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Abstract. A closed set K of a Hilbert space H is said to be invariant
under the evolution equation

X ′(t) = AX(t) + f
(
t,X(t)

)
(t > 0)

whenever all solutions starting from a point of K, at any time t0 > 0,
remain in K as long as they exist.

For a self-adjoint strictly dissipative operator A, perturbed by a (pos-
sibly unbounded) nonlinear term f , we give necessary and sufficient
conditions for the invariance of K, formulated in terms of A, f , and the
distance function from K. Then, we also give sufficient conditions for
the viability of K for the control system

X ′(t) = AX(t) + f
(
t,X(t), u(t)

)
(t > 0, u(t) ∈ U).

Finally, we apply the above theory to a bilinear control problem for the
heat equation in a bounded domain of RN , where one is interested in
keeping solutions in one fixed level set of a smooth integral functional.
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1. Introduction

In a real separable Hilbert space H, with scalar product 〈·, ·〉 and norm
| · |, we consider the evolution equation{

X ′(t) = AX(t) + f
(
t,X(t)

)
, t > t0

X(t0) = x0

(1.1)

where A : D(A) ⊂ H → H is a densely defined negative self-adjoint linear

operator on H and f : [0,∞[×D((−A)θ/2)→ H, with (−A)θ/2 standing for
the fractional power of −A for any θ ∈ [0, 1], is assumed to be locally square
summable in t and locally Lipschitz in x. Then, it is well-known that, for any
(t0, x0) ∈ [0,∞[×D((−A)θ/2), problem (1.1) has a unique maximal solution
X(·; t0, x0), defined on some interval [t0, T (t0, x0)[ which can be proved to
equal [t0,∞[ under additional assumptions. In the latter case, we say that
the maximal solution is global.

We say that a nonempty closed set K ⊂ H is invariant under (1.1) if, for
all t0 > 0 and x0 ∈ K, we have that X(t; t0, x0) ∈ K for all t ∈ [t0, T (t0, x0)[.

More generally, given a complete separable metric space U—called the
control space—and a Lebesgue measurable map u : [t0,∞[→ U , one can
also consider the control system{

X ′(t) = AX(t) + f(t,X(t), u(t)), u(t) ∈ U
X(t0) = x0.

(1.2)

We denote by X(·; t0, x0, u) the maximal solution of (1.2) and by T (t0, x0, u)
the right end-point of the interval on which it is defined. Then, K is called
viable under (1.2) if for every initial condition (t0, x0) ∈ R+×K there exists
a control function u : [t0,∞) → U such that X(t; t0, x0, u) ∈ K for all
t ∈ [t0, T (t0, x0, u)[. Notice that the notion of invariance can be introduced
even for control systems by requiring that, for every (t0, x0) ∈ R+ ×K and
every u : [t0,∞) → U , X(t; t0, x0, u) ∈ K for all t ∈ [t0, T (t0, x, u)[. Such a
property is clearly more restrictive than viability.

The analysis of control systems is one motivation for assuming just mea-
surability in time for f in (1.1). Indeed, such settings allow to regard (1.2)
as a special case of (1.1) not only as far as well-posedness is concerned but
for some invariance issues as well. On the other hand, viability is a different
notion which requires a specific treatment, as we explain below.

There is an extensive literature addressing domain invariance issues in in-
finite dimensional spaces, although only part of it can be applied to partial
differential equations. For instance, Martin [11] studied the invariance of
K under equation (1.1) in Banach spaces, in the special case of A = 0, ex-
tending the classical condition introduced by Nagumo [12]. Then, Pavel [13]
established necessary and sufficient conditions for the invariance of K under
(1.1) in Banach spaces, assuming the semigroup generated by A, etA, to
be compact, f continuous in both variables, and θ = 0. In [14], the same
author removed the compactness hypothesis on etA replacing it with the
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dissipativity of f . In both papers [13] and [14], the condition for invariance
takes the form

lim
λ↓0

dK
(
eλAx+ λf(t, x)

)
λ

= 0 ∀t ∈ [0,∞[ , ∀x ∈ K. (1.3)

Later on, in [17], Shi studied an analogous viability problem for a differential
inclusion, that is, for a set-valued map f . Assuming both K and etA to
be compact, he derived a necessary and sufficient condition, analogous to
(1.3), with limλ↓0 replaced by lim infλ↓0 (lower Dini derivative). A detailed
exposition of this theory, and more, can be found in the monograph [8] by
O. Carja, M. Necula and K. Vrabie. We observe that a common feature of
the above results is that conditions for invariance are:

• imposed at (boundary) points of K, and
• expressed in terms of the semigroup etA.

In [7], assuming f = f(x) in (1.1) to be continuous and quasi-dissipative,
we showed that a necessary and sufficient condition for the invariance of K
is that all points x ∈ D(A)\K, sufficiently close to K, satisfy the inequality

D−dK(x) (Ax+ f(x)) 6 C dK(x) (1.4)

for some constant C > 0. Notice that (1.4) is formulated just in terms of
the generator A, which is simpler to use in applications.

In order to treat more general control systems, it is convenient to allow
the nonlinear term f to be defined on suitable subspaces of H, such as
D((−A)θ/2). For instance, consider the controlled heat equation

∂X
∂t (t, ξ) = ∆X(t, ξ) + g(t)X(t, ξ) (t > 0, ξ ∈ O)

X = 0, on (0,∞)× ∂O
X(0, ξ) = x0(ξ), ξ ∈ O,

(1.5)

where O ⊂ Rn is a bounded domain with C2 boundary and g ∈ L∞(0, T ) is
called a bilinear control. For a given smooth convex function φ : R→ R, an
interesting viability problem is to find conditions to ensure the existence of a
control g such that the corresponding maximal solution Xg of (1.5) remains
in the φ-energy level of x0, that is∫

O

φ
(
Xg(t, ξ)

)
dξ =

∫
O

φ
(
x0(ξ)

)
dξ ∀t ∈ [0, T (0, x0)[. (1.6)

We note that a special case of the above problem, for φ(s) = s2, is considered
by Caffarelli and Lin in [5]. As we show in section 4 of this paper, the
problem of determining g to satisfy (1.6) can be reduced to the invariance,
under (1.1), of a suitable level set of the integral functional associated with

φ. In this case, f in (1.1) turns out to be defined on the domain of (−A)1/2.

More generally, in section 3, we study the invariance of K ∩D((−A)θ/2)
under (1.1). First, we give sufficient conditions for invariance that are
formulated—like (1.4)—in terms of the lower Dini derivatives of the dis-
tance function dK at points of D(A) which are exterior to K (Theorem 3.2
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and Corollary 3.3). Then, under a further assumption connecting K with

(−A)θ/2, we show that the above conditions are also necessary (Theorem 3.7
and Corollary 3.9). These results become particularly simple when K is
proximally smooth since, in this case, Dini derivatives are replaced by scalar
products with proximal normals (Theorem 3.4 and Theorem 3.10). Notably,
in the latter case, one only needs to impose conditions on ∂K ∩D(A).

Since f in (1.1) or (1.2) is just measurable in time, an essential technical
tool of our approach is a Scorza-Dragoni type theorem, which is the object of
Proposition 2.9. Such a result ensures the existence of a negligible subset of
times N ⊂ R+ such that, for every (t0, x0) ∈

(
R+ \N

)
×D(A), the maximal

solution X(·; t0, x0) of problem (1.1) is differentiable at t0.
As for viability of the control system (1.2), when K is invariant under

the action of etA, we can provide a sufficient condition under an additional
compactness assumption for etA. Such a condition is given in terms of
Clarke’s derivatives of the distance to K (Theorem 5.2).

Although both invariance and viability are of great interest in their own
right, these properties also have applications to other important issues in
dynamical systems. For example, they can be used to derive lower bounds
for the blow-up time of solutions, possibly yielding that solutions are global.
The semilinear problem we discuss in section 4.3 below is a case in point.

Finally, we would like to stress the fact that this paper is restricted to
Hilbert space settings for two main reasons: the use of maximal L2-regularity
for solutions of linear evolution equations and the convenience of formulating
our condition for invariance in terms of proximal normals. Part of our results
could certainly be extended to suitable classes of Banach spaces, and also
to set-valued operators associated with maximal dissipative graphs.

This paper is organized as follows. In section 2, we discuss assumptions
and well-posedness for problems (1.1) and (1.2). In section 3, we derive our
conditions for invariance. In section 4, we study a bilinear control problem
for system (1.5), transforming it into an invariance problem, and use invari-
ance to extract nontrivial information on the maximal time of existence. In
section 5, we analyse viability under the control system (1.2). In section 6,
we prove proximal smoothness for level sets of certain integral functionals.

2. Preliminaries

Let H be a real separable Hilbert space with scalar product 〈·, ·〉 and
norm | · |. For any x ∈ H and r > 0 we set

Br(x) =
{
y ∈ H : |y − x| < r

}
, Br = Br(0) .

We denote by L1 the Lebesgue measure on R. We set

R+ = [0,∞[ , R∗+ =]0,∞[ , and brc = min
{
n ∈ N : r 6 n

}
∀r ∈ R+.

We say that a measurable set F ⊂ R+ is of full measure if L1

(
R+ \ F

)
= 0.
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For any (t0, x0) ∈ R+ ×H, consider the Cauchy problem{
X ′(t) = AX(t) + f

(
t,X(t)

)
, t > t0

X(t0) = x0

(2.1)

where A is a linear operator on H and f is a nonlinear term. In this paper,
both A and f are allowed to be unbounded.

2.1. Assumptions. In this section, we introduce the assumptions that will
be enforced in the rest of the paper. We begin with operator A which is
hereafter supposed to satisfy the following.

(HA): A : D(A) ⊂ H → H is a densely defined self-adjoint linear
operator such that A 6 −ωI for some ω > 0.

Assumption (HA) ensures that A is the infinitesimal generator of a strongly
continuous semigroup of contractions on H, which we denote by etA (t > 0).
Moreover, etA is analytic and etAx ∈ D(A) for all t > 0 and x ∈ H.

For any θ ∈ R we denote by (−A)θ the fractional powers of −A (see, for
instance, [15, Section 2.6]) and we set

Hθ = D
(
(−A)θ/2

)
with |x|θ = |(−A)θ/2x|, ∀x ∈ Hθ (θ > 0)

We recall that, for all θ > 0,

ωθ/2|(−A)−θ/2x| 6 |x| ∀x ∈ H, (2.2)

ωθ/2|x| 6 |x|θ ∀x ∈ Hθ, (2.3)

and, for all 0 6 θ 6 1,

ω(1−θ)/2|x|θ 6 |x|1 ∀x ∈ H1, (2.4)

where ω > 0 is the constant given by (HA).
We now give the assumptions on the nonlinear term f .

