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LOCAL UNIQUENESS AND NON-DEGENERACY OF BLOW UP
SOLUTIONS OF MEAN FIELD EQUATIONS WITH SINGULAR DATA

DANIELE BARTOLUCCI, ALEKS JEVNIKAR, YOUNGAE LEE, AND WEN YANG

ABSTRACT. We are concerned with the mean field equation with singular data
on bounded domains. Under suitable non-degeneracy conditions we prove lo-
cal uniqueness and non-degeneracy of bubbling solutions blowing up at singular
points. The proof is based on sharp estimates for bubbling solutions of singular
mean field equations and suitably defined Pohozaev-type identities.

Keywords: Mean field equations, uniqueness, non-degeneracy, blow up solu-
tions, singular data.

1. INTRODUCTION

We are concerned with a sequence of solutions of the following mean field equa-
tion with singular data

hettn )
—Auy, = an in ), ®,,)

u, =0 on d(),
where O C R? is a smooth bounded domain, & = h, exp(—4m YN, a;G(x,p;)), pi

are distinct points in Q, a; € (0,00) \ N, i, € C®(Q2), and G is the Green function
satisfying

—AG(x,p) = op in Q,
G(x,p)=0 on 0Q).

The mean field equation (P,,) (and its counterpart on compact surfaces) have
been widely discussed in the last decades because of their several applications in
Mathematics and Physics, such as Electroweak and Chern-Simons self-dual vor-
tices 53], conformal metrics on surfaces with [50] or without conical singu-
larities [35], statistical mechanics of two-dimensional turbulence [20] and of self-
gravitating systems and cosmic strings [45], and the theory of hyperelliptic
curves [22] and of the Painlevé equations [24]. There are by now many results
concerning existence [1} 3, 4,5, 26,128, 132 136) 42]], multiplicity [5, 29],
uniqueness [6) [7, 23] 33| 48] and blow up analysis
(2,016} 18, 17,1925, 27,137,138, 139, [51 54].
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Our goal is to show that bubbling solutions of (P,,) blowing up at singular
points p; are unique and non-degenerate for n large enough.

Definition 1.1. Let uy be a sequence of solutions of (Py,). We say that u, is a regular
m-bubbling solution blowing up at the points q; & {p1,---,pn}, j =1, ,m,if,

et
[ hetndx SHZ(S’“’

weakly in the sense of measures in ().
We say that uy is a singular m-bubbling solution blowing up at the points p; €

{pl;"';PN}/jzl;"',m/mSNif/
hettn

m
M 8y (14a))5,,
Jo hetndx ; 177F;

weakly in the sense of measures in ().

To state the main result and to compare it with the existing literature we in-
troduce some notation. Let R(x,y) = 4 log |x — y| + G(x,y) be the regular part
of G(x y). For what concerns regular bubbling solutions, for q = (91, -+ ,qm) €
Qx - x 0, welet G (x) = 87R(x, q])+87r21" ™ G(x,q;) and

lreg(q) = ;[Aloghw,)] (g7)e .
=

For (x1,- -+ ,xm) € QA X - - Q), we also define the m-vortex Hamiltonian,
m l,. -m
Hom(x1,x0,- % Z [log(h(xj)) +47R(xj,xj)] +4m Y G(x,xj). (L.1)
j=1 1#]
Then, by assuming suitable non-degeneracy conditions the authors in [8/09] proved
that regular m-bubbling solutions are unique and non-degenerate (see also [10] for
an analogous result for the Gelfand equation).
Theorem A ([8]9]). Let ul and ul?) be two regular m-bubbling solutions of (P, ), with
p,(f) = pn = pf), blowing up at the points q; & {p1,---,pn}, j = 1,---,m, where
q=(q1, - ,qm) is a critical point of H,. Assume that,
(1) det(D*Hm(q)) # 0,

2) éreg(CI) # 0.
(1)

Then there exists ng > 1 such that u,,’ = uﬁlz) for all n > ng. Moreover, the linearized
problem at a m-bubbling solution uy

hettn Jo et dx ,
A - = Q

(P + Pn fQ hetn dx (‘P fQ hetin dx 0 in ’
=0 on 0},

(1.2)

admits only the trivial solution ¢ = 0 for any n > ny.
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The above condition (2) can be relaxed by assuming (reg(q) = 0 and D(q) # 0,
where D(q) is a geometric quantity. Our aim is to extend the latter result to sin-
gular bubbling solutions. Even though the argument works out for more general
situations we focus here on singular 1-bubbling solution blowing up at p; for some
i€ {l,---,N}, see also Remark More precisely, we assume without loss of
generality that a; # «; for i # j and we study the case p, — 87t(1 + &;) for some
fixedi € {1,---,N} and

||un||Loo(Q) — 400 asn — +oo.
We define

2 V) T
Upi) = 27? <(1—+ Dq)) Alogh.(p:), (1.3)
(1+ a;)sin (1@{) thy (p:)

where h(x) = hi(x)|x — p;|**i. Moreover, we define the ‘desingularized’ 1-vortex
Hamiltonian to be

Hp,(x) = 87(1+ ;) (R(x, pi) — R(pi, pi))+ (logh1(x) —log h1(p;)).  (1.4)

Our main results are the following.

Theorem 1.1. Let u,ﬁ” and u,(f) be two singular 1-bubbling solutions of (P,,), with
pﬁll) =pn = p,(f), blowing up at the point p; for somei € {1,--- ,N}, a; € (0,00) \ IN.
Assume that,
(1) p; is a critical point of Hp,,
(2) £(pi) #0.
(1)

Then there exists ng > 1 such that u;;’ = uﬁlz)for all n > ny.

