
Modern Stochastics: Theory and Applications 7 (1) (2020) 17–41
https://doi.org/10.15559/20-VMSTA149

Pathwise asymptotics for Volterra processes
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Abstract In this paper we investigate a problem of large deviations for continuous Volterra
processes under the influence of model disturbances. More precisely, we study the behavior, in
the near future after T , of a Volterra process driven by a Brownian motion in a case where the
Brownian motion is not directly observable, but only a noisy version is observed or some linear
functionals of the noisy version are observed. Some examples are discussed in both cases.

Keywords Large deviations, Volterra type Gaussian processes, conditional processes

2010 MSC 60F10, 60G15, 60G22

1 Introduction

In this paper we study the asymptotics of the regular conditional prediction law of a
Gaussian Volterra process in a case where one does not observe the process directly,
but instead observes a noisy version of it. More precisely we consider two different
situations which generalize the results contained in [13] and [9], respectively. Let
X = (Xt )t≥0 be a continuous real Volterra process.

Definition 1. A centered Gaussian process X is a Volterra process if, for every T > 0,
it admits the representation

Xt =
∫ T

0
K(t, s) dBs, (1)

where B = (Bt )t≥0 is a Brownian motion and K is a square integrable function on
[0, T ]2 (the kernel) such that K(t, s) = 0 for all s > t .
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For a Volterra process the covariance function is

k(t, s) =
∫ s∧t

0
K(t, u)K(s, u) du for t, s ∈ [0, T ]. (2)

Let B̃ = (B̃t )t≥0 be another Brownian motion independent of B and for α, α̃ ∈ R

define Wα,α̃ = αB + α̃B̃.
First case For fixed n ∈ N and T > 0, we consider the conditioning of X on n

linear functionals of the paths of Wα,α̃ ,

GT

(
Wα,α̃

) = (
G1

T

(
Wα,α̃

)
, . . . ,Gn

T

(
Wα,α̃

))ᵀ
,

more precisely,

GT

(
Wα,α̃

) =
∫ T

0
g(t) dW

α,α̃
t =

(∫ T

0
g1(t) dW

α,α̃
t , . . . ,

∫ T

0
gn(t) dW

α,α̃
t

)ᵀ
,

where g = (g1, . . . , gn)
ᵀ is a suitable vectorial function defined on [0, T ]. Informally

the generalized conditioned process Xg;x , for x ∈ R
n, is the law of the Gaussian

process X conditioned on the set

{∫ T

0
g(t) dW

α,α̃
t = x

}
=

n⋂
i=1

{∫ T

0
gi(t) dW

α,α̃
t = xi

}
.

We obtain a large deviation principle for the family of processes ((X
g;x
T +εt −

X
g;x
T )t∈[0,1])ε>0.

Second case We are interested in the regular conditional law of the process X

given the σ -algebra F α,α̃
T , where (F α,α̃

t )t≥0 is the filtration generated by the mixed
Brownian motion Wα,α̃ , i.e. we want to condition the process to the past of the mixed
Brownian motion up to a fixed time T > 0. Informally the generalized conditioned
process Xψ , for ψ being a continuous function, is the law of the Gaussian process X

conditioned on the set {
W

α,α̃
t = ψt , t ∈ [0, T ]}.

Here we obtain a large deviation principle for the family of processes ((X
ψ
T +εt −

X
ψ
T )t∈[0,1])ε>0.

Since T , α and α̃ are fixed positive numbers the dependence (in the notations)
from these quantities will be omitted.

The paper is organized as follows. In Section 2 we recall some basic facts on large
deviation theory for continuous Gaussian processes and Volterra processes. Sections 3
and 4 are dedicated to the main results. Both are divided into three subsections. In the
first one we give the conditional law, in the second one we prove the large deviation
principle and in the third one we present some examples. Section 3 is dedicated to the
conditioning on n functionals of the paths of the noisy process. Section 4 is dedicated
to the conditioning on the past of the noisy process.
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2 Large deviations for continuous Gaussian processes

We briefly recall some main facts on large deviations principles we are going to use.
For a detailed development of this very wide theory we can refer, for example, to the
following classical references: Chapter II in Azencott [1], Section 3.4 in Deuschel and
Strook [6], Chapter 4 (in particular Sections 4.1, 4.2 and 4.5) in Dembo and Zeitouni
[5].

Definition 2. Let E be a topological space, B(E) be the Borel σ -algebra and (με)ε>0
be a family of probability measures on B(E). We say that the family of probability
measures (με)ε>0 satisfies a large deviation principle on E with the rate function I

and the inverse speed ηε (ηε > 0, ηε → 0 as ε → 0) if, for any open set �,

− inf
x∈�

I (x) ≤ lim inf
ε→0

ηε log με(�)

and for any closed set �,

lim sup
ε→0

ηε log με(�) ≤ − inf
x∈�

I (x).

A rate function is a lower semicontinuous mapping I : E → [0,+∞]. A rate
function I is said to be good if the sets {I ≤ a} are compact for every a ≥ 0.

In this paper E will be the set of continuous functions on [0, 1] and B(E) will be
the Borel σ -algebra generated by the open sets induced by the uniform convergence.
Therefore in this section we consider process in the interval [0,1]. Let U = (Ut )t∈[0,1],
be a continuous and centered Gaussian process on a probability space (	,F ,P).
From now on, we will denote by C[0, 1] the set of continuous functions on [0, 1],
and by B(C[0, 1]) the Borel σ -algebra generated by the open sets induced by the
uniform convergence. Moreover, we will denote by M [0, 1] its dual, that is, the set
of signed Borel measures on [0, 1]. The action of M [0, 1] on C[0, 1] is given by

〈λ, h〉 =
∫ 1

0
h(t) dλ(t), λ ∈ M [0, 1], h ∈ C[0, 1].

Remark 1. We say that a family of continuous processes ((Uε
t )t∈[0,1])ε>0 satisfies

a large deviation principle if the associated family of laws satisfy a large deviation
principle on C[0, 1].

The following remarkable theorem (Proposition 1.5 in [1]) gives an explicit ex-
pression of the Cramér transform �∗ of a continuous centered Gaussian process
(Ut )t∈[0,1] with covariance function k. Let us recall that for λ ∈ M [0, 1],

�(λ) = logE
[
exp

(〈U, λ〉)] = 1

2

∫ 1

0

∫ 1

0
k(t, s) dλ(t) dλ(s).

Theorem 1. Let (Ut )t∈[0,1] be a continuous and centered Gaussian process with
covariance function k. Let �∗ denote the Cramér transform of �, that is

�∗(x) = sup
λ∈M [0,1]

(〈λ, x〉 − �(λ)
)

= sup
λ∈M [0,1]

(
〈λ, x〉 − 1

2

∫ 1

0

∫ 1

0
k(t, s) dλ(t) dλ(s)

)
.
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Then,

�∗(x) =
{

1
2‖x‖2

H , x ∈ H ,

+∞, otherwise,

where H and ‖.‖H denote, respectively, the reproducing kernel Hilbert space and
the related norm associated to the covariance function k.

Reproducing kernel Hilbert spaces are an important tool to handle Gaussian pro-
cesses. For a detailed development of this wide theory we can refer, for example, to
Chapter 4 in [10] (in particular Section 4.3) and Chapter 2 in [3] (in particular Sec-
tions 2.2 and 2.3). In order to state a large deviation principle for a family of Gaussian
processes, we need the following definition.