(Hf ): f : R+ ×Hθ → H for some θ ∈ [ 0, 1 ] and

(a) for all x ∈ Hθ, t 7→ f(t, x) is Lebesgue measurable on [ 0,∞ [;
(b) there exists a function L : R+ × R+ → R+, with{

r 7→ L(t, r) nondecreasing for a.e. t > 0

t 7→ L(t, r) locally square-summable for all r > 0,
(2.5)

such that, for every r > 0 and a.e. t > 0,∣∣f(t, x)
∣∣ 6 L(t, r) (2.6)

and ∣∣f(t, x)− f(t, y)
∣∣ 6 L(t, r)|x− y|θ (2.7)

for all x, y ∈ Hθ with |x|θ, |y|θ 6 r.
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Remark 2.1. Observe that, for a.e. t > 0 and every r > 0, (2.7) yields

〈f(t, x)− f(t, y), x− y〉 6
∣∣f(t, x)− f(t, y)

∣∣ |x− y|
6 L(t, r) |x− y|θ|x− y| (2.8)

for all x, y ∈ Hθ with |x|θ, |y|θ 6 r. Consequently, for every ε > 0, every
r > 0, and every x, y as above we have that

〈f(t, x)− f(t, y), x− y〉 6 ε

2
|x− y|2θ +

L(t, r)2

2ε
|x− y|2. (2.9)

Typical examples of partial differential equations which can be recast
in the form (2.1), with A and f satisfying assumptions (HA) and (Hf )
respectively, are semilinear parabolic equations.

Example 2.2. Let O ⊂ Rn (n > 3) (1) be a bounded domain with boundary
of class C2. Consider the semilinear initial-boundary value problem

∂X
∂t = ∆X + F (t, ξ,X) in ]0,∞[×O
X = 0 on ]0,∞[×∂O
X(0, ξ) = x0(ξ) ξ ∈ O a.e.

(2.10)

where F : R+ × O× R→ R is such that{
v 7→ F (t, ξ, v) is of class C1(R) for a.e. (t, ξ) ∈ R+ × O,

(t, ξ) 7→ F (t, ξ, v) is Lebesgue measurable for all v ∈ R,
(2.11)

and satisfies, for some given

p ∈
[
1,

n

n− 2

]
, ϕ0 ∈ L2

loc(R+;L2(O)), and ϕ1 ∈ L2
loc(R+;Ln(O)), (2.12)

the growth conditions

|F (t, ξ, v)| 6 C0

(
ϕ0(t, ξ) + |v|p

)
(2.13)∣∣∣∂F

∂v
(t, ξ, v)

∣∣∣ 6 C1

(
ϕ1(t, ξ) + |v|p−1

)
(2.14)

for a.e. (t, ξ) ∈ R+ × O, every v ∈ R, and some constants C0, C1 > 0.
We will now show that the above problem can be recast as an evolution

equation like (2.1), for some operator A and nonlinear map f satisfying
assumptions (HA) and (Hf ), respectively. In the Hilbert space H = L2(O),
with norm

|x| =
(∫

O

|x(ξ)|2dξ
) 1

2 ∀x ∈ L2(O),

define the linear operator A by{
D(A) = H2(O) ∩H1

0 (O)

Ax = ∆x ∀x ∈ D(A).
(2.15)

(1)We assume n > 3 for simplicity. The analysis of this example is even simpler for
n = 1, 2.
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It is well known that A satisfies (HA) and H1 = H1
0 (O). Moreover, in view

of Poincaré’s inequality∫
O

|x(ξ)|2dξ 6 C2
O

∫
O

|∇x(ξ)|2dξ ∀x ∈ H1
0 (O), (2.16)

an equivalent norm in H1 is the following

|x|1 =
(∫

O

|∇x(ξ)|2dξ
) 1

2 ∀x ∈ H1
0 (O),

with the associated scalar product

〈x, y〉1 =

∫
O

∇x(ξ) · ∇y(ξ) dξ ∀x, y ∈ H1
0 (O).

Moreover, appealing to the Sobolev embedding theorem, we have that

H1
0 (O) ⊂ Lp(O) ∀p ∈

[
1,

2n

n− 2

]
and ( ∫

O

|x(ξ)|pdξ
) 1
p
6 Cp(O)

(∫
O

|∇x(ξ)|2dξ
) 1

2 ∀x ∈ H1
0 (O). (2.17)

Therefore, (2.11), (2.13), and (2.17) ensure that the map f : R+×H1 → H,
defined by

f(t, x)(ξ) = F
(
t, ξ, x(ξ)

)
∀(t, x) ∈ R+ ×H1, ξ ∈ O a.e., (2.18)

satisfies (Hf )-(a), (2.5), and (2.6). Moreover, by (2.14) we have that

|f(t, x)− f(t, y)|2 =

∫
O

∣∣F (t, ξ, x(ξ)
)
− F

(
t, ξ, y(ξ)

)∣∣2dξ
6 C

∫
O

[
ϕ1(t, ξ)2 +

(
|x(ξ)|+ |y(ξ)|

)2(p−1)
] ∣∣x(ξ)− y(ξ)

∣∣2dξ
6 C

{∫
O

[
ϕ1(t, ξ)n +

(
|x|+ |y|

)n(p−1)
]
dξ
} 2
n
{∫

O

∣∣x− y∣∣ 2n
n−2dξ

}n−2
n

which gives (2.7). So, f satisfies (Hf ) with θ = 1 (see also [10, Example 3.6]).

As we show next, the abstract model (2.1) also allows to treat equations
with nonlocal terms.

Example 2.3. In O ⊂ Rn as in the above example, consider the initial-
boundary value problem for the heat operator with a nonlocal source term

∂X
∂t = ∆X +

( ∫
O
|∇X|2dξ

)
X in ]0,∞[×O

X = 0 on ]0,∞[×∂O
X(0, ξ) = x0(ξ) ξ ∈ O a.e.

(2.19)

In the Hilbert space H = L2(O), define A as in (2.15) and take

f(t, x)(ξ) = |x|21 x(ξ) ∀(t, x) ∈ R+ ×H1
0 (O) , ξ ∈ O a.e.
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Then, one immediately has that f satisfies (Hf )-(a), (2.5), and (2.6) with
θ = 1. We proceed to check that (2.7) also holds true. Fix R > 0 and let
x, y ∈ H1

0 (O) be such that |x|1, |y|1 6 R. Then, by (2.16),∣∣f(t, x)− f(t, y)
∣∣ =

∣∣|x|21 x− |y|21 y∣∣
6 |x|21 |x− y|+ |y|

∣∣|x|21 − |y|21∣∣
6 R2 |x− y|+ 2COR

2 |x− y|1
which yields (2.7) with L(t, R) = 3COR

2. �

2.2. Well-posedness. In this section, we discuss well-posedness for prob-
lem (2.1). These results will be needed in the next sections. Let us consider
the linear problem {

X ′(t) = AX(t) + g(t), t ∈]0, T [

X(0) = x0,
(2.20)

where g ∈ L1(0, T ;H) and x0 ∈ H. We recall that X ∈ C([0, T ];H) given
by

X(t) = etAx0 +

∫ t

0
e(t−s)Ag(s)ds ∀t ∈ [0, T ] (2.21)

is called the mild solution of (2.20). For more regular data, such a solution
has additional regularity properties, some of which are summarized below.

Proposition 2.4. Let x0 ∈ H. If g ∈ L2(0, T ;H) then X, given by (2.21),
satisfies the equation in (2.20) for a.e. t ∈ [0, T ]. If, in addition, x0 ∈ Hθ

for some θ ∈ [ 0, 1 ], then

X ∈ C([0, T ];Hθ). (2.22)

Furthermore, for θ = 1 we have that

X ∈ H1(0, T ;H) ∩ L2(0, T ;D(A)). (2.23)

Proof. We begin by observing that property (2.23) is the well-known maxi-
mal L2-regularity of the solution of (2.20), which holds true in Hilbert spaces
and in suitable classes of Banach spaces (see, for instance, [3]). This maxi-
mal regularity result also ensures that X satisfies the equation in (2.20) for
a.e. t ∈ [0, T ].

At this point, we note that the above applies, in particular, to the mild
solution

G(t) =

∫ t

0
e(t−s)Ag(s)ds ∀t ∈ [0, T ]

of (2.20) with x0 = 0. So, G satisfies

G′(t) = AG(t) + g(t) (t ∈]0, T [ a.e.) (2.24)

and, since H1(0, T ;H) ∩ L2(0, T ;D(A)) ⊂ C([0, T ];H1), we also have that
G ∈ C([0, T ];H1). Consequently, G ∈ C([0, T ];Hθ) by (2.4).
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Next, for any x0 ∈ H by (2.21) we have that X(t) = etAx0 +G(t), where
d
dt e

tAx0 exists and equals AetAx0 for every t > 0. This fact and (2.24) imply
that X satisfies the equation in (2.20) for a.e. t ∈ [0, T ].

Finally, (2.22) holds true if x0 ∈ Hθ: indeed

t 7→ (−A)θ/2etAx0 = etA(−A)θ/2x0 (t > 0)

is continuous and G ∈ C([0, T ];H1). Inequality (2.4) ends the proof. �

We now turn to the nonlinear problem (2.1) under assumptions (HA), (Hf ).
Let (t0, x0) ∈ R+ ×Hθ.

Definition 2.5. A mild solution of (2.1) on the time interval [t0, T ] is a
vector-valued function X ∈ C

(
[t0, T ];Hθ

)
such that

X(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−s)Af
(
s,X(s)

)
ds ∀t ∈ [t0, T ]. (2.25)

Notice that, for X ∈ C
(
[t0, T ];Hθ

)
, the function g(s) = f

(
s,X(s)

)
be-

longs to L2(0, T ;H) by (2.6). So, the integral in (2.25) makes sense.
Our next result establishes the local well-posedness of problem (2.1).

Proposition 2.6. Assume (HA) and (Hf ). Then, for any T,R > 0 there
exists τ = τ(T,R) > 0 such that, for every (t0, x0) ∈ R+ ×Hθ with t0 < T
and |x0|θ 6 R, system (2.1) has a unique mild solution on [t0, t0 + τ ]. Such
a solution satisfies equation (2.1) for a.e. t ∈ [t0, t0 +τ ] as well as the bound

|X(t)|θ 6 2R ∀t ∈ [t0, t0 + τ ]. (2.26)

Moreover, there exists a function ` : R+ × R+ → R+, with{
r 7→ `(t, r) nondecreasing for a.e. t > 0

t 7→ `(t, r) locally summable for all r > 0,

such that, for any y0 ∈ Hθ with |y0|θ ≤ R, the corresponding solution Y of
(2.1) with initial condition y0 satisfies

|X(t)− Y (t)| 6 e
∫ t
t0
`(s,R)ds|x0 − y0| ∀ t ∈ [t0, t0 + τ ]. (2.27)

and

|X(t)− Y (t)|θ 6 e
∫ t
t0
`(s,R)ds|x0 − y0|θ ∀ t ∈ [t0, t0 + τ ]. (2.28)

Furthermore, for θ = 1 we have that

X ∈ H1(t0, t0 + τ ;H) ∩ L2(t0, t0 + τ ;D(A)). (2.29)

Proof. Let T and R be fixed positive numbers. The existence and uniqueness
of the mild solution to (2.1)—as well as estimate (2.26)—can be obtained
by a standard fixed-point argument for the map Φ : Xτ → Xτ defined by

Φ(X)(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−s)Af
(
s,X(s)

)
ds

(
X ∈ Xτ , t ∈ [t0, t0 + τ ]

)
,
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where 0 < τ 6 T − t0 has to be properly chosen and

Xτ =
{
X ∈ C

(
[t0, t0 + τ ];Hθ

)
: sup
t06t6t0+τ

|X(t)|θ 6 2R
}
.

Once the mild solution X of (2.1), satisfying (2.26), has been constructed,
one can appeal to Proposition 2.4 with

g(t) = f
(
t,X(t)

)
(t ∈ [t0, t0 + τ ]),

which belongs to L2(t0, t0 + τ ;D(A)), to deduce the fact that

X ′(t) = AX(t) + f
(
t,X(t)

)
for a.e. t ∈ [t0, , t0 + τ ]. For θ = 1, (2.29) follows from the same proposition.