Theorem 1.2. Let uy, be a singular 1-bubbling solution of (P, ), blowing up at the point
pi for somei € {1,---,N}, a; € (0,00) \ N. Assume that the conditions (1)-(2) of
Theorem [ hold true. Then there exists ng > 1 such that, for any n > ng, (L2) admits
only the trivial solution ¢ = 0.

Observe that we do not need the non-degeneracy of the Hamiltonian as in con-
dition (1) of Theorem A. This is essentially due to the difference of the linearized
problem, see (I.8) and the discussion later on. On the other hand, we do need to
assume p; to be a critical point of #,. For the regular blow up this is always the
case since it is well-known [44] that for a regular m-bubbling solution blowing up
at the points g; ¢ {p1,- -, pn}, then q = (41, -, qm) has to be a critical point of
Hn

Remark 1.3. The argument yielding Theorems [L1l and [L2l works out for more general
situations and can be carried out to prove local uniqueness of singular m-bubbling and
even for mixed scenarios of singular m-bubbling and reqular m’-bubbling solutions. The
decision to focus on singular 1-bubbling is twofold: on one side the latter case is very
subtle since in general the singular blow up point does not need be a critical point of the
Hamiltonian H, and furthermore we are not assuming any non-degeneracy of Hp,, and
on the other side we want to highlight the differences with respect to the regular case. We
postpone the general situation to a future paper. The case x € (—1,0) will be treated in a
separate paper since we first need to derive suitable sharp estimates for bubbling solutions,
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which are still missing in this case. Finally, the case « € IN is by now out of reach due to
the presence of non-simple (and non-radial) blow up [18|37].

To prove Theorem[ITlwe argue by contradiction and we analyze the asymptotic
behavior of the (normalized) difference of two distinct solutions for (P,,),

(1) _ . (2)

A M. N— (1.5)

) = ul? | o)

Near the blow up point p;, and after a suitable scaling, , converges to an entire
solution of the linearized problem of the Liouville equation

Av+ |x|*%e? =0 inR®. (1.6)

Solutions of (L.6) with finite mass are completely classified [46] and for a; € (0,00) \
IN take the form,

8(1+ a;)%e!
14+ e,u‘z|2(l+lx,'))2’

v (z) = vu(z) = log ( neR. (1.7)
The freedom in the choice of y is due to the invariance of equation (I.6) under
dilations. The linearized operator L relative to vy is defined by,

8(1+a;)?zP o
It follows from [27, Corollary 2.2] that the L*-bounded kernel of L has one eigen-
function Yy, where,

Lo = AP+

B 1— ‘Z|2(l+l)é,') B aﬂ

The main part of the proof of Theorem[L.Tlis to show that, after scaling and for large
n, ¢y is orthogonal to Y. This is done by a delicate analysis of a suitably defined
Pohozaev-type identity first introduced in and then exploited in [8} [10].

The proof of Theorem[I.2lfollows the same strategy by analyzing the asymptotic
behavior of
Jo he"ny dx
- ’4’ _ Jghetnin dx '
" Jahetmdx )

for a non-trivial solution ¢, of (L2), which plays the role of ({L.5).

[1]

The paper is organized as follows. In section 2lwe introduce some preliminary
results, in section B we estimate the L®-norm of the difference of two solutions to
(P,,) and in section @ we then deduce the first estimates of ;, the normalized dif-
ference of two solutions, away from the blow up point. In section 5l we introduce
a Pohozaev-type identity to get refined estimates on ¢, and prove Theorem [L1]
Finally, in section[flwe give the sketch of the proof of Theorem[L.2]
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2. PRELIMINARY ESTIMATES ABOUT THE BLOW UP PHENOMENON AT THE
SINGULAR POINT

In this section we collect some preliminary results which will be used in the
sequel. Let us assume thati = 1 and set p = p1, 0 # o = a3 € (0, +00) \ IN. We
define

iy = uy — log </Q he””dx> , Ap = mgx iy, U,%(H“) = e*)‘”, (2.1)

and
h
Un(x) = Ay — 2log(1+ e [x — p|**2), 9y = ;z'iifr(f))z'
where

Fa(x) = o exp(—47Gr (x)) Ga(x) = 3 aiG(x, pi) + R(x, p),
=2

and R(x,y) = G(x,y) + 5=log|x — y| is the regular part of the Green function.
Therefore, we have

h(x) = Iy (x) |x — p[*,

and in any small enough ball centered at p it holds that ; > 0. It has been shown
in [2] (for « € (0, 400) \ IN) and (fora € (—1,0)) that

liin(x) — Un(x)| < C, Vx € By(p). (2.2)

Actually the proofs in [18] 2] show that this estimate holds locally near p, but then
the global estimate follows by looking at the Definition 1 and the Green represen-
tation formula.

More recently, it has been proved in [27] that if & € (0, +00) \ IN, then

n 1+e

on —8m(1+a) = E(p)e’l%Y + O(e’)‘”%) asn — +oo, (2.3)

and
_An _A M

P —8m(1+a) =L(p)e” e + O(e” " T+ ) asn — 400, (2.4)

where
. 272 (1+a)\™
,1:/ he, i(p) = ; _ Aloghs(p),
o B(p.ro) ’ (1+a)sin ($5) \ 7w (p) Bl

and

2, ifa > 1,
eg=2-21—a)" =
20, ifae(0,1).
Next, we set
Ry = puaR(x, p),

let rg > 0 be a small positive number and set

Op = ilp — (Ry1(x) = Ru1(p)),  x € B(p, o), (2.5)
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and as in [54], we denote 9, as the solution of

Ay, =0, in B(p, 4ry),

ll]n = Unp — %7‘0 ﬁx7p|:4r0 Unds on aB(p,4r0).