Definition 3. A family of continuous processes ((Uε
t )t∈[0,1])ε>0 is exponentially tight

at the inverse speed ηε, if for every R > 0 there exists a compact set KR such that

lim sup
ε→0

ηε logP
(
Uε /∈ KR

) ≤ −R.

If the means and the covariance functions of an exponentially tight family of
Gaussian processes have a good limit behavior, then the family satisfies a large de-
viation principle, as stated in the following theorem which is a consequence of the
classic abstract Gärtner–Ellis Theorem (Baldi Theorem 4.5.20 and Corollary 4.6.14
in [5]) and Theorem 1.

Theorem 2. Let ((Uε
t )t∈[0,1])ε>0 be an exponentially tight family of continuous Gaus-

sian processes at the inverse speed function ηε. Suppose that, for any λ ∈ M [0, 1],
lim
ε→0

E
[〈
λ,Uε

〉] = 0

and the limit

�(λ) = lim
ε→0

1

ηε

Var
(〈
λ,Uε

〉) =
∫ 1

0

∫ 1

0
k(t, s) dλ(t) dλ(s)

exists for some continuous, symmetric, positive definite function k, that is the co-
variance function of a continuous Gaussian process, then ((Uε

t )t∈[0,1])ε>0 satisfies
a large deviation principle on C[0, 1] with the inverse speed ηε and the good rate
function

I (h) =
{

1
2‖h‖2

H , h ∈ H ,

+∞, otherwise,

where H and ‖.‖H , respectively, denote the reproducing kernel Hilbert space and
the related norm associated to the covariance function k.

In order to prove exponential tightness we shall use the following result (see
Proposition 2.1 in [12]).

Proposition 1. Let ((Uε
t )t∈[0,1])ε>0 be a family of continuous Gaussian processes,

where Uε
0 = 0 for all ε > 0. Suppose there exist constants β,M1,M2 > 0 such that

for ε > 0

sup
s,t∈[0,1],s �=t

|E[Uε
t − Uε

s ]|
|t − s|β ≤ M1
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and

sup
s,t∈[0,1],s �=t

Var(Uε
t − Uε

s )

ηε |t − s|2β
≤ M2 (3)

then ((Uε
t )t∈[0,1])ε>0 is exponentially tight at the inverse speed function ηε.

Remark 2. Suppose ((Uε
t )t∈[0,1])ε>0 is a family of centered Gaussian processes,

defined on the probability space (	,F ,P), that satisfies a large deviation principle
on C[0, 1] with the inverse speed ηε and the good rate function I . Let (mε)ε>0 ⊂
C[0, 1], m ∈ C[0, 1] be functions such that mε C[0,1]−→ m, as ε → 0. Then, the family

of processes (mε + Uε)ε>0 satisfies a large deviation principle on C[0, 1] with the
same inverse speed ηε and the good rate function

Im(h) = I (h − m) =
{

1
2‖h − m‖2

H , h − m ∈ H ,

+∞, h − m /∈ H .

In fact the two families (mε + Uε)ε>0 and (m + Uε)ε>0 are exponentially equiva-
lent (at the inverse speed ηε) and therefore as far as the large deviation principle is
concerned, they are indistinguishable. See Theorem 4.2.13 in [5].

Our first aim is to study the behavior of the covariance function and of the mean
function of the original process X in order to get a functional large deviation principle
for the family ((XT +εt − XT )t∈[0,1])ε>0, as ε → 0.

Let (Xt )t≥0 be a continuous centered Gaussian processes and fix T > 0. The next
two assumptions guarantee that Theorem 2 is applicable to the family of processes
((XT +εt − XT )t∈[0,1])ε>0. Let γε > 0 be an infinitesimal function, i.e. γε → 0 for
ε → 0.

Assumption 1. For any fixed T > 0 there exists an asymptotic covariance function k̄

defined as

k̄(t, s) = lim
ε→0

Cov(XT +εt − XT ,XT +εs − XT )

γ 2
ε

= lim
ε→0

k(T + εt, T + εs) − k(T + εt, T ) − k(T + εs, T ) + k(T , T )

γ 2
ε

, (4)

uniformly in (t, s) ∈ [0, 1] × [0, 1].
Remark 3. Notice that k̄ is a continuous covariance function, being the (uniform)
limit of continuous, symmetric and positive definite functions.

Remark 4. Recall that the continuity of the covariance function is not a sufficient
condition to identify a Gaussian process with continuous paths. We need some more
regularity. Since we are investigating continuous Volterra processes, it would be use-
ful to have a criterion to establish the regularity of the paths. A sufficient condition for
the continuity of the trajectories of a centered Gaussian process can be given in terms
of the metric entropy induced by the canonical metric associated to the process (for
further details, see [7] and [8]). Such approach may be difficult to apply. However,
in [2], a necessary and sufficient condition for the Hölder continuity of a centered
Gaussian process is established in terms of the Hölder continuity of the covariance
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function. More precisely a Gaussian process (Xt )t∈[0,T ] is Hölder continuous of ex-
ponent 0 < a < A if and only if for every ε > 0, s, t ∈ [0, T ], there exists a constant
cε > 0 such that

E
[
(Xt − Xs)

2] ≤ cε|t − s|A−ε.

Although, obviously, the Hölder continuity property of the process is stronger than
continuity, in many cases of interest this is more easily established because the co-
variance function is not difficult to study. Recalling the form of the covariance of a
Volterra process (2) we have the following sufficient condition for the Hölder conti-
nuity of a Volterra process: there exist constants c,A > 0 such that

M(δ) ≤ c δA (5)

for all δ ∈ [0, T ], where

M(δ) = sup
{t1,t2∈[0,T ]:|t1−t2|≤δ}

∫ T

0

∣∣K(t1, s) − K(t2, s)
∣∣2

ds.

From now on with covariance regular enough we mean that the covariance func-
tion satisfies some sufficient condition to ensure that the associate process has con-
tinuous paths.

Assumption 2. For any fixed T > 0 there exist constants M, τ > 0, such that for
ε > 0,

sup
s,t∈[0,1],s �=t

Var(XT +εt − XT +εs)

γ 2
ε |t − s|2τ

= sup
s,t∈[0,1],s �=t

k(T + εt, T + εt) − 2k(T + εt, T + εs) + k(T + εs, T + εs)

γ 2
ε |t − s|2τ

≤ M.

As an immediate application of Theorem 2 (take Uε
t = XT +εt − XT ), Assump-

tions 1 and 2 imply, if k̄ is regular enough, that the family ((XT +εt − XT )t∈[0,1])ε>0
satisfies a large deviation principle on C[0, 1] with the inverse speed γ 2

ε and the good
rate function given by

JX(h) =
{

1
2‖h‖2

H̄
, h ∈ H̄ ,

+∞, otherwise,

where H̄ is the reproducing kernel Hilbert space associated to the covariance func-
tion k̄ and the symbol ‖ · ‖H̄ denotes the usual norm defined on H̄ .

In fact Assumption 1 immediately implies that

�(λ) = lim
ε→0

Var(〈λ,XT +ε· − XT 〉)
γ 2
ε

=
∫ 1

0

∫ 1

0
k̄(t, s)λ(dt)λ(ds).