We now proceed to justify (2.27) and (2.28). Let Y be the mild solution
of (2.1) with any initial condition y0 ∈ Hθ such that |y0|θ ≤ R. Then,

(X − Y )′(t) = A(X − Y )(t) + f
(
t,X(t)

)
− f(t, Y (t)

)
(t ∈ [t0, t0 + τ ] a.e.)

So, taking the scalar product of both sides of the above identity by X − Y ,
in view of (2.9) with ε = 2ω1−θ and (2.4) we obtain

1

2

d

dt
|X − Y |2 (2.30)

6 −|X − Y |21 + ω1−θ|X − Y |2θ +
L(t, 2R)2

4ω1−θ |X − Y |2

6
L(t, 2R)2

4ω1−θ |X − Y |2.

Thus, (2.27) follows by Gronwall’s lemma with `(t, R) = L(t,2R)2

4ω1−θ .
Estimate (2.28) can be deduced in a similar way. This time, taking the

scalar product with (−A)θ(X − Y ) and recalling (2.7), we have that

1

2

d

dt
|X − Y |2θ

= −|X − Y |21+θ + 〈f(t,X)− f(t, Y ), (−A)θ(X − Y )〉
6 −|X − Y |21+θ + L(t, 2R) |X − Y |θ |X − Y |2θ.

Thus, instead of (2.30) we obtain

1

2

d

dt
|X − Y |2θ (2.31)

6 −|X − Y |21+θ + ω1−θ|X − Y |22θ +
L(t, 2R)2

4ω1−θ |X − Y |2θ.

Since (2.4) yields

ω1−θ|X − Y |22θ = ω1−θ|(−A)θ(X − Y )|2

6 |(−A)θ/2(X − Y )|21 = |X − Y |21+θ,

we derive (2.28) by Gronwall’s lemma, with the same function ` as above. �
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Once the existence and uniqueness of the local mild solution has been
proved, one constructs the maximal solution of problem (2.1), X(·; t0, x0),
which exists on the maximal interval [t0, T (t0, x0)[ defined as follows:

T (t0, x0) = sup
{
T > t0 : ∃X(·) mild solution of (2.1) on [t0, T ]

}
. (2.32)

Then, for any fixed T ∈ [t0, T (t0, x0)[, thanks to the uniqueness property of
Proposition 2.6 one has that X(t; t0, x0) = X(t) for all t ∈ [t0, T ] where X
is the mild solution of (2.1) on [t0, T ]. Moreover, X(·; t0, x0) satisfies (2.29),
(2.27), and (2.28) on all compact subintervals of [t0, T (t0, x0)[.

2.3. Control systems. We now want to extend the above well-posedness
result to the semilinear control system{

X ′(t) = AX(t) + f(t,X(t), u(t)), u(t) ∈ U
X(t0) = x0,

(2.33)

where u : [t0,∞[→ U is Lebesgue measurable and U is a complete separable
metric space. This goal is obtained at essentially no cost, because in the
previous section f has been assumed to be measurable in time. We just
need to adapt assumption (Hf ) to control systems, as we do next.

(H ′f ): f : R+ × Hθ × U → H for some θ ∈ [ 0, 1 ] and satisfies the
following:

(a) for all (x, u) ∈ Hθ × U , the map t 7→ f(t, x, u) is Lebsesgue
measurable on R+;

(b) for a.e. t > 0, the map (x, u) 7→ f(t, x, u) is continuous;
(c) fu(t, x) := f(t, x, u) satisfies (Hf ) uniformly in u ∈ U .

Directly from Proposition 2.6 we deduce the well-posedness of (2.33) for any
(t0, x0) ∈ R+ ×Hθ and any measurable control u : [t0,∞[→ U . We denote
by X(·; t0, x0, u) the maximal solution of such a problem.

As is well-known, X(·; t0, x0, u) is global under an additional assumption.

Proposition 2.7. Assume (HA), (H ′f ), and suppose there exists a nonneg-

ative function c ∈ L2
loc(R+) such that∣∣f(t, x, u)

∣∣ 6 c(t)(1 + |x|θ) ∀ x ∈ Hθ, (2.34)

for a.e. t > 0 and every u ∈ U . Then, for any (t0, x0) ∈ R+ × Hθ, the
maximal solution of (2.33) is global, that is, T (t0, x0) = ∞ and for every
T > t0 there exists a constant CT > 0 such that

|X(t; t0, x0, u)|θ 6 CT (1 + |x0|θ) ∀t ∈ [t0, T ]. (2.35)

Proof. Fix any (t0, x0) ∈ R+ ×Hθ and let T ∈]t0, T (t0, x0)[. Since

X ′(t) = AX(t) + f
(
t,X(t), u(t)

)
(t ∈ [t0, T ] a.e.),
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where X(·) = X(·; t0, x0, u), taking the scalar product of both sides of the
above identity by (−A)θX and arguing as in the proof of (2.31) we obtain

1

2

d

dt
|X(t)|2θ 6 −|X(t)|21+θ + ω1−θ|X(t)|22θ +

c(t)2

4ω1−θ
(
1 + |X(t)|θ

)2
6

c(t)2

4ω1−θ
(
1 + |X(t)|θ

)2
(t ∈ [t0, T ] a.e.)

Then, by Gronwall’s lemma we conclude that

|X(t)|θ 6 CT (1 + |x0|θ) ∀t ∈ [t0, T ]

for some constant CT > 0. This implies that the maximal solution of (2.33)
is global and satisfies (2.35). �

Next, we state a Scorza-Dragoni type theorem that can be easily deduced
from [4, Theorem 1].

Theorem 2.8. Let T > 0, Y and Z be separable metric spaces and consider
a Carathéodory map F : [0, T ]× Y → Z. Then, for any ε > 0 there exists a
compact set Tε ⊂ [0, T ] with L1([0, T ]\Tε) < ε such that the restriction of F
to Tε × Y is continuous.

Recall that F : [0, T ]× Y → Z is called a Carathéodory map if{
t 7→ F (t, y) is Lebesgue measurable for all y ∈ Y,
y 7→ F (t, y) is continuous for a.e. t ∈ [0, T ].

From the above theorem we deduce the very useful result below.

Proposition 2.9. Under assumptions (HA) and (H ′f ) there exists a set
N ⊂ R+, of Lebesgue measure zero, such that for every

(t0, x0, u0) ∈
(
R+ \N

)
×Hθ × U,

the maximal solution X(·) = X(·; t0, x0, u0) of (2.33), with the constant
control u(·) = u0, satisfies

lim
h→0+

1

h

∫ t0+h

t0

eA(t0+h−s)f(s,X(s), u0)ds = f(t0, x0, u0).

Proof. Having fixed any T > 0, we will construct a set (of full measure)
MT ⊂ [ 0, T ] such that the conclusion holds on MT × Hθ × U . Then, to
obtain our result, it suffices to consider the union, say M, of such sets for a
sequence Ti ↑ ∞ and take N = R+ \M.

Define

ε =
1

i
, T = [0, T ] , Y = Hθ × U , Z = H.

Let Mi := T1/i be as in Theorem 2.8 and set Lj(·) = L(·, j) for all j > 1,

where the latter is the function in (H ′f )-(b). Consider the subset M̃i ⊂Mi of
all points which are both Lebesgue density point for Mi and Lebesgue points
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for Ljχ[0,T ]\Mi
and Lj for every integer j > 1. Then L1(M̃i) = L1(Mi). Set

MT = ∪i>1M̃i. Then MT is of full measure in [0, T ].
Fix any (t0, x0, u0) ∈MT×Hθ×U and consider the solution X(·) of (2.33)

with u(·) ≡ u0 defined on some interval [t0, t0 + δ], where δ > 0. Setting
R := maxs∈[t0,t0+δ] |X(s)|θ, for any integer j > R we have that∣∣∣∣∫ t0+h

t0

e(t0+h−s)A(f(s,X(s), u0)− f(s, x0, u0))ds

∣∣∣∣
6
∫ t0+h

t0

Lj(s)|X(s)− x0|θds.

Furthermore,

1

h

∫ t0+h

t0

Lj(s)|X(s)− x0|θds 6 max
s∈[t0,t0+h]

|X(s)− x0|θ
1

h

∫ t0+h

t0

Lj(s)ds.

Hence

lim
h→0+

1

h

∫ t0+h

t0

e(t0+h−s)A[f(s,X(s), u0)− f(s, x0, u0)
]
ds = 0.

Let i > 1 be such that t0 ∈ M̃i. Then for all j > 1

lim
h→0+

1

h

∫ t0+h

t0

Lj(s)χ[0,T ]\Mi
(s)ds = 0

and therefore

lim
h→0+

1

h

∫ t0+h

t0

e(t0+h−s)Af(s, x0, u0)ds

= lim
h→0+

∫
[t0,t0+h]∩Mi

e(t0+h−s)Af(s, x0, u0)ds.

By the continuity of f(·, x0, u0) on [t0, t0 + h] ∩Mi, we have that

lim
h→0+

1

h

∫
[t0,t0+h]∩Mi

e(t0+h−s)Af(s, x0, u0)ds

= lim
h→0+

1

h

∫
[t0,t0+h]∩Mi

e(t0+h−s)Af(t0, x0, u0)ds

= lim
h→0+

1

h

∫
[t0,t0+h]∩Mi

f(t0, x0, u0)ds.

Next, notice that

1

h

∫
[t0,t0+h]∩Mi

f(t0, x0, u0)ds =
1

h
L1([t0, t0 + h] ∩Mi) f(t0, x0, u0)

which implies, by the choice of t0 and i, that

lim
h→0+

1

h

∫
[t0,t0+h]∩Mi

f(t0, x0, u0)ds = f(t0, x0, u0).
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Hence, we deduce that

lim
h→0+

1

h

∫
[t0,t0+h]∩Mi

e(t0+h−s)Af(s, x0, u0)ds = f(t0, x0, u0)

completing the proof. �

We would like to underline the importance of Proposition 2.9, which lies in
the fact that the negligible set N is independent of the choice of x0 and u0.

By recalling (2.25) and appealing to Proposition 2.9 in the special case of
f(t, x, u) = f(t, x), one deduces the following differentiability result.

Corollary 2.10. Under assumptions (HA) and (Hf ) there exists N ⊂ [ 0,∞[,
of Lebesgue measure zero, such that for every (t0, x0) ∈

(
R+ \ N

)
× D(A)

the maximal solution X(·; t0, x0) of problem (2.1) is differentiable at t0 and

d

dt
X(t; t0, x0)|t=t0 = Ax0 + f(t0, x0). (2.36)

3. Invariance

In all the results of this section, we assume without further notice that:

• (HA) and (Hf ) are satisfied, and
• K ⊂ H is a nonempty closed set.

We denote by θ ∈ [0, 1] the number given by (Hf ). We know that, for any
(t0, x0) ∈ R+ ×Hθ, problem (2.1) has a unique solution X(·; t0, x0) and we
denote by [t0, T (t0, x0)[ its interval of existence.

We begin by defining invariance under (2.1).

Definition 3.1. We say that K ∩ Hθ is invariant under (2.1) if, for all
t0 > 0 and x0 ∈ K ∩Hθ, we have that

X(t; t0, x0) ∈ K ∩Hθ ∀t ∈ [t0, T (t0, x)[.