By the Mean value Therorem, we have (0) = 0. It has been proved in that

o= Uy = () = owpon (L) Bz (X22) + 0GR in B(pano), 29

where

P (y) = it +f)a"’l T %‘y;‘z(m), y=(y1,y2) € R, 2.7)
and
Pu2(y) = —anlog(2+ |yl) +an0 +O(y|7®), y = (y1,92) € R?\ B(0,Ro),
for suitable Ry > 1. Here 4, is a uniformly bounded sequence, 28
1
T 8(1+a)2\ ™
" T wsn () ( PP ) Alost ()
and, composing with suitable rotations, we can assume that
(a1,0) = Vlog (I (x)eR 1)) |, 2.9)
Moreover, it has been shown in [27, Lemma 3.2] that
Yu(x) = O(03) ,x € B(p,4r0). (2.10)
Since 1y, is harmonic, then we also have
|Vipu(x)| = O(c2) ,x € B(p,3r0). (2.11)
We also have, see [27, Lemma 3.1],
un(x) — pnG(x,p) = O(0y), x€Q\ B(p,rg). (2.12)

Also, we will need the fllowing improved estimate obtained by matching (2.6) and
212.

Lemma 2.1. It holds,
An —log (/ he””) +2log vy +8m(1+a)R(p,p) = O(on). (2.13)
o)

Proof. Putting ¢, = log ( [ he*) and picking any |x — p| = 2r in (Z.6) and @12),
we conclude that

enG (%, p) = cn — (Ry1(x) = Ry (p)) — Un(x) = O(0m).

Clearly we have

Uy (x) = —Ay — 4(1+a) log [x — p| — 21og(7a) + O(2 ™),
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and we find that
— £ tog |x — p|+ puR(x, p) = cu = pu1R(x, p) + puaR(p, p)
+ Ay +4(1+a)log|x — p| +21og(vn) = O(on),
and then the desired conclusion easily follows from (2.3) and 2.4). O
Finally, similar arguments used in the estimate (2.12), yield

V(iin — puG(x,p)) = O(ow), x € Q\B(p,n). (2.14)

3. ESTIMATE OF THE L*°-NORM

The proof of Theorem [L.lis obtained by contradiction and we assume that two

(i)

distinct solutions u,,
0n, which satisfy

, 1 =1,2, exist for (Pp,), whence in particular with the same

pn — 8m(l+a) as n— +oo,
where « = 1. We also assume without loss of generality that

p1=0¢cQ.

Then we define
ﬁﬁli) = u,(f)(x) —log (/ he”’(j)) , )L,(f) = max ﬁﬁli),
Q
and in particular v,(f) defined as in 2.5). Also we set
(D) — A @) AY) 2(1+ _ _ paha(p)
Uy’ (x) = Ay’ —21og(1 + yne™ [x — p| ( a))/ i=12, = m‘

There is no loss of generality in assuming that

A <A,
To simplify the notation, we set

(1)
0_2(14’06) — oM

Then we have

€ (i) € (1)
Lemma3l. (i) AV — AP = O(X2 e aith ) = O(e atth ) = O(c2).

(@) 175" — 8 | oo < M — A+ 0(AM02).

(1) (2
(i) (175 — 257 |\ 5(0r)) < Olow).
Proof. (i) In view of (Z3), we find that
m lieg , (1) AP Ltep , (2)
((p)e’% +0 (eltrf)‘"l ) ={(p)e T +0O (ef;f)»nz ) ,
which immediately implies, since £(p) # 0,

_ ‘0 670)\(2>

(1)
/\;(11)_)\;(12) :O(e Tratn )_|-g*1+a¢ ",

as claimed.
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(if) By using /\511) < A,(f), it is not difficult to see that

(1)
1— Moy — p20+0)
ul? —ul) = (AP - Ay i ] +o((AP —Aly?)
1+ eMn ')/n‘x _ p‘2(1+0¢)

<M Al oA - Ay,

uniformly in B(0,r) for any r > 0. Also, in view of 2.10), and since the gb,(f)’s are
harmonic, we find that

i () — 9l (x) =0(e2), V(17 (x) — i) (x))| = O(o2),
uniformly in B(0, 3ry), we use this gradient estimate to evaluate the difference,
an2 — | = V(17 (0) — 95" (0))| = O(e2),
which implies that

2) 1)

93 (x) — p ()] <
=0(e2) + o7 =AY,

2(1+«
202012 o))y + 0 (AR — Al

uniformly in B(0, 7). Also it is easy to see that

= O(A,Sl)a,%).

2 1
-yl

Therefore, in view of (Z.6) and Lemma [3.]] we finally conclude that,

2 () (B0rg)) < 1A = AN +OANo2),

[ " (x) — ity
which is (ii).

