
pany. In EURO/ALIO 2018, Bologna, Italy, June 2018.

Dauzère-Pérès, S. (1995). Minimizing late jobs in the
general one machine scheduling problem. European
Journal of Operational Research, 81, 134–142.

Dauzère-Pérès, S. and Sevaux, M. (2004). An exact
method to minimize the number of tardy jobs in single
machine scheduling. Journal of Scheduling, 7(6), 405–
420.

Detti, P. (2008). Algorithms for multiprocessor scheduling
with two job lengths and allocation restrictions. Journal
of Scheduling, 11(3), 205–212.

Dunning, I., Huchette, J., and Lubin, M. (2017). Jump:
A modeling language for mathematical optimization.
SIAM Review, 59(2), 295–320.

Garey, M.R. and Johnson, D.S. (1979). Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.

Marini, C., Nicosia, G., Pacifici, A., and Pferschy, U.
(2013). Strategies in competing subset selection. Annals
of Operations Research, 207(1), 181–200.

Nicosia, G. and Pacifici, A. (2017). Scheduling assembly
tasks with caterpillar precedence constraints on dedi-
cated machines. International Journal of Production
Research, 55(6), 1680–1691.

Nicosia, G., Pacifici, A., and Pferschy, U. (2018). Compet-
itive multi-agent scheduling with an iterative selection
rule. 4OR, 16(1), 15–29.

Ozbaygin, G. and Savelsbergh, M. (2018). An
iterative re-optimizing framework for the dy-
namic vehicle routing problem with roaming
delivery locations. Optimization Online. URL
http://www.optimization-online.org/DB HTML/
2018/08/6784.html.

Reyes, D., Erera, A., Savelsbergh, M., Sahasrabudhe,
S., and O’Neil, R. (2018). The meal delivery
routing problem. Optimization-Online. URL
http://www.optimization-online.org/DB HTML/
2018/04/6571.html.

Steever, Z., Karwan, M.H., and Murray, C.C.
(2018). Dynamic Courier Routing for a Food
Delivery Service. Optimization Online. URL
http://www.optimization-online.org/DB HTML/
2018/10/6864.html.

van Bevern, R., Niedermeier, R., and Suchý, O. (2017).
A parameterized complexity view on non-preemptively
scheduling interval-constrained jobs: few machines,
small looseness, and small slack. Journal of Scheduling,
20(3), 255–265.

Yildiz, B. and Savelsbergh, M. (2018). Provably
high-quality solutions for the meal delivery
routing problem. Optimization Online. URL
http://www.optimization-online.org/DB HTML/
2018/05/6624.html.

2019 IFAC MIM
Berlin, Germany, August 28-30, 2019

521