Denote by dK(x) the distance of x from K, that is,

dK(x) = inf
y∈K
|x− y|, ∀ x ∈ H. (3.1)

We recall that dK is Lipschitz continuous (with constant 1) on H and the
lower Dini derivative of dK at x ∈ H in the direction v ∈ H is given by

D−dK(x) v = lim inf
λ↓0

dK(x+ λv)− dK(x)

λ
.

For any δ > 0 we set

Kδ =
{
x ∈ H \K : dK(x) < δ

}
. (3.2)
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3.1. Sufficient Conditions for Invariance. We first provide sufficient
conditions for the invariance of K, which apply to rather general settings.

Theorem 3.2. Suppose there exists a set T ⊂ R+, of Lebesgue measure zero,
and a number δ > 0 such that, for all t ∈ R+ \ T and all x ∈ D(A) ∩Kδ,

D−dK(x) (Ax+ f(t, x)) 6 C(t, |x|θ) dK(x), (3.3)

where C : R+ × R+ → R+ satisfies{
r 7→ C(t, r) nondecreasing for a.e. t > 0

t 7→ C(t, r) locally summable for all r > 0.
(3.4)

Then K ∩Hθ is invariant under (2.1).

Proof. Fix any (t0, x0) ∈ R+ × (K ∩Hθ) and denote by X(·) the maximal
solution X(·; t0, x0) of (2.1). Let us argue by contradiction assuming there
is T ∈]t0, T (t0, x0)[ such that X(T ) /∈ K. Set

t̄ = max
{
t ∈ [t0, T ] : X(t) ∈ K

}
and x̄ = X(t̄).

We will show that t̄ = T , which contradicts the assumption X(T ) /∈ K.
Suppose t̄ < T and observe that

X(t) /∈ K ∀t ∈]t̄, T ]. (3.5)

In light of Proposition 2.6, there exists T ′ ∈]t̄, T ] such that |X(t)|θ 6 2|x̄|θ
for every t ∈ [t̄, T ′] and equation (2.1) holds true for a.e. t ∈ [t̄, T ′]. Denote
by F the set, of full measure in [t̄, T ′], of all times t such that condition (3.3)
is fulfilled for all x ∈ D(A) ∩Kδ. Define

E =
{
t ∈ [t̄, T ′] : X ′(t) = AX(t) + f

(
t,X(t)

)}
.

Owing to (3.3), for all t ∈ E ∩ F \ {t̄} we have that

D−dK(X(t)) (AX(t) + f(t,X(t))) 6 C(t, 2|x̄|θ) dK(X(t)). (3.6)

Now, since dK is Lipschitz, the function

φ(t) := dK
(
X(t)

)
(t ∈ [t̄, T ′])

is absolutely continuous, hence differentiable on a set D of full measure in
[t̄, T ′]. Then, in view of (3.6), for all t ∈ D ∩ E ∩ F \ {t̄, T ′} we have that

φ′(t) = lim
h↓0

1

h

[
dK
(
X(t+ h)

)
− dK

(
X(t)

)]
= lim

h↓0

1

h

{
dK
(
X(t) + h

[
AX(t) + f(t,X(t))

])
− dK

(
X(t)

)}
6 C(t, 2|x̄|θ)φ(t).

Since D ∩ E ∩ F has full measure in [t̄, T ′] and φ(t̄) = 0, Gronwall’s lemma
ensures that φ(t) ≡ 0, or X(t) ∈ K for all t ∈ [t̄, T ′], in contrast with (3.5).
So, t̄ = T , as claimed, and we have reached the announced contradiction. �
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When K has further geometric properties, the above sufficient condition
can be given in different forms that are easier to handle in specific situations.
For any x ∈ H we denote by ΠK(x) the set of projections of x onto K, that is,
the (possibly empty) subset of K at which the infimum in (3.1) is attained.
We recall that K is said to be proximally smooth, if ΠK(x) is a singleton
for all x ∈ Kδ and some δ > 0 or, equivalently, if dk is continuously Frechét
differentiable on Kδ. In this case, we have that

DdK(x) =
x−ΠK(x)

dK(x)
∀x ∈ Kδ.

Consequently, if K is proximally smooth, then

D−dK(x)v = 〈DdK(x), v〉 ∀x ∈ Kδ , ∀v ∈ H.

So, Theorem 3.2 yields the following.

Corollary 3.3. Let K be proximally smooth and fix any δ > 0 such that
ΠK is single-valued on Kδ. Furthermore, suppose that, for a.e. t ∈ R+ and
every x ∈ D(A) ∩Kδ,

〈x−ΠK(x), Ax+ f(t, x)〉 6 C(t, |x|θ) d2
K(x), (3.7)

where C : R+ × R+ → R+ satisfies (3.4).
Then K ∩Hθ is invariant under (2.1).

In our next result, we propose a condition that needs to be satisfied only
at boundary points. For any x ∈ K we denote by NP

K(x) the proximal
normal cone to K at x. We recall that a vector p ∈ H belongs to NP

K(x) if
and only if, for some λ > 0, we have that

〈p, y − x〉 6 |p|
2λ
|y − x|2 ∀y ∈ K. (3.8)

Observe that 0 ∈ NP
K(x) for all x ∈ K. Whenever (3.8) holds for some

p 6= 0, we say that p is realized by a ball of radius λ. Indeed, in this case,
one has that Bλ(x+ λp/|p|) ⊂ H \K.

Theorem 3.4. Let K be proximally smooth and fix any δ > 0 such that ΠK

is single-valued on Kδ. Suppose ΠK

(
D(A) ∩Kδ

)
⊂ D(A) and

〈p,Ax+ f(t, x)〉 6 0 ∀ p ∈ NP
K(x) ∩D(A), (3.9)

for a.e. t ∈ R+ and every x ∈ ∂K ∩D(A).
Then K ∩Hθ is invariant under (2.1).

Proof. Let x ∈ D(A)∩Kδ and set x = ΠK(x). Since x− x̄ ∈ NP
K(x̄)∩D(A),

(3.9) yields 〈x − x,Ax + f(t, x)〉 6 0 for a.e. t ∈ R+. Recalling (2.4), by
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(2.9) with ε = 2ω1−θ we then obtain

〈x− x,Ax+ f(t, x)〉
= 〈x− x,Ax+ f(t, x)〉+ 〈x− x,A(x− x)〉+ 〈x− x, f(t, x)− f(t, x)〉

6 −|x− x|21 + ω1−θ|x− x|2θ +
L
(
t,M(|x|θ)

)2
4ω1−θ |x− x|2

6
L
(
t,M(|x|θ)

)2
4ω1−θ d2

K(x).

Hence (3.7) is satisfied. So, K∩Hθ is invariant in view iof Corollary 3.3. �

Example 3.5. In the Hilbert space H = L2(O), consider the closed convex
cone

H+ =
{
x ∈ H : x(ξ) > 0, ξ ∈ O a.e.

}
.

Denoting by x+ and x− the positive and negative parts of x ∈ H, respec-
tively, we have that any x ∈ H can be represented as x = x+ − x−. So,

ΠH+(x) = x+ and dH+(x) = |x−| ∀x ∈ H.

Consequently, H+ is proximally smooth and we can study its invariance
under the flow associated with (2.10) using Corollary 3.3.

Suppose assumptions (2.11), (2.12), (2.13), and (2.14) are satisfied with
ϕ0 ≡ 0 and define A and f as in (2.15) and (2.18), respectively. Then,
appealing to Corollary 3.3 we conclude that (3.7) is a sufficient condition
for the invariance of H+ ∩H1 under (2.10). In order to check (3.7), observe
that, for all x ∈ D(A) \H+, integrating by parts we have that

〈x−ΠH+(x), Ax+ f(t, x)〉 (3.10)

= −
∫
O

x−(ξ)
(

∆x(ξ) + F
(
t, ξ, x(ξ)

))
dξ

= −
∫
O

|∇x−(ξ)|2dξ −
∫
O

x−(ξ)F
(
t, ξ,−x−(ξ)

)
dξ

because x+ and x− vanish on the intersection of their supports. Now, use
(2.13) (with ϕ0 ≡ 0) and the Sobolev inequality (2.17) to derive

−
∫
O

x−(ξ)F
(
t, ξ,−x−(ξ)

)
dξ 6 C0

∫
O

|x−(ξ)| |x−(ξ)|pdξ

6 C0 |x−|
(∫

O

|x−(ξ)|2pdξ
) 1

2
6 C0C2p(O)p |x−| |x−|p1

6 |x−|21 +
C2

0C2p(O)2p

4
|x−|2(p−1)

1 |x−|2.

Finally, combine the last inequality with (3.10), to obtain (3.7) with

C(t, r) =
C2

0C2p(O)2p

4
r2(p−1) (t, r > 0),

thus yielding the claimed invariance of H+ ∩H1. �



18 P. CANNARSA, G. DA PRATO, AND H. FRANKOWSKA

Since, in the above example, H+ is invariant under the semigroup etA, the
conclusion could be interpreted saying that invariance is preserved for a
perturbation F which satisfies (2.13) and (2.14) with ϕ0 ≡ 0.

Remark 3.6. The analysis of Example 3.5 shows that, without assuming
ϕ0 ≡ 0 in (2.13), a sufficient condition for the invariance of H+ ∩H1 under
(2.10) is that, for a.e. (t, ξ) ∈ R+ × O,

F (t, ξ, v) > Cv ∀v 6 0 (3.11)

for some constant C > 0.

3.2. Necessary Conditions for Invariance. In this section, we show that
the above sufficient conditions become also necessary for the invariance of
K ∩Hθ under a further assumption, (Hρ), which connects D(A) with K.

Theorem 3.7. Suppose there exists a number ρ > 0 and a nondecreasing
function M : R+ → R+, satisfying M(s) > s for all s ∈ R+, such that:

(Hρ) for all x ∈ D(A) ∩Kρ and all h > 0 one can find xh ∈ K ∩Hθ with

|xh − x| < dK(x) + h and |xh|θ 6M(|x|θ).

If K ∩ Hθ is invariant under (2.1), then there exists a set T ⊂ R+, of
Lebesgue measure zero, and a function C : R+ × R+ → R+ satisfying (3.4)
such that (3.3) holds true for all t ∈ R+ \ T and all x ∈ D(A) ∩Kρ.