(iii) Next we obtain the estimate in Q \ B(0,ry), by using the Green's represen-
tation formula,

A0~ 1 () = o [ Gl () (e 9 — o)y
=pu [ (Gl5x) = GO () ("

+G(0,x) /B ( ouh(y) (e W) — o W) ay

0,7‘0)
(1)
+ n/ G(y,x)h e (
o1 Josom) (v, x)h(y)(

y) _

In view of 2.2) and since p, is the same for the two solutions, then we have

m_ @ _ / hne™s ) _ / Bt v)
Ond = Pug =P oo (y)e o1 Joom (y)e

=pn h(y) (f—’ﬂ’(f) W - eﬁ*(f”(”) dy = O(e™).
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Then, by using (Z.2) once more, for x € Q \ B(0,7) we have,
i) (x) = 1) (x)
iPw) AP
= pn [ (G ) = GO X)h(y) () — e W) ) dy
B(O,i’o)
1 2 _
+G(0,2)(pl}) — pi) + O(e ™)
2) 1

i al -
= [ (6(55) = GOR() (0~ ) ay-+ 06 )
10

‘y‘2a+1e)\£,i) A
= O(1 - d + O(e "
/B(o,ro) W izzl;2 (14 neM |y[2+20)2 y+oE™)
- O(U'n),

uniformly in x € Q \ B(0, rp). Therefore we conclude that
A (
i

i (x) — 2 (x) || o\ B(o)) < O(0m),

as claimed. O

4. ESTIMATE OF THE DIFFERENCE AWAY FROM THE BLOW UP POINT
Let

n
o Uy " — Uy
&= —m : (4.1)

Clearly ¢, satisfies

Ay + puh(x)cn(x)En(x) =0  inQ,
4.2)
Cp = —dy on 0(),

for some constant d, satisfying |d,| < 1 and
i) _ oy
anX) =~
) —a?
To simplify the notations, we set
A =AY and o2t = oM,

Then by defining

A

En(z) = En(ouz),  |2| < 4oy 'ro,
we prove the following

Lemma 4.1. There exists a constant by € R, such that £,(z) — bolo(z) in CJ_(R?),
where
. B 1— 'Y‘Z|2+2“

N T, N, P2 € Rz/
Go(z) 1+ |27 z

7 (0)

where vy = —




10 D. BARTOLUCCI, A. JEVNIKAR, Y. LEE, AND W. YANG

Proof. By Lemmal[B.I] we see that

O NN
cn(x) =etn (x) (1 +O(||”;(11) - ”;(12)HL°°(Q)))

= O+ 0N =AY + ),
and then by (2.6), 2.10) and Z11)

Con(1+0(IAD A [+0n)) 1
%
(1+ryn|z‘2+2a)2 (1+r)/‘z|2+20()2

e )‘”cn(anz) = in Clzoc(le),

7'[]’11 (0
T+a -

=

where ¢ =
We define

Qa”:{zele\anZEQ}.
By using (4.2), we have

A&y + pnhy (00z) |20+ in Qg,

671(2) — _dn on an'n,

and since |&,| < 1, then we conclude that &, — ¢in Cj.(IR?), where & is a solution
of
e, 8y(1+a)?fz
A
(1 +’Y\Z|2(1+“))2
It follows from [27, Corollary 2.2] that &(z) = by&y(z), for some constant by, as
claimed. 0

E=0inR?> and |é(z)| <1inR2

Next, we have
Lemma 4.2. For any ry small enough we have
Cn(x) = —=by+o(1), xeQ\B(0,rp),
where by is defined by LemmaE.T)
Proof. Tt follows from (2.2) that
eal(x) 0 in Cl (@) {0)).
Since [|Cnl1~(q) < 1, then @.2) implies that
&g in Ch@\{0}),

where
Ao =0in 0\ {0} and [ ollp(y < 1.

As a consequence, & is smooth in Q) \ {0} and in particular
AZHy=0 in Q.
Therefore o = —b in Q) for some constant b and

& — —b in C).(Q\{0}). (4.3)
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1 *'YneAn ‘x‘2+20¢

In particular —¢,(x) = d, — b for x € 0Q). Let ¢, = Tryucn [x PR
d € (0,79). Then, by using (2.6), @.I0) and (ZI1), we find that

agn acpn B -
/BB(O,d) (qhng N (’I”W) do = ./B(O,d)(%Agn EnNpy )dx

(1) @)

_./B(O,d){ Onlnpnhy (x)|x| (ﬁﬁll)_aglz))-l-S(l—i-tx) Y| x| e }dx

_ _(1) _
= o Préntn {—h1<x>|x|2“e“n (4Ol = a2])) + T (0) e } dx

and let us fix

= /B(O " pngnan‘x‘zaeun {—El (X)gO(U'n)(l +O(‘ﬁ£ll) _ ﬁng)D) +El (O)} dx.

Therefore, by the scaling x = 0y,z, we see that,

%n _ aﬂ)
/83(0,d) (4)” v Cn ov do

. O(1)(ulz| + 25 — 2| + o)
_ 2w
= /B(O,d/(n,) PnGn(2)Pn(z)|z| (1 + ya|z2720)2 dz.
In view of Lemma[B.I]we obtain
Bon o OPu) ;. 260
/a sou <<pn =g, >d¢7 — O(0y + 02). (4.4)

Letl, = 027T &n(r,0)do, where r = |x|. Then, for any fixed R > 0, (@.4) yields

(Zn) (1) pu(r) = Cu(r) gy (r) =

Also for any R > 0 large enough, and for any r € (Roy, 1], we also obtain that
0-3[+204 , 0-721+21x
4’n(”)—_1+o<m), ¢"(r)_o<r3+—2"‘>’

and so we conclude that

260
M, Vr € (Roy, 1o).

O(0y + 02 g2+2u
an(r) = # +0 <rg+2”‘ > , Vr € (Roy, 1. (4.5)

Integrating (4.5) we obtain that
Zn(r) = Zn(Roy) +0(1) + O(R~F2)), Vr € (Roy, o). (4.6)
In view of Lemma /. we also have
Cn(Roy) = —27bg + or (1) + 04(1),
where limg_, o 0g(1) = 0 and lim,— 1« 0,(1) = 0. Then by @.6) we have
Cn(r) = —2mby +or(1) + 04(1)(1 +O(R)), Vr € (Roy, 1ol 4.7)
In view of [.3), we see that
n = —27tb + 0x(1) in Cioc (O {0}),
which implies that b = by. Hence, we finish the proof. O

Next, we need a refined estimate about ¢; which will be needed in next section.
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Lemma 4.3.
&) = i+ AG(0,) +o(cn) in CHOQ\BO2r),  (48)
where
Anz/nf,’f(x) and £ (x) = pncn(X)h(x)En(x).