Furthermore, Assumption 2 implies that the family ((XT +εt − XT )t∈[0,1])ε>0 is ex-
ponentially tight at the inverse speed function γ 2

ε .



Pathwise asymptotics for Volterra processes 23

3 Conditioning to n functionals of the path

3.1 Conditional law

Let (	,F , (Ft )t≥0,P) be a filtered probability space. On this space we consider a
Brownian motion B = (B)t≥0, a continuous real Volterra process X = (Xt )t≥0 and
another Brownian motion B̃ = (B̃)t≥0 independent of B. For α, α̃ ∈ R let us define
the mixed Brownian motion Wα,α̃ = αB + α̃B̃.

For fixed n ∈ N and T > 0, we consider the conditioning of X on n linear
functionals of GT (Wα,α̃) = (G1

T (Wα,α̃), . . . ,Gn
T (Wα,α̃))ᵀ of the paths of Wα,α̃ ,

GT

(
Wα,α̃

) =
∫ T

0
g(t) dW

α,α̃
t =

(∫ T

0
g1(t) dW

α,α̃
t , . . . ,

∫ T

0
gn(t) dW

α,α̃
t

)ᵀ
,

where g = (g1, . . . , gn)
ᵀ is a vectorial function and gk ∈ L

2[0, T ], for k = 1, . . . , n.
We assume, without any loss of generality, that the functions gi , i = 1, . . . , n, are
linearly independent. The linearly dependent components of g can be simply removed
from the conditioning. As we said in the Introduction, the generalized conditioned
process Xg;x , for x ∈ R

n, is the law of the Gaussian process X conditioned on the
set {∫ T

0
g(t) dW

α,α̃
t = x

}
=

n⋂
i=1

{∫ T

0
gi(t) dW

α,α̃
t = xi

}
.

The law P
g;x of Xg;x is the regular conditional distribution on C[0,+∞), endowed

with the topology induced by the sup-norm on compact sets,

P
g;x(X ∈ E) = P

(
Xg;x ∈ E

) = P

(
X ∈ E

∣∣∣ ∫ T

0
g(t) dW

α,α̃
t = x

)
.

For more details about existence of such regular conditional distribution see, for ex-
ample, [11].

Denote by Cg = (c
gigj

ij )i,j=1,...,n the matrix defined by

c
gigj

ij = Cov

(∫ T

0
gi(t) dW

α,α̃
t ,

∫ T

0
gj (t) dW

α,α̃
t

)
= (

α2 + α̃2) ∫ T

0
gi(t)gj (t) dt.

The matrix Cg is invertible (since the functions gi , i = 1, . . . , n, are linearly
independent). Let us denote

r
gi

i (t) = Cov

(
Xt,

∫ T

0
gi(u) dWα,α̃

u

)
= α

∫ t∧T

0
K(t, u)gi(u) du,

and
rg(t) = (

r
g1
1 (t), . . . , r

gn
n (t)

)ᵀ
.

The following theorem, similar to Theorem 3.1 in [17], gives mean and covariance
function of the generalized conditioned process.
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Theorem 3. The generalized conditioned process Xg;x can be represented as

X
g;x
t = Xt − rg(t)ᵀ

(
Cg

)−1
(∫ T

0
g(u) dWα,α̃

u − x

)
.

Moreover, the conditioned process Xg;x is a Gaussian process with mean

mg;x(t) = E
[
X

g;x
t

] = rg(t)ᵀ
(
Cg

)−1
x, (6)

and covariance

kg(t, s) = Cov
(
X

g;x
t , X

g;x
s

) = k(t, s) − κg(t, s), (7)

where
κg(t, s) = rg(t)ᵀ

(
Cg

)−1
rg(s). (8)

Proof. It is a classical result on conditioned Gaussian laws. See, e.g., Chapter II, §13,
in [15].

Remark 5. Let us note that the covariance function of the conditioned process de-
pends on the conditioning functions g1, . . . , gn and on the time T , but not on the
vector x.

Remark 6. If the conditioning functions gi are the indicator functions of the interval
[0, Ti), for i = 1, . . . , n, then the process is conditioned to the position of the noisy
Brownian motion at the times T1, . . . , Tn, more precisely to the set

⋂n
i=1{Wα,α̃

Ti
= xi}.

Remark 7. If the conditioning functions are gi(s) = K(Ti, s)1[0,Ti )(s), for i =
1, . . . , n, and α = 1, α̃ = 0, then the process is conditioned to its position at the
times T1, . . . , Tn, more precisely to the set

⋂n
i=1{XTi

= xi} (this is a particular case
of the conditioned process in [13]).

3.2 Large deviations

Let γε > 0 be an infinitesimal function, i.e. γε → 0 for ε → 0. In this section (Xt )t≥0
is a continuous Volterra process as in (1). Now, in order to achieve a large deviation
principle for the family of processes ((X

g;x
T +εt − X

g;x
T )t∈[0,1])ε>0, we have to investi-

gate the behavior of the functions kg and mg;x (defined in (7) and (6), respectively)
in a small time interval of length ε.

Now we give some conditions on the original process in order to guarantee that
the hypotheses of Theorem 2 hold for the conditioned process. The next assumption
(Assumption 3) implies the existence of a limit covariance.

Assumption 3. For any T > 0 and for gi ∈ L
2[0, T ], i = 1, . . . , n, there exists a

vectorial function r̄g = (r̄
g1
1 , . . . , r̄

gn
n ), possibly r̄

gi

i = 0 for some i = 1, . . . , n, such
that

r̄
gi

i (t) = lim
ε→0

Cov(XT +εt − XT ,
∫ T

0 gi(u) dW
α,α̃
u )

γε

= lim
ε→0

r
gi

i (T + εt) − r
gi

i (T )

γε

,

(9)
uniformly in t ∈ [0, 1].



Pathwise asymptotics for Volterra processes 25

The next assumption (Assumption 4) implies the exponential tightness of the fam-
ily of the centered processes.

Assumption 4. For any fixed T > 0 there exist constants M, τ̂ > 0, such that for
i = 1, . . . , n and ε > 0,

sup
s,t∈[0,1],s �=t

|Cov(XT +εt − XT +εs,
∫ T

0 gi(u) dW
α,α̃
u )|

γε|t − s|τ̂

= sup
s,t∈[0,1],s �=t

|rgi

i (T + εt) − r
gi

i (T + εs)|
γε|t − s|τ̂ ≤ M.

Remark 8. Let us observe that Assumption 3 implies that for any fixed T > 0

lim
ε→0

r
gi

i (T + εt) − r
gi

i (T ) = 0,

uniformly in t ∈ [0, 1]. Therefore,

lim
ε→0

mg;x(T + εt) = mg;x(T ), (10)

uniformly in t ∈ [0, 1]. In fact, one has

mg;x(T + εt) − mg;x(T ) = (
rg(T + εt) − rg(T )

)ᵀ(
Cg

)−1
x,

and (10) immediately follows.