Proof. Let ` be the function given by Proposition 2.6 and observe that

`(t, r) 6 `(t, brc) for a.e. t ∈ R+ , ∀r ∈ R+. (3.12)

For every integer n > 1, denote by Pn the set of Lebesgue points of the
function `(·, n) and set Qn = R+ \ Pn and Q = ∪n>1Qn. Since Pn is a set of
full measure, Qn is a negligible set and so is Q. Then, T := N ∪Q,, where N

is given by Proposition 2.9, is negligible too.
Suppose K∩Hθ is invariant under (2.1). Fix t0 ∈ R+\T, x0 ∈ D(A)∩Kρ,

and h > 0. Invoke assumption (Hρ) to construct xh ∈ K ∩Hθ such that

|xh − x0| 6 (1 + h2)dK(x0) and |xh|θ 6M(|x0|θ). (3.13)

Owing to Proposition 2.6 the maximal solutions X(·) := X(·; t0, x0) and
Xh(·) := X(·; t0, xh) of (2.1) are defined on some common interval [t0, T ],
on which they satisfy (2.26). Since Xh(t0 +h) ∈ K∩Hθ for all h ∈ [0, T − t0]
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because we assume invariance, by (2.27), (3.13), and (3.12) we get

1

h

[
dK(X(t0 + h))− dK(x)

]
=

1

h

[
dK(X(t0 + h))− dK(Xh(t0 + h))− dK(x)

]
6

1

h

(
|X(t0 + h))−Xh(t0 + h)| − |x− xh|

1 + h2

)
6

1

h

(
e
∫ t0+h
t0

`(s,M(|x0|θ))ds − 1

1 + h2

)
|x− xh|

6
1

h

(
e
∫ t0+h
t0

`(s,bM(|x0|θ)c)ds − 1

1 + h2

)
|x− xh|

for all 0 < h 6 T − t0. Hence, again by (3.13), we obtain

1

h

[
dK(X(t0 + h))− dK(x)

]
(3.14)

6
(e∫ t0+ht0

`(s,bM(|x0|θ)c)ds − 1

h
+

h

1 + h2

)
(1 + h2)dK(x)

for all 0 < h 6 T − t0. Since dK is Lipschitz and, in view of the choice of t0,
X satisfies (2.36), D−dK(x0)(Ax+ f(t0, x0)) coincides with the lower limit
as h ↓ 0 of the left side of (3.14). Moreover,

lim
h↓0

1

h

∫ t0+h

t0

`(s, bM(|x0|θ)c)ds = `(t0, bM(|x0|θ)c)

because t0 is a Lebesgue point of `(·, brc) for any r > 0. We have thus
obtained (3.3) with C(t, r) = `(·, bM(r)c). �

Remark 3.8. Whenever assumption (Hρ) of Theorem 3.7 is satisfied, con-
dition (3.3) is necessary and sufficient for the invariance of K ∩Hθ.

Theorems 3.7 and 3.2 yield the following.

Corollary 3.9. Assume that:

(a) K is proximally smooth and let δ > 0 be such that ΠK is single-valued
on Kδ;

(b) ΠK

(
D(A) ∩Kδ

)
⊂ Hθ and

|ΠK(x)|θ 6M(|x|θ) ∀x ∈ D(A) ∩Kδ. (3.15)

where M : R+ → R+ is nondecreasing and M(s) > s for all s ∈ R+.

Then K ∩Hθ is invariant under (2.1) if and only if there exists a function
C : R+ × R+ → R+, satisfying (3.4), such that (3.7) holds true for a.e.
t ∈ R+ and every x ∈ D(A) ∩Kδ.

Finally, we show the necessity of condition (3.9) for boundary points.

Theorem 3.10. In addition to assumptions (a) and (b) of Corollary 3.9,
suppose that ΠK

(
D(A)∩Kδ

)
⊂ D(A). Then K∩Hθ is invariant under (2.1)

if and only if (3.9) holds true for a.e. t ∈ R+ and every x ∈ ∂K ∩D(A).
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Proof. Sufficiency follows from Theorem 3.4. In order to prove necessity,
observe that if K ∩ Hθ is invariant under (2.1), then (3.7) holds true by
Corollary 3.9. Let x ∈ ∂K ∩ D(A) and p ∈ NP

K(x) ∩ D(A). Then xλ :=
x+ λp ∈ D(A) \K and ΠK(xλ) = x for λ > 0 sufficiently small. Thus (3.7)
yields

〈xλ − x,Axλ + f(t, xλ)〉 6 C(t, |x|θ)λ2|p|2

for a.e. t ∈ R+ and every x ∈ ∂K ∩D(A). So, dividing by λ,

〈p,Ax+ λAp+ f(t, xλ)〉 6 C(t, |x|θ)λ|p|2.

Passing to the limit as λ ↓ 0 we obtain (3.9). �

If, in Example 3.5, we have used the sufficient condition given by Corol-
lary 3.3 to obtain invariance, the fact that (3.7) is also a necessary condition
for invariance (Corollary 3.9) can help to reconstruct structural properties
of the data from the behaviour of solutions, as we show in our next example.

Example 3.11. With the notation of Example 3.5, let us study the in-
variance of the closed convex cone H+ under the flow associated with the
semilinear initial-boundary value problem

∂X
∂t = ∆X + F (X) in ]0,∞[×O
∂X
∂ν = 0 on ]0,∞[×∂O
X(0, ξ) = x0(ξ) ξ ∈ O a.e.

(3.16)

Here, F ∈ C1(R) is supposed to satisfy assumptions (2.13) and (2.14) with
ϕ0 ≡ 1 ≡ ϕ1. Defining{

D(A) =
{
x ∈ H2(O) : ∂x

∂ν |∂O = 0
}

Ax = ∆x− x ∀x ∈ D(A)
(3.17)

we have that (HA) is satisfied and H1 = H1(O). Moreover,

f(x)(ξ) := x(ξ) + F
(
x(ξ)

)
∀x ∈ H1, ξ ∈ O a.e. (3.18)

satisfies in turn hypothesis (Hf ). Furthermore, assumptions (a) and (b) of
Corollary 3.9 hold true with δ = ∞. So, we have that (3.7) is necessary
(and sufficient) for the invariance of H+ ∩ H1 under (3.16). By the same
computations as in Example 3.5, one has that (3.7) can be rewritten as

−
∫
O

x−(ξ)F
(
− x−(ξ)

)
dξ 6

∫
O

|∇x−(ξ)|2dξ + C(|x|1)

∫
O

|x−|2dξ

for all x ∈ D(A)\H+. Now, restricting the above inequality to the constant
functions x(ξ) ≡ v 6 0 gives vF (v) 6 C(0)v2. Thus, we deduce that, if
H+ ∩H1 is invariant under (3.16), then, for some constant C > 0,

F (v) > Cv ∀v 6 0. (3.19)

Moreover, recalling Remark 3.6, we conclude that (3.19) is a necessary and
sufficient condition for the invariance of H+ ∩H1. �
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3.3. The case of θ = 1. In this section we show that, when (Hf ) is satisfied
with θ = 1, the invariance of D(A) under ΠK can be dropped from the
assumptions of Theorem 3.10. We begin by adapting Corollary 3.9.

Proposition 3.12. Assume that:

(a) K is proximally smooth and let δ > 0 be such that ΠK is single-valued
on Kδ;

(b1) ΠK

(
H1 ∩Kδ

)
⊂ H1, ΠK : H1 ∩Kδ → H1 is continuous, and

|ΠK(x)|1 6M(|x|1) ∀x ∈ H1 ∩Kδ, (3.20)

where M : R+ → R+ is nondecreasing and M(s) > s for all s ∈ R+.

Then K ∩H1 is invariant under (2.1) if and only if there exists a function
C : R+ × R+ → R+, satisfying (3.4), such that

〈x−ΠK(x), f(t, x)〉 − 〈(−A)1/2(x−ΠK(x)), (−A)1/2x)〉
6 C(t, |x|1) d2

K(x), (3.21)

for a.e. t ∈ R+ and every x ∈ H1 ∩Kδ.

Proof. Sufficiency follows directly from Corollary 3.9 because (3.21) implies
(3.7) with θ = 1. In order to prove necessity, fix any x ∈ H1 ∩Kδ and let

xj = eA/jx for all integers j > 1. Then xj ∈ D(A), |xj |1 6 |x|1 for all j > 1,
and xj → x in H1 as j → ∞. Therefore, xj ∈ D(A) ∩Kδ for j sufficiently
large and so, in view of (3.7), we have that for a.e. t ∈ R+

C(t, |x|1) d2
K(xj) > C(t, |xj |1) d2

K(xj) > 〈xj −ΠK(xj), Axj + f(t, xj)〉

= 〈xj −ΠK(xj), f(t, xj)〉 − 〈(−A)1/2(xj −ΠK(xj)), (−A)1/2xj〉

where C : R+×R+ → R+ satisfies (3.4). By taking the limit as j →∞, one
recovers (3.21). �

We now turn to the analogue of Theorem 3.10.

Proposition 3.13. Let assumptions (a) and (b1) of Proposition 3.12 be
satisfied. Then K ∩H1 is invariant under (2.1) if and only if

〈p, f(t, x)〉 − 〈(−A)1/2p, (−A)1/2x)〉 6 0 ∀p ∈ NP
K(x) ∩H1 (3.22)

for a.e. t ∈ R+ and every x ∈ H1 ∩ ∂K.

We omit the proof of the above result that can be reconstructed from the
one of Theorem 3.10, by replacing Corollary 3.9 with Proposition 3.12.

4. Level set preserving bilinear controls

In this section, we apply our invariance result to a class of nonlinear
parabolic equations that generalize the one considered in Example 2.3. In
order to motivate our analysis, we begin with a viability problem for the
heat equation under the action of a bilinear control.
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4.1. A bilinear viability problem. Let φ : R → R be a nonnegative
function of class C2(R) such that

(i) φ(0) = φ′(0) = 0
(ii) 0 < λ− 6 φ′′(s) 6 λ+ ∀s ∈ R (4.1)

for some constants λ−, λ+ > 0. Observe that, owing to the above assump-
tions, the following estimates are true:

λ+

2
s2 > φ(s) >

λ−
2
s2 ∀s ∈ R (4.2)

and

sφ′(s) > φ(s) +
λ−
2
s2 > λ− s

2 ∀s ∈ R. (4.3)

Moreover, (4.1) and (4.3) yield

λ2
−s

2 6 |φ′(s)|2 6 λ2
+s

2 ∀s ∈ R. (4.4)

Let O ⊂ Rn be a bounded domain with boundary of class C2. In view of
(4.2), for any c > 0 the level set

Λφ(c) =
{
x ∈ L2(O) :

∫
O

φ
(
x(ξ)

)
dξ = c

}
(4.5)

is nonempty and closed in the Hilbert space H = L2(O).
For a fixed c > 0 and a given x0 ∈ Λφ(c) ∩H1

0 (O) we seek a time T > 0
and a control g ∈ L∞(0, T ) such that the solution, say Xg, of the initial-
boundary value problem

∂X
∂t (t, ξ) = ∆X(t, ξ) + g(t)X(t, ξ) (t > 0, ξ ∈ O)

X = 0, on (0,∞)× ∂O
X(0, ξ) = x0(ξ), ξ ∈ O.

(4.6)

satisfies

Xg(t, ·) ∈ Λφ(c) ∀t ∈ [0, T ].

Now, let g ∈ L∞(0, T ) be any control with such a property. Since∫
O

φ′(Xg)
∂Xg

∂t
dξ =

d

dt

∫
O

φ(Xg) dξ = 0,

multiplying the equation in (4.6) by φ′(Xg) and integrating by parts we find
that g = G(Xg) where

G(x) =

∫
O
φ′′(x(ξ))|∇x(ξ)|2dξ∫
O
x(ξ)φ′(x(ξ))dξ

∀x ∈ H1
0 (O) \ {0}. (4.7)

Notice that the denominator in the above quotient is strictly positive in view
of (4.3) and the fact that x 6= 0.
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4.2. Invariance of level sets. We now show how to apply the abstract re-
sults of this paper to study the invariance of all level sets Λφ(c)∩H1

0 (O), with
c > 0, under the flow associated with the initial-boundary value problem

∂X
∂t = ∆X +G(X)X in (0,∞)× O

X = 0 on (0,∞)× ∂O
X(0, ξ) = x0(ξ), ξ ∈ O

(4.8)

where G is given by (4.7). For this purpose, we recast the problem in
abstract form as in Example 2.3, defining operator A as in (2.15). In this
case, it is well-known that H1 = H1

0 (O) and we define f : H1 → H by

f(x)(ξ) =

{
G(x)x(ξ) ∀x ∈ H1

0 (O) \ {0}
0 if x = 0

(ξ ∈ O a.e.)