Moreover, there is a constant C > 0, which does not depend on R > 0, such that

1 (x)
&4 (x) +dn — AnG(0,x)| < Coy (% + 10\3(0,2,0)(95)) , x € Q\ B(0,Ray,).
4.9)
Proof. By the Green representation formula we find that,
&) == du+ | G2 fs(n)dy
(4.10)

= —d,+ AuG(0,x +/ (v, x) = G(0,x)) f (y)dy,

while, by Lemma[3.J] we also find that

D g

en(X)En(x) = =5, (0) 1+ 02 — AV ). (@11)

s = a2 ()
Thus, for x € O\ B(0,2rg), we see from 22), .9 that

| (6w.x) = COx)fdy = [ (Gl,x) = G(0,2)f; ()dy+O0(e ™)

B(0,r9)
2420 ,Ap
= [ o 6 o) £ y+00) ()
= Jron PO ly=0.9) fi )y + Ol

(4.12)
By using (2.2), 2.6) and Lemma 3] after scaling we see that for x € Q \ B(0, 2ry),
it holds

3,6, ) oo,y F* (1)d

./B(O,ro)< yG (Y, %) ly=0.y) fa (v)dy

_ 3+ ) _ W (o 20, Uy +R,, 1 (2)—R,,,1(0) 2 (2)d
o /B(O,ro/crn)< yG(Y, %) ly=0,2) pultr (02) |2 £ (2)dz

+ O(U,%sze[) +02)

- / (3yG(y, %) [y=0,2) puh1(0)2[**Eu(2)
(0r0/c%) (1+ yn|z[>T24)2
Therefore, in view of LemmaldT] for x € QO \ B(0,2ry) we find that,

/B(O,ro) (9 G, %) ly=0.y) fir (y)dy

dz + O(0p 7% + 02).

2 20k
= zp|z[**Go(2)
= dy, G(v, —o0 Pnh1(0)b, /
O Z Yn <y X) |y 0 pn 1( ) 0 B(O,V()/U'n) (1 + ’Yn |Z‘2+2N)2

zn|z[**$o(2)
=0y Zayh |y OPth( )b /]RZ WC&‘FO(U’”).

dz+o(on) (4.13)
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From (@I0)-@I3), we see that the estimate (&8) holds in C°(Q\ B(0,7)). The
proof of the fact that (£8) holds in C'(Q \ B(0, 7)) is similar and we skip it here
to avoid repetitions.

From @.I1), (Z.6) and suitable scaling, we see that there exists C > 0, which is
independent of R > 0 such that for x € B(0,2rg) \ B(0,0,R), it holds that

|En(x) +dn — AnG(0,x)] < \/ 503 y,x) — G(0,x)) i (y)dy| + O(e =)
0
< Ii/ log —2L £ (y)dy] + (/ My >+O(6_/\”)
=127 Jaoary 8 e —y Y J8(03rg) (1 + en|y[2r2cy2 ™Y
log |¥] — log |x — aaz]] 212 )

=0 dz) +0
< < B(0.3r0/ 0n) 1+ [z[772)2 z (on)

< llog |x| — log |x — yz]| z|2“dz)

"/‘7"‘<\z\<2|x/17n| (1 + ‘Z|2+2“)2

|z| 2+
+o(1 / ol > o
( )( B(03r0/ %) [x[(1+ |z[2F2)2 z | +O(ow)

<o) (%)wm(mgzuz e x/an>+o<an><c(| |)

(4.14)
By @.10), @.11) and (Z.6), we also see that for x € Q \ B(0, 2rp), it holds that
e)\n‘y‘1+2{¥ Y
|8n(x) +dn — AnG(x,0)| = O (./B(O,ro) 1+ eAny2+2a)2dy) +0(e™™) = O(on).

(4.15)
By (@.14) and (4.15) we obtain (4.9), which concludes the proof of Lemmad3 [

5. ESTIMATES VIA POHOZAEV IDENTITIES

From now on, for a given function f(y, x), we shall use d and D to denote the
partial derivatives with respect to y and x respectively. With a small abuse of
notation, for a function f(x) we will use both V and D to denote its gradient.

We define

@n(y) = pn(R(y,0) — R(0,0)), (5.1)

and
vy =1y —euly), i=1,2. (5.2)

Recall the definition of ¢, which satisfies @.2). Our aim is to show that the projec-
tion of ¢, on the radial part kernel is zero, i.e., by = 0. We shall accomplish it by
exploiting the following Pohozaev identity to derive a more accurate estimate on

Cn
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Lemma 5.1. ([43]) For any fixed r € (0, rg), it holds