Remark 9. Let us observe that Assumption 4 implies that there exists M > 0 such
that the following estimate holds for the function κg defined in (8):

sup
s,t∈[0,1],s �=t

|κg(T + εt, T + εt) − 2κg(T + εt, T + εs) + κg(T + εs, T + εs)|
γ 2
ε |t − s|2τ̂

≤ M. (11)

In fact, straightforward computations show that

κg(T + εt, T + εt) − 2κg(T + εt, T + εs) + κg(T + εs, T + εs)

= ((
rg(T + εt) − rg(T + εs)

))ᵀ(
Cg

)−1((
rg(T + εt) − rg(T + εs)

))
.

Therefore (11) immediately follows from Assumption 4.

Proposition 2. Under Assumptions 1 and 3, one has

lim
ε→0

Cov(X
g;x
T +εt − X

g;x
T ,X

g;x
T +εs − X

g;x
T )

γ 2
ε

= k̄g(t, s),

uniformly in (t, s) ∈ [0, 1] × [0, 1], with

k̄g(t, s) = k̄(t, s) − r̄g(t)ᵀ
(
Cg

)−1
r̄g(s), (12)

where r̄g(t)ᵀ = (r̄
g1
1 (t), . . . , r̄

gn
n (t)) and r̄

gi

i (t) is defined in (9) for i = 1, . . . , n.
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Proof. Taking into account equation (7), simple computations show that for s, t ∈
[0, 1],

Cov
(
X

g;x
T +εt − X

g;x
T ,X

g;x
T +εs − X

g;x
T

)
= (

k(T + εt, T + εs) − k(T + εt, T ) − k(T + εs, T ) + k(T , T )
)+

− ((
r̄g(T + εt) − r̄g(T )

))ᵀ(
Cg

)−1((
r̄g(T + εs) − r̄g(T )

))
. (13)

Therefore the claim easily follows from Assumptions 1 and 3.

Remark 10. Notice that k̄g is a continuous covariance function, being the (uniform)
limit of continuous, symmetric and positive definite functions.

Proposition 3. Under Assumptions 2 and 4 the family ((X
g;x
T +εt −X

g;x
T −E[Xg;x

T +εt −
X

g;x
T ])t∈[0,1])ε>0 is exponentially tight at the inverse speed function γ 2

ε .

Proof. As ((X
g;x
T +εt − X

g;x
T − E[Xg;x

T +εt − X
g;x
T ])t∈[0,1])ε>0 is a family of centered

processes, it is enough to prove that (3) is satisfied with an appropriate speed function.
For ε > 0 the covariance of such process is given by (13). Therefore

Var
(
X

g;x
T +εt − X

g;x
T +εs

)
= k(T + εt, T + εt) − 2k(T + εt, T + εs) + k(T + εs, T + εs)

+ rg(T + εt) − rg(T )))ᵀ
(
Cg

)−1
(
(
rg(T + εs) − rg(T )

)
.

From Assumption 2 we already know that

sup
s,t∈[0,1],s �=t

k(T + εt, T + εt) − 2k(T + εt, T + εs) + k(T + εs, T + εs)

γ 2
ε |t − s|2τ

≤ M.

Furthermore, Assumption 4 implies that

sup
s,t∈[0,1],s �=t

|(rg(T + εt) − rg(T )))ᵀ(Cg)−1((rg(T + εs) − rg(T ))|
γ 2
ε |t − s|2τ̂

≤ M.

Therefore condition (3) holds with the inverse speed ηε = γ 2
ε and β = τ ∧ τ̂ .

We are now ready to prove the main large deviation result of this section.

Theorem 4. Suppose (Xt )t≥0 satisfies Assumptions 1, 2, 3 and 4. Suppose, further-
more, that the (existing) covariance function k̄g defined in Proposition 2 is regular
enough, then the family of processes ((X

g;x
T +εt − X

g;x
T )t∈[0,1])ε>0 satisfies a large de-

viation principle on C[0, 1] with the inverse speed γ 2
ε and the good rate function

J
g
X(h) =

{
1
2 ‖h‖2

H̄ g
, h ∈ H̄ g,

+∞, otherwise,
(14)

where H̄ g is the reproducing kernel Hilbert space associated to the covariance func-
tion k̄g .
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Proof. Cosider the family of centered processes ((X
g;x
T +εt − X

g;x
T − E[Xg;x

T +εt −
X

g;x
T ])t∈[0,1])ε>0. Thanks to Proposition 3 this family of processes is exponentially

tight at the inverse speed γ 2
ε . Thanks to Proposition 2, for any λ ∈ M [0, 1], one has

lim
ε→0

Var(〈λ,X
g;x
T +ε· − X

g;x
T 〉)

γ 2
ε

= lim
ε→0

∫ 1

0
dλ(v)

∫ 1

0
dλ(u)

Cov(X
g;x
T +εv − X

g;x
T ,X

g;x
T +εu − X

g;x
T )

γ 2
ε

=
∫ 1

0
dλ(v)

∫ 1

0
dλ(u)k̄g(v, u),

where k̄g is defined in (12). Since k̄g is the covariance function of a continuous
Volterra process, a large deviation principle for ((X

g;x
T +εt − X

g;x
T − E[Xg;x

T +εt −
X

g;x
T ])t∈[0,1])ε>0 actually holds from Theorem 2 with the inverse speed γ 2

ε and the
good rate function given by (14). From Equation (10) and Remark 2 the same large
deviation principle holds for the noncentered family ((X

g;x
T +εt −X

g;x
T )t∈[0,1])ε>0.

3.3 Examples
In this section we consider some examples to which Theorem 4 applies. Therefore
we want to verify that Assumptions 1, 2, 3 and 4 are fulfilled. Let X be a continu-
ous, centered Volterra process process with kernel K . Suppose g1(t) = 1[0,T )(t) and
g2(t) = T −t

T
1[0,T )(t), that is,

W
α,α̃
T =

∫ T

0
g1(u) dWα,α̃

u = x1

and by the integration by parts formula,

1

T

∫ T

0
Wα,α̃

u du =
∫ T

0
g2(u) dWα,α̃

u = x2.

Then the matrix (Cg)−1 is given by

(
Cg

)−1 = 1

det(Cg)

(
c
g2g2
22 −c

g1g2
12

−c
g1g2
12 c

g1g1
11

)
,

where

c
g1g1
11 = (

α2 + α̃2)T , c
g1g2
12 = (

α2 + α̃2)T

2
,

c
g2g2
22 = (

α2 + α̃2)T

3
, det

(
Cg

) = (
α2 + α̃2)2 T 2

12
.

Example 1 (Fractional Brownian Motion). Let X be the fractional Brownian mo-
tion of the Hurst index H > 1/2. The fractional Brownian motion with the Hurst
parameter H ∈ (0, 1) is the centered Gaussian process with covariance function

k(t, s) = 1

2

(
t2H + s2H − |t − s|2H

)
.
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The fractional Brownian motion is a Volterra process with kernel, for s ≤ t ,

K(t, s) = cH

[(
t

s
(t − s)

)H−1/2

−
(

H − 1

2

)
s1/2−H

∫ t

s

uH−3/2(u − s)H−1/2 du

]
,

(15)
where cH = (

2H �(3/2−H)
�(H+1/2) �(2−2H)

)1/2. Notice that when H = 1/2 we have K(t, s) =
1[0,t](s), and then the fractional Brownian motion reduces to the Wiener process.