Then, one can check that f satisfies assumption (Hf )-(b) with θ = 1. So,
for any x0 ∈ H1, problem (4.8) has a unique maximal solution.

Now, applying Proposition 3.13 we obtain the following.

Proposition 4.1. Assume (4.1). Then, for any c > 0, the set Λφ(c) ∩H1

is invariant under (4.8).

Proof. Consider the functional Φ : H → R defined by

Φ(x) =

∫
O

φ
(
x(ξ)

)
dξ ∀x ∈ H.

Since φ ∈ C2(R), we have that Φ is Fréchet differentiable and

DΦ(x)(ξ) = φ′
(
x(ξ)

)
∀x ∈ H, ξ ∈ O a.e.

Moreover, Φ ∈ C1,1(H) because, by (4.1),

|DΦ(x)−DΦ(y)| 6 λ+|x− y| ∀x, y ∈ H.

Furthermore, for every x ∈ Λφ(c) with c > 0, (4.4) and (4.3) ensure that

|DΦ(x)|2 =

∫
O

∣∣φ′(x(ξ)
)∣∣2dξ > λ2

−

∫
O

∣∣x(ξ)
∣∣2dξ

>
2λ2
−

λ+

∫
O

φ
(
x(ξ)

)
dξ =

2λ2
−c

λ+
.

This shows that DΦ satisfies the lower bound in (6.2) of Proposition 6.1
below. The upper bound in (6.2) follows by a similar argument. Indeed, by
(4.2) and (4.4) we have that

|DΦ(x)|2 6 λ2
+

∫
O

∣∣x(ξ)
∣∣2dξ 6 2λ2

+

λ−

∫
O

φ
(
x(ξ)

)
dξ =

2λ2
+c

λ−
.

Therefore, owing to Proposition 6.1 we conclude that Λφ(c) is proximally
smooth for any c > 0. So, condition (a) of Proposition 3.13 holds true for
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K = Λφ(c). We now check that condition (b1) of the same proposition is
also satisfied. Still denoting Λφ(c) by K, observe that

NP
K(x) ⊂ {µDΦ(x) : µ ∈ R} ∀x ∈ K. (4.9)

Suppose δ > 0 is such that any point x ∈ Kδ admits a unique projection
onto K and call x such a projection. Then, for any x ∈ H1 ∩Kδ we have
that x− x ∈ NP

K(x) and so, by (4.9),

x = x+ µDΦ(x) with |µ| = dK(x)

|DΦ(x)|
. (4.10)

Hence, Lemma 4.2 below guarantees that x ∈ H1 and ΠK : H1∩Kδ → H1 is
continuous whenever δ > 0 is sufficiently small. Furthermore, (3.20) follows
from (4.12).

Therefore, by Proposition 3.13 we conclude that condition (3.22) is nec-
essary and sufficient for the invariance of K ∩H1. Since

〈DΦ(x), G(x)x〉 − 〈(−A)1/2DΦ(x), (−A)1/2x〉

=

∫
O
φ′′(x)|∇x|2 dξ∫
O
xφ′(x) dξ

∫
O

xφ′(x) dξ −
∫
O

∇φ′(x) · ∇x dξ = 0

for all x ∈ K ∩H1, (3.22) is satisfied and K ∩H1 is invariant. �

Lemma 4.2. Assume (4.1) and let µ ∈ R be such that |µ| 6 1/(2λ+). Then,
for any x ∈ H = L2(O) the equation

x(ξ) = y(ξ) + µφ′
(
y(ξ)

)
(ξ ∈ O a.e.) (4.11)

has a unique solution yx ∈ H. Moreover, yx ∈ H1 if x ∈ H1, the map
Ψ : H1 → H1 defined by Ψ(x) = yx is continuous, and

|Ψ(x)|1 6M |x|1 (4.12)

for some constant M > 0 depending only on φ and O.

Proof. Define ψ : R→ R by ψ(s) = s+µφ′(s) for all s ∈ R. Observe that ψ is
of class C2(R) and surjective. Since |µ| 6 1/(2λ+), ψ′(s) = 1+µφ′′(s) > 1/2
for all s ∈ R. Therefore, for all such µ’s, ψ is invertible, ψ−1 ∈ C2(R), and
(ψ−1)′ is bounded independently of µ. Consequently, for any x ∈ H the
unique solution of (4.11) is given by yx = ψ−1(x), which belongs to H and,
for x ∈ H1, satisfies

∇yx(ξ) = (ψ−1)′
(
x(ξ)

)
∇x(ξ) (ξ ∈ O a.e.)

Moreover, since both ψ and ψ−1 vanish at zero, we have that yx has null
trace on ∂O. This shows that yx ∈ H1 for x ∈ H1 and (4.12) holds true.

As for the continuity of the map x 7→ yx in the H1 norm, fix any sequence
xj → x in H1. Without loss of generality, we can assume that xj → x a.e.
in O. Then

∇yxj −∇yx = (ψ−1)′(xj)
(
∇xj −∇x

)
+
(
(ψ−1)′(xj)− (ψ−1)′(x)

)
∇x,
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where we realize that

lim
j→∞

(ψ−1)′(xj)
(
∇xj −∇x

)
= 0 in L2(O;Rn),

because (ψ−1)′ is bounded and xj → x in H1, and

lim
j→∞

(
(ψ−1)′(xj)− (ψ−1)′(x)

)
∇x = 0 in L2(O;Rn)

by the dominated convergence theorem. Therefore, yxj → yx in H1. �

Remark 4.3. We observe that an ad hoc computation can be used to prove
invariance under (4.8) for the level set Λφ(c)∩H1 (c > 0). Indeed, it suffices
to check that the time derivative of Φ along the maximal solution of (4.8)
vanishes for a. e. t. Nevertheless, the goal of this section is to illustrate
the interplay between our abstract conditions for invariance and the specific
features of a concrete example.

Example 4.4. Consider the heat equation with a nonlocal term we pre-
sented in Example 2.3. One can easily check that, taking φ(s) = s2, such an
equation reduces to (4.8) provided that X(t, ·) ∈ Λφ(1). Therefore, Proposi-
tion 4.1 ensures that the unit sphere of L2(O) is invariant under the equation

∂X

∂t
(t, ξ) = ∆X(t, ξ) +

(∫
O

|∇X(t, ξ′)|2dξ′
)
X(t, ξ) (t > 0, ξ ∈ O)

with homogeneous Dirichlet boundary conditions. The question remains
whether the maximal solution of the above equation, with initial condition
X(0, ·) = x0 ∈ Λφ(1) ∩H1

0 (O), is global (that is, T (0, x0) = ∞) or not. We
return to this problem in the next section.

4.3. Maximal interval of existence. Finally, we apply the above invari-
ance results to give a lower bound for the maximal interval of existence of
the solution of (4.8). For simplicity, we suppose t0 = 0 but the same result
can be obtained—by exactly the same reasoning—for any t0 > 0. Also, we
assume x0 6= 0 since, when x0 = 0, the null solution is trivially global.

Theorem 4.5. Assume (4.1). Then, for any x0 ∈ H1
0 (O)\{0} we have that

T (0, x0)

 >
c0 λ−

2λ+(λ+ − λ−)|x0|21
if λ− < λ+

= ∞ if λ− = λ+,

(4.13)

where

c0 =

∫
O

φ
(
x0(ξ)

)
dξ. (4.14)

Proof. First, observe that c0 > 0 and, obviously, x0 ∈ Λφ(c0) ∩H1. There-
fore, abbreviating T (0, x0) to T0, Theorem 4.1 ensures that

X(t, ·) ∈ Λφ(c0) ∀t ∈ [0, T0[ (4.15)



26 P. CANNARSA, G. DA PRATO, AND H. FRANKOWSKA

where X denotes the maximal solution of (4.8). Fix any T ∈ [0, T0[, multiply
by X both sides of the equation in (4.8), and integrate by parts to obtain

1

2

d

dt

∫
O

|X(t, ξ)|2dξ = −
∫
O

|∇X(t, ξ)|2dξ+G(X(t, ·))
∫
O

|X(t, ξ)|2dξ (4.16)

for all t ∈ [0, T ]. Similarly, multiplying the equation by ∂X
∂t we have that

0 6
∫
O

∣∣∣∂X
∂t

(t, x)
∣∣∣2dξ = − 1

2

d

dt

∫
O

|∇X(t, ξ)|2dξ

+G(X(t, ·)) 1

2

d

dt

∫
O

|X(t, ξ)|2dξ. (4.17)

By combining (4.16) and (4.17) we conclude that

d

dt

∫
O

|∇X(t, ξ)|2dξ

6 2G(X(t, ·))
[
G(X(t, ·))

∫
O

|X(t, ξ)|2dξ −
∫
O

|∇X(t, ξ)|2dξ
]
. (4.18)

Now, in view of (4.2), (4.3), and (4.15) we have the estimates

G(X(t, ·)) 6
λ+

∫
O
|∇X(t, ξ)|2 dξ∫

O
φ(X(t, ξ)) dξ

=
λ+

c0

∫
O

|∇X(t, ξ)|2 dξ

and

G(X(t, ·))
∫
O

|X(t, ξ)|2dξ 6
λ+

∫
O
|∇X(t, ξ)|2 dξ

λ−
∫
O
|X(t, ξ)|2dξ

∫
O

|X(t, ξ)|2dξ

=
λ+

λ−

∫
O

|∇X(t, ξ)|2 dξ.

So, returning to (4.18) we obtain

d

dt

∫
O

|∇X(t, ξ)|2dξ 6 2
λ+

c0

( λ+

λ−
− 1
)(∫

O

|∇X(t, ξ)|2dξ
)2

for all t ∈ [0, T ]. Setting

E(t) =

∫
O

|∇X(t, ξ)|2dξ,

we can recast the above inequality as E′(t) 6 κE2(t) with

κ = 2
λ+

c0

( λ+

λ−
− 1
)
.

Then, the comparison principle for ordinary differential equation yields

E(t) 6
E(0)

1− t κE(0)
∀t ∈

[
0,

1

κE(0)

[
.
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This shows that the maximal solution of (4.8) is bounded in H1
0 (O) on every

interval [0, T ] such that

2T
λ+

c0

( λ+

λ−
− 1
)∫

O

|∇x0(ξ)|2dξ < 1.

Therefore, T0 satisfies (4.13). �

Example 4.6. We return to Example 2.3 with φ(s) = s2 and K = Λφ(1).
Since λ+ = λ−, the maximal solution of (2.19) is global by Theorem 4.5. In
other terms, the flow associated with (2.19) preserves the L2 energy: this
result was first observed in [5], where it was applied to study the convergence
of a family of singularly perturbed systems of nonlocal parabolic equations.

5. Viability of a Semilinear Control System

Given a nonempty closed set K ⊂ H, we consider the semilinear control
system (2.33) under the state constraint X(s) ∈ K (s > t0).

We recall that Kδ (δ > 0) is defined in (3.2) and we list below the as-
sumptions that will be imposed in this section.

(H ′A) A : D(A) ⊂ H → H satisfies (HA) and etA is a compact linear
operator on H for all t > 0.