1 (1) | pp@ (1) | @)
> o500 r <Dvn 4+ Do, D(;"n> do — /BB(OJ) r <1/, D(vy,” + vy )> (v,D¢y) do
— rpnh(x) (6021)4‘9% _ ev;(qz)+§011)d0—
500 o}l - 0| 10(0)
)
h(x)(eon +0n — i +on _
- L 2" ™) (24 20+ ( D(logh (x) + u(x)), %)) dx.
JB(0r) |03 — vn ||L°°(Q)
(5.3)
Proof. See [8]] for a proof of this identity. O
Let
@(y,0) = —87(1+a)log ly| +87(1+a)(R(y,0) — R(0,0)) 54
+log(h1(y)) —log(h1(0)). ‘
Recall the definition of A, given in Lemma[.3] Then we have
Lemma 5.2.
2\3, »—An
LHS Of@b (1+DC)A <8<1+DC)_) boe / |y|2aeq>(%0)
201h1(0) O\B(0
+o(03) + Oloul An|) + O(r~03).
Proof. Let
Gn(x) = puG(x,0), (5.5)
so that
. S
V(Galx) — o)) =~ . 56)
In view of @2.14), we have
Voi () = V(@) — Gu(x)) + V(G (x) — gu(x))
= V(Gu(x) — @u(x)) + O(ou), x € Q\B(0,70),
for any fixed small rg > 0. As a consequence, for fixed r > r(, we find that
LHS. of G3) = - )r(D( — ¢n),DCy) do — 2/ (v, D(Gp — @n)) (v, D&y) do
B(0,r
+ O(0ul|DSnllr=@B(0,)))
— Pn
oB(0y) 270 (D&n,v) do + O(0n||Dénll 1= (a8(0,r)))
- / 41+ ) (DZu,v) 4o+ O(0ul| Déll (a0,
(5.7)
where we used 2.3). Therefore, as a consequence of Lemma we conclude that
L.HS. of B3) = 4(1 + a) /aB(O (D&} do -+ Ol 4n) + o(@?). (58
T

In this particular case, we have A, = 0.
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To estimate the right hand side of (5.8), we need a refined estimate about &, on
0B(0,r). So, by the Green representation formula with x € dB(0,r), we find that

8() = —du+ [ G ) fi W)y
2

1 2
= —dn+ AHG(O’x) + 2 Bn,hayhc(y/x) ‘yzO +§ Z Cn,h,kaihykc(y/x) ‘yzO
h=1 hk=1

+ [ w0 £ ),
(5.9)
where

A= [ i@y Bu= [ wfiw)dy Coe= [ vnfi)
and
¥u(y, x) = Gy, x) = G(0,x) = (9yG(y, %) ly=0.y) Top(0,) (%)
B0 o v.y) 10 ).

At this point, let us fix 6 € (0, %). By LemmaB.Jland Lemma[.2] we find that,

£ () = palily e @ny) + O = 17 1)
— oy e (~by + o(1),
for any y € 9Q \ B(0,0). By @4), @12), @I3) and (5.10), we conclude that

* 1, o (1) —An—<10 n)— /!
fily) = palny 2efni GOV 2 o8 =S ORON (g - 0(1))

(5.10)

_(8(1+a)2)2;%(“0)|y|2%¢<%0>(—b0+o(1)) for yeQ\B(0,8),
(5.11)

where
®(y,0) = —4(1+a)log |y| +87(1+a)(R(y,0) — R(0,0)) +log(h1(0)) —log(h1(0)).
On the other hand, by ([2.6), we have for y € B(0,6),

" ﬁ(l) B B 20(6/\,/,
Fi(0) = puhe™ (@ 018 = 1)) = O (s ) - (512

Next, by (5.10), for y € B(0,0) and x € 9B(0,r), we get

_of P o (P
Y.(y,x)=0 P and V,¥.(y,x)=0 ) (5.13)
Let us define
o 2 1 2 )
Gn(x) = AnG(0,x) + Y By udy, G(y,X) |0 +5 Y Cunidy,, Gy, %) |y=o,
h=1 hk=1

(5.14)
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so that, by (E11)-(23.13), we conclude that for x € dB(0, r), it holds

Gn) = TCal) = [y Wy [y X))y

_ / (8(1+a)?)2e M
0 0O\B(0,9) onh1(0)
\

¥y, x) [y[*e® W0 dy

20 Ay
+O(/B( Wl e 4y v o)

B N EX
0 0\B(0,6) pnh1(0)

Fu(y, x)ly e Vdy

+0 (n; +o(e™*) in C'(3B(0,7)),

|x[?
(5.15)
where
oo, if2a > 1,
My, = { oplog(o,l), if2a=1,
02203 2 ifog < 1.
Let us set
(8(1 4 a)?)2e 20 ®(y,0
(x) = —b / - ¥y, x)|y|4e®W0)d 5.16
G =t [, o EEEE S ey e
and then subsititute (5.15) into (5.8), to derive that
L.H.S. of G3) = /93(0 )4(1 +a) (v, D(Gy + ;) (x)) do+O(0] Aul) +O(mrg'“)+o((7%).
o s
(5.17)

To estimate the right hand side of (5.I7), we notice that for any pair of (smooth
enough) functions u and v, it holds
Au(Vov-x)+ Av(Vu - x)

= div (Vu(Vo-x) + Vo(Vu-x) — Vu - Vo(x)). (5.18)

In view of (5.14), we also see that, for any 6 € (0,7),
puh(e’ — e’

Jo ) = aP | e

AEn(x):An:/Qf;;dy: — 0for x € B(0,r)\ B(0,8),

(5.19)
and moreover, by using (5.5) and (E.1), we have

A(Gn —¢@n)(x) =0 for x e B(0,r)\ B(0,0). (5.20)
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By using (5.18)-(5.20) and (E.6), we conclude that
0=/ AG(V (G — gn) - %)+ A VT 0
B(0,1)\B(0,6) [AGH(V(Gn = ) - x) + A(G = gu)( x)] dx