First, let us prove that there exists a limit covariance and that it is regular enough.
For s ≤ t , one has

Cov(XT +εt − XT ,XT +εs − XT )

ε2H
= Cov(Xt ,Xs),

because of the homogeneity and self-similarity properties holding for the fractional
Brownian motion, so that the limit in (4) trivially exists and Assumption 1 holds with
k̄(t, s) = k(t, s) and γε = εH . Now let us prove that Assumption 3 is fulfilled.

Cov
(
XT +εt − XT ,W

α,α̃
T

)
=

∫ T

0

(
K(T + εt, u) − K(T , u)

)
du

= cH

∫ T

0

((
T + εt

u

)H−1/2

(T + εt − u)H−1/2 −
(

T

u

)H−1/2

(T − u)H−1/2
)

du+

− cH (H − 1/2)

∫ T

0

1

uH−1/2

∫ T +εt

T

(v − u)H−1/2vH−3/2 dv du.

Thanks to the Lagrange theorem,((
T + εt

u

)H−1/2
(T + εt − u)H−1/2 −

(
T

u

)H−1/2
(T − u)H−1/2

)

= H − 1/2

uH−1/2

[
(T + ξε)

H−3/2(T + ξε − u)H−1/2 + (T + ξε)
H−1/2(T + ξε − u)H−3/2]

εt,

for ξε ∈ [0, εt]. Therefore from the Lebesgue theorem,

lim
ε→0

1

ε

∫ T

0

((
T + εt

u

)H−1/2

(T + εt − u)H−1/2 −
(

T

u

)H−1/2

(T − u)H−1/2
)

du

= t (H − 1/2)

∫ T

0

1

uH−1/2

(
T H−3/2(T − u)H−1/2 + T H−1/2(T − u)H−3/2) du,

uniformly in t ∈ [0, 1]. Furthermore, in a similar way, we have,

lim
ε→0

1

ε

∫ T

0

1

uH−1/2

∫ T +εt

T

(v − u)H−1/2vH−3/2dv du

= t

∫ T

0

1

uH−1/2 (T − u)H−1/2T H−3/2 du.

Therefore,

r̄
g1
1 (t) = lim

ε→0

Cov(XT +εt − XT ,W
α,α̃
T )

εH
= 0,
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uniformly in t ∈ [0, 1]. Similar calculations show that

r̄
g2
2 (t) = lim

ε→0

Cov(XT +εt − XT ,
∫ T

0
T −u

T
dW

α,α̃
u )

εH
= 0.

So, we have k̄g(t, s) = k(t, s) and therefore the limit covariance exists and is regular
enough.

Now let us prove the exponential tightness of the family of processes. For s < t ,

Var(XT +εt − XT +εs) = ε2H (t − s)2H ,

then Assumption 2 holds with τ = H and γε = εH . For s < t , we have

Cov
(
XT +εt − XT +εs ,W

α,α̃
T

)
=

∫ T

0

(
K(T + εt, u) − K(T + εs, u)

)
du

= cH

∫ T

0

((
T + εt

u

)H−1/2
(T + εt − u)H−1/2 −

(
T + εt

u

)H−1/2
(T + εs − u)H−1/2

)
du+

− cH (H − 1/2)

∫ T

0

1

uH−1/2

∫ T +εt

T +εs
(v − u)H−1/2vH−3/2 dv du.

Thanks to the Lagrange theorem we can find M > 0 such that∫ T

0

((
T + εt

u

)H−1/2
(T + εt − u)H−1/2 −

(
T + εs

u

)H−1/2
(T + εs − u)H−1/2

)
du

≤ ε(t − s)

(
H − 1

2

)∫ T

0

1

uH− 1
2

[
T H− 3

2 (T + 1 − u)H− 1
2+ (T + 1)H− 1

2 (T − u)H− 3
2
]
du

≤ εM(t − s)

and ∫ T

0

1

uH−1/2

∫ T +εt

T +εs

(v − u)H−1/2vH−3/2 dv du

= (t − s)

∫ T

0

1

uH−1/2 (T + ξε − u)H−1/2(T + ξε)
H−3/2 du ≤ εM(t − s).

Therefore, a fortiori,

sup
s,t∈[0,1],s �=t

|Cov(XT +εt − XT +εs,W
α,α̃
T )|

εH |t − s| ≤ M.

Similar calculations show that

sup
s,t∈[0,1],s �=t

|Cov(XT +εt − XT +εs,
∫ T

0
T −u

T
dW

α,α̃
u )|

εH |t − s| ≤ M.

Thus, Assumption 4 is fulfilled with τ̂ = 1. Therefore the family ((X
g;x
T +εt −

X
g;x
T )t∈[0,1])ε>0 satisfies a large deviation principle with the inverse speed function

γ 2
ε = ε2H as the nonconditioned process. Note that the same result was obtained in

[4] for the n-fold conditional fractional Brownian motion.
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Example 2 (m-fold integrated Brownian motion). For m ≥ 1, let X be the m-fold
integrated Brownian motion, i.e.

Xt =
∫ t

0
du

(∫ u

0
dum−1 · · ·

∫ u2

0
du1Bu1

)
.

It is a continuous Volterra process with kernel K(t, u) = 1
m! (t − u)m and covariance

function

k(t, s) = 1

(m!)2

∫ s∧t

0
(s − ξ)m(t − ξ)m dξ.

First, let us prove that there exists a limit covariance and that it is regular enough.
Assumption 1 is fulfilled. In fact, for s ≤ t , we have

lim
ε→0

Cov(XT +εt − XT ,XT +εs − XT )

ε2

= lim
ε→0

1

(m!)2

1

ε2

∫ T +εs

T

(T + εt − u)m(T + εs − u)m du

+ lim
ε→0

1

(m!)2ε2

∫ T

0

(
(T + εt − u)m − (T − u)m

)(
(T + εs − u)m − (T − u)m

)
du.

It is straightforward to show that

k̄(t, s) = lim
ε→0

Cov(XT +εt − XT ,XT +εs − XT )

ε2 = 1

(m!)2

m2

2m − 1
T 2m−1st,

uniformly in (t, s) ∈ [0, 1] × [0, 1]. Furthermore,

r̄
g1
1 (t) = lim

ε→0

Cov(XT +εt − XT ,W
α,α̃
T )

ε

= lim
ε→0

α

m!
1

ε

∫ T

0

(
(T + εt − u)m − (T − u)m

)
du = α

m!T
m t,

and

r̄
g2
2 (t) = lim

ε→0

Cov(XT +εt − XT ,
∫ T

0
T −u

T
dW

α,α̃
u )

ε

= lim
ε→0

α

m! T
1

ε

∫ T

0

(
(T + εt − u)m − (T − u)m

)
(T − u) du

= α

m!
m

m + 1
T m t,

uniformly in t ∈ [0, 1]. Therefore also Assumption 3 is fulfilled.
Thus, we have k̄g(t, s) = a st , where

a = 1

(m!)2

(
m2

2m − 1
T 2m−1 − α2T 2m

(
1,

m

m + 1

)(
Cg

)−1
(

1,
m

m + 1

)ᵀ)
.

Note that k̄g is regular enough.
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Now let us prove the exponential tightness of the family of processes. For s < t ,
there exists a constant M > 0, such that

Var(XT +εt − XT +εs)

= 1

(m!)2

(∫ T +εt

T +εs

(T + εt − u)2m du+
∫ T +εs

0

(
(T + εt − u)m − (T + εs − u)m

)2
du

)

≤ Mε2(t − s)2.