(H ′′f ) f : R+×Hθ×U → H satisfies assumptions (H ′f ) for some θ ∈ [ 0, 1 ],

with (2.6) replaced by (2.34) for some function c ∈ L2
loc(R+), and

f(t, x, U) is closed and convex for a.e. t > 0 and every x ∈ Hθ.
(H ′ρ) There exists ρ > 0 and a nondecreasing function M : R+ → R+ such

that, for all x ∈ Kρ ∩Hθ and all h > 0, one can find xh ∈ K ∩Hθ

satisfying

|xh − x| < dK(x) + h and |xh|θ 6M(|x|θ).
Under assumptions (H ′A) and (H ′′f ), in light of Proposition 2.7, for every

initial condition (t0, x0) ∈ R+ ×Hθ and control u : [t0,∞) → U , (2.33) has
a unique global solution X(·; t0, x0, u). Moreover, arguing exactly as in [6],
one can prove the following compactness result.

Lemma 5.1. Under assumptions (H ′A) and (H ′′f ), for all (t0, x0) ∈ R+×Hθ

and all T > t0 the set

S[t0,T ](x0) :=
{
X(·; t0, x0, u) : u : [t0, T ]→ U measurable

}
is compact in C([t0, T ];Hθ).

The set K∩Hθ is called viable under the control system (2.33) if for every
initial condition (t0, x0) ∈ R+ × (K ∩ Hθ) there exists a control function
u : [t0,∞)→ U such that X(t; t0, x0, u) ∈ K ∩Hθ for all t > t0.

In what follows, we provide sufficient conditions for the viability of K∩Hθ

in terms of Clarke’s derivative of dK which, for any point x ∈ H and any
direction v ∈ H, is given by

d0
K(x)v = lim sup

y→x, λ↓0

dk(y + λv)− dk(y)

λ
.
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Notice that, if K is proximally smooth, then for all x ∈ H \K, sufficiently
close to K, one has that

d0
K(x)v = 〈DdK(x), v〉 ∀v ∈ H.

Theorem 5.2. Assume (H ′A), (H ′′f ), and (H ′δ). Suppose that

etAK ⊂ K ∀t > 0 (5.1)

and there exists a function C : R+ × R+ → R∗+, satisfying (3.4), such that

inf
u∈U

d0
K(x)f(t, x, u) 6 C(t, |x|θ) dK(x) (5.2)

for a.e. t ∈ R+ and every x ∈ Kδ∩Hθ. Then K∩Hθ is viable under (2.33).

Proof. Fix any t0 ∈ R+, x0 ∈ K ∩Hθ.

Step 1. Define, for all t > t0,

R(t) :=
{
X(t; t0, x0, u) : X ∈ S[t0,t](x0)

}(
⊂ Hθ

)
,

g(t) := inf
{
|xt − y| : xt ∈ R(t), y ∈ K

}
.

Claim 1. For every t > t0 there exists xt ∈ R(t) such that

g(t) = dK(xt). (5.3)

Indeed, it is clear that

g(t) = inf
z∈R(t)

dK(z).

Consider yi ∈ R(t) such that g(t) = limi→∞ dK(yi). Since R(t) is compact
we may assume that the sequence yi converges to some xt ∈ R(t). The
continuity of dK(·) yields (5.3). For t = t0 we take xt0 = x0.

Claim 2. g is continuous.

Indeed, by our assumptions, this is obvious at t0.We first show that g is lower
semicontinuous on ]t0,∞[. Consider any t > t0, and a sequence ti converging
to t such that lim infs→t g(s) = limi→∞ g(ti). For each i pick xti ∈ R(ti) such
that g(ti) = dK(xti). Fix T > t and let Xi ∈ S[t0,T ](x0) be such that Xi(ti) =
xti . By Lemma 5.1, there exists a subsequence Xij converging uniformly to
some X ∈ S[t0,T ](x0). Therefore limj→∞Xij (tij ) = X(t) ∈ R(t). From the
continuity of dK(·) we deduce that g(t) 6 dK(X(t)) = limj→∞ g(tij ).

We show next that g is upper semicontinuous on ]t0,∞[. Fix any t > t0
and let xt ∈ R(t) be such that g(t) = dK(xt). For any fixed u ∈ U consider
the solution X(·) = X(·; t, xt, u). It is not difficult to realize that for every
ε > 0, there exists ρ > 0 such that for all h ∈ [0, ρ],

|ehAxt − xt| 6
ε

2
,

∣∣∣∣∫ t+h

t
e(t+h−s)Af(s,X(s), u)ds

∣∣∣∣ 6 ε

2
.

Hence |X(t+ h)− xt| 6 ε and therefore

g(t+ h) 6 dK(X(t+ h)) 6 dK(xt) + ε.
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Consequently, g(·) is upper semicontinuous from the right at t. In order to
prove that g is upper semicontinuous from the left at t, let X ∈ S[t0,t](x0)
be such that X(t) = xt. Then limh→0+X(t− h) = X(t). Since

g(t−h) 6 dK(X(t−h)) 6 dK(xt) + |X(t−h)−xt| = g(t) + |X(t−h)−xt|,
we conclude that g is upper semicontinuous from the left at t.

Claim 3. g ≡ 0.

Observe first that, for any y0 ∈ H\K,

lim sup
h→0+

1

h

(
dK(ehAy0)− dK(y0)

)
6 0. (5.4)

Indeed, let y0 /∈ K. Fix h > 0 and let yh ∈ K be such that

|y0 − yh| 6 dK(y0) + h2.

Since etA is contractive, we get |ehAy0 − ehAyh| 6 |y0 − yh|. Recalling that
ehAyh ∈ K for all h > 0, we obtain

dK(ehAy0)−dK(y0) 6 |ehAy0−ehAyh|−dK(y0) 6 dK(y0)+h2−dK(y0) = h2.

Dividing by h > 0 the above inequality and taking the limit yields (5.4).
Next, observe that, if the set {t > t0 : g(t) > 0} is empty, then g ≡ 0.

Otherwise, let
t̄ := inf

{
t > t0 : g(t) > 0

}
.

Since g is continuous, g(t̄) = 0 and there exists ε > 0 such that for any
t ∈]t̄, t̄+ε] with g(t) > 0 and xt as in (5.3), we have xt ∈ Kδ. Let t′′ ∈]t̄, t̄+ε]
be such that g(t′′) > 0 and t′ = sup{t ∈ [t̄, t′′] : g(t) = 0}. Then, g > 0 on
]t′, t′′]. Fix T > t′′ and let M = [0, T ]\N, with N as in Proposition 2.9. Pick
any t ∈]t′, t′′[∩M such that (5.2) holds true, and let ū ∈ U be such that

d0
K(xt)f(t, xt, ū) 6 2C(t, |xt|θ)dK(xt).

Observe further that

|xt|θ 6 CT (1 + |x0|θ) ∀t ∈ [t′, t′′],

where CT is the positive constant given by (2.35), to conclude that

d0
K(xt)f(t, xt, ū) 6 C̃(t)dK(xt). (5.5)

where we have set C̃(t) = 2C(t, CT (1 + |x0|θ)). Then we have that

D↑g(t) := lim inf
h↓0

g(t+ h)− g(t)

h

6 lim sup
h↓0

dK(X(t+ h))− dK(ehAxt)

h
+ lim sup

h↓0

dK(ehAxt)− dK(xt)

h
.

where X(·) = X(·; t, xt, ū). On the other hand, by our assumptions and the
choice of t,

X(t+h) = ehAxt+

∫ t+h

t
e(t+h−s)Af(s,X(s), ū)ds = ehAxt+hf(t, xt, ū)+o(h)
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and limh→0+ e
hAxt = X(t). Hence, from (5.4), (5.5), and the growth bound

(2.35) we deduce that

D↑g(t) 6 d0
K(xt)f(t, xt, ū) 6 C̃(t)dK(xt) = C̃(t)g(t), (5.6)

Let us introduce the set valued map [t′, t′′] P (t) = {g(t)}+ R+, which
has closed values. We claim that P (·) is locally left absolutely continuous
on [t′, t′′]. This means that, for every ε > 0 and every compact set Q ⊂ R,
there exists δ > 0 such that, for every partition

t′ 6 t1 < τ1 6 ... 6 tj < τj < .... 6 t′′

satisfying Σ(τi − ti) 6 δ, we have that Σe(P (ti) ∩ Q,P (τi)) 6 ε, where
e(C,D) = inf{λ > 0 : C ⊂ D + λ[−1, 1]} is the excess of C ⊂ R with
respect to D ⊂ R. To prove this claim fix t ∈]t′, t′′] and h > 0 with t−h > t′.
Consider xt−h ∈ R(t−h) such that g(t−h) = dK(xt−h) and let yh ∈ K∩Hθ

be such that

|yh − xt−h| 6 g(t− h) + h and |yh|θ 6M(|xt−h|θ).
Fix any ū ∈ U and let Xh(·) = X(·; t− h, xt−h, ū). Then

g(t) 6 dK(Xh(t)) 6
∣∣Xh(t)− ehAyh

∣∣
=
∣∣∣ehAxt−h +

∫ t
t−h e

(t−s)Af(s,Xh(s), ū)ds− ehAyh
∣∣∣

6 |xt−h − yh|+
∫ t
t−h
∣∣e(t−s)Af(s,Xh(s), ū)

∣∣ ds
≤ g(t− h) +

∫ t
t−h
(
1 +

∣∣e(t−s)Af(s,Xh(s), ū)
∣∣) ds.

Since t ∈ [t′, t′′] is arbitrary, this inequality and our assumptions on f imply
that P (·) is left absolutely continuous on [t′, t′′].

On the other hand, recalling that

Graph(P ) =
{

(t, z) : t ∈ [t′, t′′], z ∈ P (t)
}
,

we realize that (5.6) says that, for a.e. t ∈ [t′, t′′], (1, C̃(t)g(t)) belongs to
the contingent cone (see, e.g. [1]) to Graph(P ) at (t, g(t)), which is denoted
by TGraph(P )(t, g(t)). This fact and the continuity of g imply that, for a.e.
t ∈ [t′, t′′] and every y ∈ P (t),

(1, C̃(t)y) ∈ TGraph(P )(t, y).

By [9, Theorem 4.2] the solution of the differential equation

z′(t) = C̃(t)z(t), z(t′) = 0

satisfies z(t) ∈ P (t) for all t ∈ [t′, t′′]. But z ≡ 0 and therefore g(t) 6 0 for
all t ∈ [t′, t′′]. The derived contradiction yields our claim.

Step 2. To simplify notations we consider only the case t0 = 0. Let
x0 ∈ K ∩Hθ. Fix an integer j > 1. By Claim 3, using the fact that R( 1

2j
) is

compact we can find a solution of (2.33), Xj , such that Xj(
1
2j

) ∈ K. We now

proceed by induction: suppose that, for some p ∈ {1, . . . , 2j − 1}, we have
already constructed a solution to (2.33), corresponding to some control u(·),
such that Xj(

k
2j

) ∈ K for every integer 0 6 k 6 p. By Step 1 we can extend
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Xj to a solution of (2.33) with t0 = p
2j

satisfying Xj(
p+1
2j

) ∈ K. In this way

we construct a solution Xj(·) of (2.33) on [0, 1] such that Xj(
k
2j

) ∈ K for

every k ∈ {0, . . . , 2j}.
By Lemma 5.1 the sequence Xj has a subsequence Xji which converges

uniformly to a solution X(·) of (2.33) defined on [0, 1]. Fix an integer n > 1.
Then for all large i, Xji(

k
2n ) ∈ K for k ∈ {0, ..., 2n}. Therefore X( k

2n ) ∈ K
for k ∈ {0, ..., 2n}. Since this holds true for every n and X(·) is continuous,
we deduce that X(t) ∈ K for all t ∈ [0, 1].