9Gn (G — Pn) o _
- VGn_ n)- 7VGn' _VGnVGn_ n y d
/B(B(O,r)\B(O,Q)) ( T Pn) - X) + == x) ( Pn) (x V>> o
- / Gy
27t Jasor)\B(0g) OV
and thus, B _
G JdG
~(x)do = / " (x)do. 5.21
/E)B(O,r) 5, (X)do 05000 9 (x)do (5.21)

At this point, let us denote by 0g(1) any quantity which converges to 0 as § — 0,
and then observe that,

4(1+a) /aB(O,Q) (v, AnDxG(0,x)) dor = —4(1 + &) Ay + 0(1). (5.22)

Cxl2—0y
Since, D;Dy, log |x| = W, then we find that,

; 2xix
,Didy, (1 ydor—— | dulx|” — 22y lh)d —0.
/azz(o,g) (v, Dxdy, (log |y — x|) |y=o) do = 2B(05) 2 < Tx] < X[ v
(5.23)

We observe that, if h = k then D;log |x| = \i\z

2x;  4xpdip Sx%xi

2 _
D;Djy,log |x| = _W BE |x[6

and thus,

92 1 2 4x2
D loe 1 oV :/ L) g =0. (524
bas < a2 BTy —a] ¥ °> v .aB<o,g><|x|3 x5> 70 62

If h # k, then
2(xp0k + Xi0pi) | 8xpxixy,
|x|* x|’

D;Djy log |x| = —

which implies that

0? 1 dxpx;  8xpxy
v,D I —o )ydo = / - do = 0.
B (P 108 g ova) = [ ot = 5259

(5.25)
By (5.21)-(5.25), we conclude that
401+ a) /aB(O,r) (v, DyGo(x)) dor = —4(1+ ) Ay + 0p(1). (5.26)

Next we estimate the other terms in (5.17), that is 4(1 + «) faB(o,r) (v, DxC;(x)) do,
where (}; is defined in (5.16). Clearly we have
Dx¥u(y,x) = Dx (G(y, %) = G(0,%) = (3G (1, %) ly=0,%) 150 (¥))

— %Dx (% <8§G(y,X) ly=0 (y),y> 1B(o,r>(3/)> :
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Ify € Q\ B(0,0) and x € 9B(0,6) with 6 < (0)?, then we find that

|IDxG(x,y)| < = for some constant C > 0, (5.27)

Vo

which implies
/D G 7 d - 1 .
Lotz (DG (52 dx = 0o(1)
Thus (5.23)-(.25) and (5.27) imply that

4(14a) /a o (1 DR, ) dx

— 4(1+a) /{)B(Ole) (v, DxG(0, x)) dx

—4(1+ ) /a sos) (v, Dx (3G (Y, %) ly=0,¥) 1(0,0)(¥) ) % (5.28)

—20040) [0 D (B0 %) ly=0 1.y Taau () d -+ 05(1)
=4(1+a)+o09(1) for y€Q\B(0,0), and x € dB(0,0).
We observe that
—Ax¥u(y,x) =9, for x e B(0,r)\B(0,0)

and let us choose u(x) = ¥,(y,x) and v(x) = Gu(x) — ¢n(x) in (GI8). Then we
consider the following two cases:
(i) Ify € 9B(0,7) \ B(0,0), then from (EI8) and (5.28), we obtain that
4(1 / , DY, (v, d
(ea) [ (0, DFuly, ) d
(5.29)
— 4(1+a) /{)B(Ole) (v, Dx¥o(y, x)) dx — 4(1 + &) = 0(1).

(ii) Ify € O\ B(0,r), then we see from (5.18) and (5.28) that

4(1+a) /BB(M (v, Dy¥a(y, x)) dx :4(1+“)./BB(0,9) (v, Da¥uly, x)) dx (5.30)

=4(1+a) +o0g(1).
and by (516), and (5.29)-(5.30), we finally conclude that
4(1 , Dy d
(a+e) [ o (0D ()

e
- A , DY 2o PW.0) 4y d
2pnh1(0) O\B(0,9) .aB(o,r)<v tn) ) ly[*e xdy  (5.31)

— U Phe [ty oo,
20,11 (0) Q\B(0,r)

Obviously from (5.17), (5.26) and (5.31) we get the conclusion of Lemma O

To estimate the right hand side of (5.3) of Lemma[5.1] we recall, see for example

(G10), that
F(x) = pah(x)e™ (&, + 0(1)).
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Recall also the definitions of ®(x,0) and H, = Hg in (5.4) and (L.4), respectively

and the definition of £(p) after @.4). A crucial point in our proof is the following
estimate.

Lemma 5.3. (1)
4 —An 4 —An
/ rf o 128(1:}— a)*borre " 32(1 —l—_uc) borte Alogh. (0)
3B(0,r) Pnhy(0)r2+2¢ prhy (0)r2®

Con o(e M)

+O(r! e M) - 252
(ii)

4 —An —An
o Frlot = SERIE [ aeotnog 2,
B(0,r) pnh1(0) O\B(0,r r

(i)

/B(O,r) f <D(logﬁl + (pn),x> dx
= ~2boL(p)07, + 0(0) VHo(0)| + O (a)
+0(03 + 2u03) (IVHo(0) o +02) + Ol ")

+ (O(Rz"‘) +O(An)|An| + o%)) (|V7—lo(0)\0'n + 0-,3) .

where O(my,1(«)) is defined after (5.36) and O(1) is used to denote any quantity uni-
formly bounded with respect to r, R and n.