Then Assumption 2 holds with τ = 1 and γε = ε. For s < t ,

∣∣Cov
(
XT +εt − XT +εs,W

α,α̃
T

)∣∣ =
∫ T

0

(
(T + εt − u)m − (T + εs − u)m

)
du

=
m−1∑
k=0

(
m

k

)
1

k + 1
T k+1εm−k(t − s)m−k.

Then we have

sup
s,t∈[0,1],s �=t

|Cov(XT +εt − XT +εs,W
α,α̃
T )|

ε|t − s| ≤ M.

Similar calculations show that

sup
s,t∈[0,1],s �=t

|Cov(XT +εt − XT +εs,
∫ T

0
T −u

T
dW

α,α̃
u )|

ε|t − s| ≤ M.

Thus, Assumption 4 is fulfilled with τ̂ = 1. Therefore the family ((X
g;x
T +εt −

X
g;x
T )t∈[0,1])ε>0 satisfies a large deviation principle with the inverse speed γ 2

ε = ε2.

Example 3 (Integrated Volterra Process). Let Z be a Volterra process with kernel K

satisfying condition (5) for some A > 0. Let X be the integrated process, i.e.

Xt =
∫ t

0
Zu du.

The process X is a continuous, Volterra process with kernel

h(t, s) =
∫ t

s

K(u, s) du, i.e. Xt =
∫ t

0
h(t, s) dBs.

First, let us prove that there exists a limit covariance and that it is regular enough.
Assumption 1 is fulfilled, in fact, for s ≤ t , we have

lim
ε→0

Cov(XT +εt − XT ,XT +εs − XT )

ε2

= lim
ε→0

∫ T +εs

T
h(T + εt, u)h(T + εs, u) du

ε2

+ lim
ε→0

∫ T

0 (h(T + εt, u) − h(T ))(h(T + εs, u) − h(T , u)) du

ε2 .
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Now, one has∫ T +εs

T

h(T + εt, u)h(T + εs, u) du

= ε3
∫ s

0

(∫ t

u

K(T + εx, T + εu) dx

∫ s

u

K(T + εx, T + εu) dx

)
du

and ∫ T

0

(
h(T + εt, u) − h(T , u)

)(
h(T + εs, u) − h(T , u)

)
du

=
∫ T

0

(∫ T +εs

T

K(v, u) dv

∫ T +εt

T

K(v, u) dv

)
du.

Therefore

lim
ε→0

Cov(XT +εt − XT ,XT +εs − XT )

ε2 = st

∫ T

0
K2(T , u) du,

uniformly in (t, s) ∈ [0, 1] × [0, 1]. Furthermore, with similar calculations we have

r̄
g1
1 (t) = lim

ε→0

Cov(XT +εt − XT ,W
α,α̃
T )

ε
= α t

∫ T

0
K(T , u) du,

and

r̄
g2
2 (t) = lim

ε→0

Cov(XT +εt − XT ,
∫ T

0
T −u
T

dW
α,α̃
u )

ε
= α

t

T

∫ T

0
K(T , u)(T − u) du,

uniformly in t ∈ [0, 1]. Therefore also Assumption 3 is fulfilled.
So, we have k̄g(t, s) = a st , where

a =
∫ T

0
K2(T , u) du − α2Aᵀ(

Cg
)−1

A,

and Aᵀ = (
∫ T

0 K(T , u) du, 1
T

∫ T

0 K(T , u)(T −u) du). Note that k̄g is regular enough.
Let us now prove the exponential tightness. We have, for s < t ,

Var(XT +εt − XT +εs)

=
∫ T +εt

T +εs

h(T + εt, u)2 du +
∫ T +εs

0

(
h(T + εt, u) − h(T + εs, u)

)2
.

Now, recalling that K is a square integrable function, there exists a constant M > 0,
such that∫ T +εt

T +εs

h(T + εt, u)2 du = ε3
∫ t

s

(∫ t

u

K(T + εx, T + εu) dx

)2

du

≤ ε3M

∫ t

s

(t − u) du ≤ Mε3(t − s)2
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and

∫ T +εs

0
(h(T + εt, u) − h(T + εs, u)2 du = ε2

∫ T +εs

0

(∫ t

s

K(T + εv, u) dv

)2

du

≤ Mε2(t − s)2,

therefore Assumption 2 holds with τ = 1 and γε = ε.
With similar computations we can prove that also Assumption 4 is fulfilled with

τ̂ = 1 and γε = ε. For s < t , we have

∣∣Cov
(
XT +εt − XT +εs,W

α,α̃
T

)∣∣ =
∣∣∣∣
∫ T

0

(
h(T + εt, u) − h(T + εs)

)
du

∣∣∣∣
=

∣∣∣∣
∫ T

0

∫ T +εt

T +εs

K(v, u) dv du

∣∣∣∣ ≤ Mε(t − s).

Therefore

sup
s,t∈[0,1],s �=t

|Cov(XT +εt − XT +εs,W
α,α̃
T )|

ε|t − s| ≤ M.

Similar calculations show that

sup
s,t∈[0,1],s �=t

|Cov(XT +εt − XT +εs,
∫ T

0
T −u

T
dW

α,α̃
u )|

ε|t − s| ≤ M.

Therefore the family ((X
g;x
T +εt − X

g;x
T )t∈[0,1])ε>0 satisfies a large deviation principle

with the inverse speed function γ 2
ε = ε2.

4 Conditioning to a path

4.1 Conditional law

Let (	,F , (Ft )t≥0,P) be a filtered probability space. On this space we consider a
Brownian motion B = (B)t≥0, a continuous real Volterra process X = (Xt )t≥0 and
another Brownian motion B̃ = (B̃)t≥0 independent of B. Fix α, α̃ ∈ R and define
Wα,α̃ = αB + α̃B̃.

We are interested in the regular conditional law of the process X given the σ -
algebra F α,α̃

T , where (F α,α̃
t )t≥0 is the filtration generated by the mixed Brownian

motion Wα,α̃ , i.e. we want to condition the process to the past of the mixed Brow-
nian motion up to a fixed time T > 0. To do this, consider the conditional law on
C[0,+∞) endowed with the topology induced by the sup-norm on compact sets,
P(X ∈ · | F α,α̃

T ). There exists a regular version of such conditional probability (see

[11] and [14]), namely a version such that � �→ P(X ∈ � | F a,b
T ) is almost surely a

Gaussian probability law.
The following theorem, Theorem 2.1 in [16], gives mean and covariance function

of the Gaussian conditional law.
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Theorem 5. For T > 0, the regular conditional law of X | F a,b
T is a Gaussian

measure with the random mean

�t

(
Wα,α̃

) = E
[
Xt

∣∣ F α,α̃
T

] = α2

α2 + α̃2

∫ T

0
K(t, u) dWα,α̃

u

and the deterministic covariance,

ϒ(t, s) =
∫ t∧s

0

(
1 − α2

α2 + α̃2 1[0,T ](v)

)2

K(t, v)K(s, v) dv

+ α2 α̃2

(α2 + α̃2)2

∫ T

0
K(t, v)K(s, v) dv. (16)

Remark 11. Observe that the mean process ( α2

α2+α̃2

∫ T

0 K(t, u) dW
α,α̃
u )t≥0 is a con-

tinuous process. Therefore for almost every continuous function ψ defined on [0, T ],

m
ψ
t = �t(ψ) (17)

defines a continuous function mψ : [0,+∞) −→ R. Thus, we can consider the
continuous Gaussian process (X

ψ
t )t≥0 with mean function mψ and covariance func-

tion ϒ .
From continuity of mψ one has

lim
ε→0

m
ψ
T +εt = m

ψ
T (18)

uniformly for t ∈ [0, 1].
Remark 12. Let us note that the covariance function of the conditioned process de-
pends on the time T , but not on the function ψ as in the previous section.