Step 3. Assume that for some integer i > 1 and every integer 1 6 k 6 i
we have constructed solutions Xk(·) of (2.33) defined on [0, k] such that the
restriction of Xi to [0, k] is equal to Xk and Xi([0, i]) ⊂ K.

Consider the interval [i, i+1]. Applying the same arguments as in Step 2,
with t0 = 0 replaced by t0 = i and x0 by Xi(i), we extend Xi on the time
interval [i, i + 1] as a solution of (2.33) satisfying X([0, i + 1]) ⊂ K. Then,
using an induction argument we complete the proof. �

Example 5.3. Let us apply Theorem 5.2 to study a viability problem for
the following parabolic system

∂y1
∂t = ∆y1 + F1(t, ξ, y, u1) in ]0,∞[×O
∂y2
∂t = ∆y2 + F2(t, ξ, y, u2) in ]0,∞[×O
y1 = 0 = y2 on ]0,∞[×∂O
y1(0, ξ) = x1(ξ) , y2(0, ξ) = x2(ξ) ξ ∈ O a.e.

(5.7)

where O ⊂ Rn (n > 3) is a bounded domain with boundary of class C2.
Here, we denote by y(t, ξ) = (y1(t, ξ), y2(t, ξ)) the vector-valued solution
of system (5.7) subject to control u(t, ξ) = (u1(t, ξ), u2(t, ξ)), that is, a
measurable map u : R+ × O→ V × V , where V is a bounded closed subset
of a separable Banach space. We assume that Fi : R+ × O× R2 × V → R2

satisfies the following for i = 1, 2:
z 7→ Fi(t, ξ, z, v) is C1(R2) for a.e. (t, ξ) ∈ R+ × O and every v ∈ V,
v 7→ Fi(t, ξ, z, v) is continuous for a.e. (t, ξ) ∈ R+ × O and every z ∈ R2,

(t, ξ) 7→ Fi(t, ξ, z, v) is Lebesgue measurable for all v ∈ V and z ∈ R2.

Moreover, we suppose that, for some given functions

ϕ0 ∈ L2
loc(R+;L2(O)), ϕ1 ∈ L2

loc(R+;L∞(O)),

the growth conditions (i = 1, 2)

|Fi(t, ξ, z, v)| 6 C0

(
ϕ0(t, ξ) + |z|

)
,
∣∣∣∂Fi
∂z

(t, ξ, z, v)
∣∣∣ 6 ϕ1(t, ξ)

are satisfied for a.e. (t, ξ) ∈ R+ × O, every v ∈ V , every z ∈ R2, and some
constant C0 > 0. Finally, we impose that, for a.e. (t, ξ) ∈ R+×O and every
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z ∈ R2, the following is a closed convex set{(
F1(t, ξ, z, v1), F1(t, ξ, z, v2)

)
: v1, v2 ∈ V

}
⊂ R2.

Arguing as in Example 2.2, one can show that the above problem can be
recast as a semilinear control system like (2.33). For this purpose, one just
needs to take H = L2(O;R2) and{

D(A) = H2(O;R2) ∩H1
0 (O;R2)

Ax = (∆x1,∆x2) ∀x = (x1, x2) ∈ D(A).

Then, assumption (H ′A) follows from the positivity and compactness of the
heat semigroup. Next, let us denote by U the family of all measurable maps
u : O→ V × V . Defining f : R+ ×H × U → H by

f(t, x, u)(ξ) =
(
F1

(
t, ξ, x(ξ), u1(ξ)

)
, F2

(
t, ξ, x(ξ), u2(ξ)

))
, (5.8)

for a.e. (t, ξ) ∈ R+ × O, every x ∈ H, and every u = (u1, u2) ∈ U , we have
that assumptions (H ′′f ) hold true with θ = 0.

So, by applying Theorem 5.2 we conclude that the closed convex cone

H+ =
{
x ∈ H : xi(ξ) > 0, ξ ∈ O a.e. (i = 1, 2)

}
.

is viable under the flow associated with (5.7) provided that (5.2) is satisfied.
Now, observe that H+ is proximally smooth and

ΠH+(x) = x+ and dH+(x) = |x−| ∀x ∈ H,

where we have set x± = (x±1 , x
±
2 ). for all x ∈ D(A) \ H+. So, condition

(5.2) reduces to

inf
u∈U
〈x−ΠH+(x), f(t, x, u)〉 6 C(t, |x|) |x−|2

for a.e. t ∈ R+, every x ∈ H, and some function C : R+ × R+ → R∗+
satisfying (3.4). In view of (5.8), the above condition reads as

inf
u∈U

∫
O

{
− x−1 F1

(
t, ξ, (−x−1 , x2 ), u1

)
− x−2 F2

(
t, ξ, (x1 ,−x−2 )), u2

)}
dξ

6 C(t, |x|)
∫
O

(
|x−1 |

2 + |x−2 |
2
)
dξ,

which can in turn be reduced to

inf
u∈U

∫
O

{
− x−1 F1

(
t, ξ, (−x−1 , x

+
2 ), u1

)
− x−2 F2

(
t, ξ, (x+

1 ,−x
−
2 )), u2

)}
dξ

6 C(t, |x|)
∫
O

(
|x−1 |

2 + |x−2 |
2
)
dξ (5.9)

by appealing to the Lipschitz continuity of z 7→ Fi(t, ξ, z, v).
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It is easy to give pointwise conditions, like the one in Remark 3.6, which
ensure the validity of (5.9). For instance, we can assume that, for some
constant C > 0 and a.e. (t, ξ) ∈ R+ × O the following holds true:{
∀z ∈ R− × R+ ∃v1 ∈ V such that z1 F1

(
t, ξ, z, v1

)
6 C|z|2

∀w ∈ R+ × R− ∃v2 ∈ V such that w2 F2

(
t, ξ, w, v2

)
6 C|w|2.

(5.10)

Indeed, owing to well-known results in set-valued analysis (see, for instance,
[2, Theorem 8.2.9]), from (5.10) we deduce that for a.e. t ∈ R+ and every
x ∈ H there exist measurable maps ui : O→ V (i = 1, 2), such that

−x−1 (ξ)F1

(
t, ξ, (−x−1 (ξ), x+

2 (ξ)), u1(ξ)
)
6 C|x(ξ)|2

−x−2 (ξ)F2

(
t, ξ, (x+

1 (ξ),−x−2 (ξ)), u2(ξ)
)
6 C|x(ξ)|2

for a.e. ξ ∈ O. So, taking u = (u1, u2) we have that (5.9) is satisfied. �

6. Appendix

In this Appendix, we prove the proximal smoothness of level sets of
smooth functionals on a real Hilbert space H. We denote by C1,1(H) the
Banach space of all maps Φ : H → R that are continuously Fréchet differen-
tiable at every point ofH with a Lipschitz continuous gradientDΦ : H → H,
and we set

Lip(DΦ) = sup
x 6=y

|DΦ(x)−DΦ(y)|
|x− y|

∀Φ ∈ C1,1(H).

Finally, for any c ∈ R, we denote by Λ(c) the level set

Λ(c) :=
{
x ∈ H : Φ(x) = c

}
. (6.1)

The following result establishes the proximal smoothness of “nondegenerate”
level sets.

Proposition 6.1. Let Φ ∈ C1,1(H) and let c0 ∈ R be such that Λ(c0) 6= ∅.
Suppose that there exist positive constants σ and S such that

σ 6 |DΦ(x)| 6 S for every x ∈ Λ(c0). (6.2)

Then Λ(c0) is proximally smooth.

Proof. Let us abbreviate Λ(c0) to Λ0. We want to prove that there exists
δ > 0 such that any x ∈ H with dΛ0(x) < δ has a unique projection onto
Λ0. We prove the existence of the projection first, then its uniqueness.

Existence. Fix any x ∈ H \ Λ0 and suppose that Φ(x) < c0. Since dΛ0 is
Fréchet differentiable on a dense subset of H by a well-known result due
to Preiss [16], we can find a sequence {xn}n, converging to x, such that
ΠΛ0(xn) = {yn}. Moreover, we have that

xn = yn − dΛ0(xn)
DΦ(yn)

|DΦ(yn)|
(n > 1). (6.3)
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Set µn = dΛ0(xn)/|DΦ(yn)|. In view of (6.2), {µn} is bounded in R. So, we
can extract a convergent subsequence—still denoted by {µn}. Since, for all
sufficiently large integers m and n, we have that

yn − ym = xn − xm + dΛ0(xn)
DΦ(yn)

|DΦ(yn)|
− dΛ0(xm)

DΦ(ym)

|DΦ(ym)|
,

we deduce that

|yn − ym|2 = 〈xn − xm, yn − ym〉

+ dΛ0(xn)
〈 DΦ(yn)

|DΦ(yn)|
− DΦ(ym)

|DΦ(ym)|
, yn − ym

〉
+

(
dΛ0(xn)− dΛ0(xm)

)〈 DΦ(ym)

|DΦ(ym)|
, yn − ym

〉
.

Notice that (6.2) yields the following inequality∣∣∣ DΦ(x)

|DΦ(x)|
− DΦ(y)

|DΦ(y)|

∣∣∣ 6 2Lip(DΦ)

σ
|x− y| (6.4)

for all x, y ∈ Λ0. Hence, owing to (6.4),

|yn − ym|2 6 2|xn − xm| |yn − ym|+ dΛ0(xn)
2Lip(DΦ)

σ
|yn − ym|2.

Since dΛ0(xn)→ dΛ0(x), by taking δ > 0 such that

δ Lip(DΦ) <
σ

2
, (6.5)

for dΛ0(x) < δ we conclude that {yn} is a Cauchy sequence in H. Conse-
quently, its limit y ∈ Λ0 satisfies

|x− y| = lim
n→∞

|xn − yn| = lim
n→∞

dΛ0(xn) = dΛ0(x),

thus qualifying as a projection of x onto Λ0.
Finally, for Φ(x) > c0 the reasoning is exactly the same as above, with

the only difference that, in this case, (6.3) is replaced by

xn = yn + dΛ0(xn)
DΦ(yn)

|DΦ(yn)|
(n > 1).

Uniqueness. Let x ∈ H be such that 0 < dΛ0(x) < δ, with δ as in (6.5), and
suppose that x′, x′′ ∈ ΠΛ0(x). Then

x′ + µ′DΦ(x′) = x = x′′ + µ′′DΦ(x′′)

for real numbers µ′ and µ′′ such that µ′µ′′ > 0 and

|µ′| |DΦ(x′)| = dΛ0(x) = |µ′′| |DΦ(x′′)| .
Therefore, on account of (6.4), we conclude that

|x′ − x′′|
dΛ0(x)

=
∣∣∣ DΦ(x′)

|DΦ(x′)|
− DΦ(x′′)

|DΦ(x′′)|

∣∣∣ 6 2Lip(DΦ)

σ
|x′ − x′′|,

which in turn yields x′ = x′′ because 2dΛ0(x)Lip(DΦ)/σ < 1 by (6.5). �



DOMAIN INVARIANCE FOR LOCAL SOLUTIONS 35

References

[1] J.-P. Aubin. Viability theory. Birkhäuser Boston, Inc., Boston, MA, 1991.
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