Remark 13. For s ∧ t ≥ T we have

ϒ(t, s) = α2

α2 + α̃2

∫ t∧s

T

K(t, v)K(s, v) dv + α̃2

α2 + α̃2 k(t, s). (19)

For α̃ = 0, i.e. F α,0
t = σ {Xu : u ≤ t} (for details about the filtrations generated by

X and B, see, for example, [18]), we have the same conditioned variance as in [9].

4.2 Large deviations

Let γε > 0 be an infinitesimal function, i.e. γε → 0 for ε → 0. In this section (Xt )t≥0
is a continuous Volterra process as in (1).

Now, in order to achieve a large deviation principle for the generalized condi-
tioned process Xψ , we have to investigate the behavior of the functions ϒ and mψ

(defined in (16) and (17), respectively) in a small time interval of length ε. We want to
investigate the behavior of the conditioned process (X

ψ
t )t≥0 in the near future after T .



Pathwise asymptotics for Volterra processes 35

For s ≤ t , taking into account equation (19), simple computations show that

Cov
(
X

ψ
T +εt − X

ψ
T ,X

ψ
T +εs − X

ψ
T

)
= ε

α2

α2 + α̃2

∫ t∧s

0
K(T + εt, T + εu)K(T + εs, T + εu) du+

+ α̃2

α2 + α̃2

(
k(T + εt, T + εs) − k(T + εt, T ) − k(T , T + εs) + k(T , T )

)
.

(20)

Now we give conditions on the kernel K of the original Volterra process in order
to guarantee that the hypotheses of Theorem 2 hold for the conditioned process. The
next assumption (Assumption 5) implies the existence of a limit covariance.

Assumption 5. For any T > 0 there exists a square integrable function K̄ (possi-
bly 0) such that

lim
ε→0

√
ε

K(T + εt, T + εs)

γε

= K̄(t, s)

uniformly in (t, s) ∈ [0, 1] × [0, 1].
Remark 14. Notice that we can choose γε so that limε→0 γεε

− 1
2 ∈ {0, 1,+∞}.

The next assumption (Assumption 6) implies the exponential tightness of the fam-
ily of processes.

Assumption 6. For any T > 0 there exist constants c, τ̂ > 0 such that

sup
s,t∈[0,1],s �=t

∫ t

0 (K(T + εt, T + εu) − K(T + εs, T + εu))2 du

γ 2
ε |t − s|2τ̂

≤ c.

Remark 15. Note that∫ t

0

(
K(T + εt, T + εu) − K(T + εs, T + εu)

)2
du

=
∫ t

s

K(T + εt, T + εu)2 du+
∫ s

0

(
K(T + εt, T + εu)− K(T + εs, T + εu)

)2
du,

therefore in order to prove that Assumption 6 is fulfilled we can prove that there exists
c > 0 such that

sup
s,t∈[0,1],s �=t

∫ t

s
K(T + εt, T + εu)2 du

γ 2
ε |t − s|2τ̂

≤ c,

sup
s,t∈[0,1],s �=t

∫ s

0 (K(T + εt, T + εu) − K(T + εs, T + εu))2 du

γ 2
ε |t − s|2τ̂

≤ c.

Proposition 4. Under Assumptions 1 and 5 one has

lim
ε→0

Cov(X
ψ
T +εt − X

ψ
T ,X

ψ
T +εs − X

ψ
T )

γ 2
ε

= ϒ̄(t, s)
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uniformly in (t, s) ∈ [0, 1] × [0, 1], where

ϒ̄(t, s) = α̃2

α2 + α̃2

∫ t∧s

0
K̄(t, u)K̄(s, u) du + α̃2

α2 + α̃2 k̄(t, s). (21)

Proof. From (20), Assumption 1 and Assumption 5 the claim easily follows.

Proposition 5. Under Assumptions 2 and 6 the family ((X
ψ
T +εt − X

ψ
T − E[Xψ

T +εt −
X

ψ
T ])t∈[0,1])ε>0 is exponentially tight at the inverse speed γ 2

ε .

Proof. Since ((X
ψ
T +εt − X

ψ
T − E[Xψ

T +εt − X
ψ
T ])t∈[0,1])ε>0 is a family of centered

processes, it is enough to prove that (3) is satisfied with an appropriate speed function.
The covariance of such process is given by (20). Therefore

Var
(
X

ψ
T +εt − X

ψ
T +εs

)
= ε

α2

α2 + α̃2

∫ t

0

(
K(T + εt, T + εu) − K(T + εs, T + εu)

)2
du+

+ α̃2

α2 + α̃2 k(T + εt, T + εt) − 2k(T + εt, T + εs) + k(T + εs, T + εs).

From Assumption 2 we already know that

sup
s,t∈[0,1],s �=t

|k(T + εt, T + εt) − 2k(T + εt, T + εs) + k(T + εs, T + εs)|
γ 2
ε |t − s|2τ

≤ M.

Furthermore, Assumption 6 implies that

sup
s,t∈[0,1],s �=t

∫ t

0 (K(T + εt, T + εu) − K(T + εs, T + εu))2 du

γ 2
ε |t − s|2τ̂

≤ M.

Therefore condition (3) holds with the inverse speed ηε = γ 2
ε and β = τ ∧ τ̂ .

We are ready to state a large deviation principle for the conditioned Volterra pro-
cess.

Theorem 6. Suppose Assumptions 1, 2, 5 and 6 are fulfilled. If the (existing) co-
variance function ϒ̄ defined in Proposition 4 is regular enough, then the family of
processes ((X

ψ
T +εt − X

ψ
T )t∈[0,1])ε>0 satisfies a large deviation principle on C[0, 1]

with the inverse speed γ 2
ε and the good rate function

I (h) =
{

1
2‖h‖2

H̄
, h ∈ H̄ ,

+∞, otherwise,
(22)

where H̄ and ‖.‖H̄ , respectively, denote the reproducing kernel Hilbert space and
the related norm associated to the covariance function ϒ̄ given by (21).
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Proof. Cosider the family of centered processes ((X
ψ
T +εt − X

ψ
T − E[Xψ

T +εt −
X

ψ
T ])t∈[0,1])ε. Thanks to Proposition 5 this family of processes is exponentially tight

at the inverse speed γ 2
ε . Thanks to Proposition 4, for any λ ∈ M [0, 1], one has

lim
ε→0

Var(〈λ,X
ψ
T +εt − X

ψ
T 〉)

γ 2
ε

=
∫ 1

0

∫ 1

0
ϒ̄(t, s) dλ(t) dλ(s)

where ϒ̄ is defined in (21) Since ϒ̄ is the covariance function of a continuous
Volterra process, a large deviation principle for ((X

ψ
T +εt − X

ψ
T − E[Xψ

T +εt −
X

ψ
T ])t∈[0,1])t∈[0,1])ε>0 actually holds from Theorem 2 with the inverse speed γ 2

ε and
the good rate function given by (22). From Equation (18) and Remark 2 the same large
deviation principle holds for the noncentered family ((X

ψ
T +εt − X

ψ
T )t∈[0,1])ε>0.

4.3 Examples

In this section we consider some examples to which Theorem 6 applies. Therefore
we want to verify that Assumptions 1, 2, 5 and 6 are fulfilled. Let X be a continuous,
centered Volterra process process with kernel K .

Example 4 (Fractional Brownian Motion). Consider a fractional Brownian motion
with H > 1/2 as in Example 1. We have already proved that Assumptions 1 and 2
are fulfilled with τ = H and γε = εH .

We want to show that Assumptions 5 and 6 are fulfilled with τ̂ = 1, γε = εH .
From Example 4.17 in [9], we have that

lim
ε→0

√
ε

K(T + εt, T + εs)

εH
= cH (t − s)H− 1

2

uniformly for t, s ∈ [0, 1]. Therefore

lim
ε→0

1

ε2H

∫ t∧s

0
K(T + εt, T + εu)K(T + εs, T + εu) du

= c2
H

∫ t∧s

0
(t − u)H− 1

2 (s − u)H− 1
2 du

uniformly for (t, s) ∈ [0, 1] × [0, 1]. So, we have that Assumption 5 is fulfilled with

ϒ̄(t, s) = α̃2

α2 + α̃2 k(t, s) + α2

α2 + α̃2 c2
H

∫ t∧s

0
(t − u)H− 1

2 (s − u)H− 1
2 du.

Note that ϒ̄ is regular enough. Let us now prove the exponential tightness.
Since (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R, from Equation (15), there exists a

constant c > 0 such that, for s < t ,

K(T + εt, T + εu)2

≤ c

(
ε2H−1(t − u)2H−1 +

(∫ T +εt

T +εu

(
v − (T + εu)

)H− 1
2 dv

)2)

≤ c
(
ε2H−1(t − u)2H−1 + ε2H+1(t − u)2H+1).
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Thus,

ε

∫ t

s

K(T + εt, T + εu)2 du ≤ c
(
ε2H (t − s)2H + ε2H+2(t − s)2H+2).

Furthermore,

(
K(T +εt, T +εu)−K(T +εs, T +εu)

)2 = (
A(u)−B(u)

)2 ≤ 2
(
A2(u)+B2(u)

)
,

where

A(u) = cH

[(
T + εt

T + εu

)H− 1
2

(t − u)H− 1
2 εH− 1

2 −
(

T + εs

T + εu

)H− 1
2

(s − u)H− 1
2 εH− 1

2 )

]

B(u) = cH

(
H − 1

2

)
1

(T + εu)H− 1
2

∫ T +εt

T +εs

vH− 3
2
(
v − (T + εu)

)H− 1
2 dv.

Now, thanks to the Lagrange theorem, there exists x ∈ [s, t] such that

A(u) ≤ c
(
(T + εt)H− 1

2 (t − u)H− 1
2 εH− 1

2 − (T + εs)H− 1
2 (s − u)H− 1

2 εH− 1
2
)

= c
(
(T + εx)H− 3

2 (x − u)H− 1
2 + (T + εx)H− 1

2 (x − u)H− 3
2
)
εH− 1

2 (t − s).

The estimation of B is easily done. There exists x ∈ [s, t] such that

B(u) ≤ c

∫ T +εt

T +εs

(
v − (T + εu)

)H− 1
2 dv = cεH+ 1

2

∫ t

s

(v − u)H− 1
2 dv

= cεH+ 1
2 (x − u)H− 3

2 (t − s),

and then

ε

∫ s

0
A2(u) du ≤ cε2H (t − s)2, ε

∫ s

0
B2(u) du ≤ cε2H+2(t − s)2.

From Remark 15 we have that∫ t

0

(
K(T + εt, T + εu) − K(T + εs, T + εu)

)2
du ≤ cε2H (t − s)2.

Assumption 6 is then fulfilled with τ̂ = 1 and γε = εH .
A large deviation principle is then established for the family of processes

((X
ψ
T +εt − X

ψ
T )t∈[0,1])ε>0, with the inverse speed ε2H .

Example 5 (m-fold integrated Brownian motion). Let X be the process defined in
Example 2. We have already proved that Assumptions 1 and 2 are fulfilled with τ = 1
and γε = ε. We want to show that Assumptions 5 and 6 are fulfilled with τ̂ = 1,
γε = ε. For s ≤ t , we have

K(T + εt, T + εs) = (t − s)mεm,
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therefore

lim
ε→0

√
ε

K(T + εt, T + εs)

ε
= 0

uniformly in t, s ∈ [0, 1]. Thus,

ϒ̄(t, s) = α̃2

α2 + α̃2

1

(m!)2

m2

2m − 1
T 2m−1st,

and Assumption 5 is verified. Note that ϒ̄ is regular enough. Let us now prove the ex-
ponential tightness of the family of processes. For s < t , there exist positive constants
c1, c2 such that∫ t

0

(
K(T + εt, T + εu) − K(T + εs, T + εu)

)2
du

= 1

(m!)2

∫ s

0
ε2m

(
(t − u)m − (s − u)m

)2
du

+ 1

(m!)2

∫ t

s

ε2m((t − u)2m du ≤ ε2mc1(t − s)2 + ε2mc2(t − s)2m+1

and Assumption 6 is verified with τ̂ = 1 ad γε = ε. A large deviation principle is
then established for the family of conditioned processes ((X

ψ
T +εt − X

ψ
T )t∈[0,1])ε>0,

with the inverse speed ε2.

Example 6 (Integrated Volterra Process). Let X be the process defined in Example 3.
We have already proved that Assumptions 1 and 2 are fulfilled with τ = 1, γε = ε.
We want to show that Assumptions 5 and 6 are fulfilled with τ̂ = 1 and γε = ε. For
s ≤ t , we have

h(T + εt, T + εs) =
∫ T +εt

T +εs

K(v, T + εs) dv = ε

∫ t

s

K(T + εv, T + εs) dv,

therefore

lim
ε→0

√
ε

h(T + εt, T + εs)

ε
= 0

uniformly in t, s ∈ [0, 1]. Thus,

ϒ̄(t, s) = α̃2

α2 + α̃2

∫ T

0
K2(T , u) du st,

and Assumption 5 is verified. Note that ϒ̄ is regular enough. Let us now prove the
exponential tightness of the family of processes. For s < t , there exist a constant
c > 0 such that∫ t

0

(
h(T + εt, T + εu) − h(T + εs, T + εu)

)2
du

=
∫ s

0

(∫ T +εt

T +εs

K(v, T + εu) dv

)2

du +
∫ t

s

(∫ T +εt

T +εu

K(v, T + εu) dv

)2

du

≤ ε2c(t − s)2
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and Assumption 6 is verified with τ̂ = 1 and γε = ε. A large deviation principle is
then established for the family of conditioned processes ((X

ψ
T +εt − X

ψ
T )t∈[0,1])ε>0,

with the inverse speed ε2.
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