Proof. (i) We first observe that (5.11) implies that

_ (8(1 +a)?)%e M (—by + 0(1)) |x[*eHo(x)
/E)B 0r) fn(x)d = /Z)B(O,r) pnhy (0)]x|3+4x do. (5:32)

Clearly we have

1
Ho(x) = (DHo(0), %) + 5 (D¥Ho =0 x,x ) + O(|x]%). (5.33)
By (5.32) and (5.33), we obtain,

Sy, 1 (0

2)2)2p—
- /93(0 ") (2(1510))|x)|3+3a <b0(1 + (DHo, x) + % <D§Ho |x=0 X,x>) +0(|x]?) —|—0(1)) do

o / (8(1+ a)2)2e Mnby (1 + AHo|x2)
~ Jamon)

Ay
do +O(r' =28~ + 70(6 )

PnEl (0)|x|3+21x r2+2a
4 —An 4 —An —An
_ _128(1j— a)*borre™ " 32(1 +_vc) by rte log(1,(0)) + O(r 2% 4 o(g i ),
pnhl(O)rHZ“ pnh1(0)7’2”‘ y2+2u

which proves (i).
(ii) We notice that A, = [, fi = 0, and thus

Jron T30 == [ i) (539
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By (B.1I) we see that
4 —An —An
_ / f,’{dx _ 64(1 +£‘) boe ‘x‘2tx6<b(x,0)dx + O(g 5 )
Jo\B(o,r) Ja\B(or) pnh1(0) ratau (5.35)
64(1 + a)*boe M 20, (x,0) o(e” M) '
= - / |x [ dx + —5—5-5,
onh1(0) O\B(0,r) ratan
which proves (ii).
(iii) By 2.3) and (2.6), we see that
iy (x) = Up(x) +87(1+a)(R(x,0) — R(0,0)) +n4(x), x € B(0,r),
where
(%) = Outpn,1 (03 %) + 0atpu(0y 'x) + O(o7),
see (2.7), @2.8) and 2.10). Thus, we set
wa(r) = 13 = a2l 50,
and use Lemma[3.T]land (2.4), we deduce that
/ f;‘ <D(logE1 (x)+ (pn),x> dx
111 (0)] x| 2%+ Ho(x) +i(x) Wy
- / o (& — 5788+ 0w (1) (DHo(x), ) d

7+ O(wy(r)))

L[ e _wn<r>
BOy) (14 ynetn|x|2+2%)2 "

x <DH0(O) + D*H(0)x + O(|x|2),x> dx

nh 20
B / 017 1p+,; |Z)2Z—4|—21x) (‘:n - _gn <DHO<0)/UnZ> + 1 +O((T%‘Z|2) + O(w%))

X <D’H0( ) + D*H(0) - 0z + O(02|z|? ),O'nZ> dz =: Ky .

(5.36)
Set
o ifa>1 op ifa>1
myq(a) =4 log(roy Hop ifa =3 , () =4 log(ro, M)op ifa =1 ,
r=20g2059) g 5 € (0, 1) r2=20205%) g € (0,1)
oy ifa > %
() = { log(ro, Lo ifw =3

r3_2“¢75(1+“) ifa €(0,3)
Using (5.36) together with @.5), Z7) and Lemma[3.1] we conclude that

e | T (0) 22
n,r JBOo7 ) (1 +'Yn|z‘2(1+a))2

< (6= (@02 + (s (2)+ < DHo(0), 2 =) +O(0312P) + O((G2% + 4u?) + 03fna()

X <DH0(O) + D*H(0) - 0z + O(U%\z|2),0nz>dz
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- ouli (0212 (&1 =5 (84)% + (1 (2)+ < DHo(0),2 >))

B /B(o,w;l) (1+ yn|z[2(1+0))2

x < DHy(0) + 04 D*H(0) - 2,z > 0ydz + O(my, 1 () + myo(a) + my 3(a))
(

+ (IVH0(0)|ow + 07) O((e2 + Auo2)?)

= L1+ Lna + Oy (@) + (|VHo(0) o + 07) O(@f%),

where

pult1 (0)]2*(6n — 4-E7) <

— 2 .
L= ./B(o,m;l) [+ )2 DHy(0) + 0, D“H(0) z,z> ondz,

and

_ Pult1 (0)[z[* (n,1(2) + (DH0(0),2)) 2
Inp = ./B(o,m;l) T+ 7z F2)2 (DH(0), z) 07,dz.

In view of 2.9), 2.10), @.11) and @.4), we have
(DHo(0),2) = 93, Ho(0)z1 + O(07) (21 + 22) = anaz1 +O(0}) (21 + 22),
and then, putting a; = 9y, Ho and A(z) = p,h1(0)|z|?*, we conclude that

o2 — / A(2) (n1(2) + @21 +O(07) (21 + 22))
n in2 B(O,rtTn_l) (1+7n|z‘2+2a)2

A(z) < 214 a)ayz; 5 )
- - +a121 +O(02)(z1 + z
/B(o,m;l) (14 yp|z|222)2 a(1 4 7y |2[2T2%) 121 (03)(z1 +22)

x (a1z1 + O(02) (21 + 22))dz

2(1 A 2.2 A 2.2
T L
B(0roy Yy a(1 4 yn|z[>T2%) BOroy ) (14 ynlz[2T2%)

(121 4 O(07) (21 + 22) )dz

— a2m? 1 — a2 24+« 1+ 2«
= = paln (0) — 1 pu (0) L T T()
2(1+ )2y e S Ta 20y,

+0(07%) + O(07)
— O(c2") + O(c3),

where we used the properties of I'(x), and thus

Iz = O(o7 ). (5.37)
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On the other hand, in view of Lemmad.1] for any fixed R > 1 large, we have

Az) (& — &2
/( ) (1(?<$nz|zfzf)z) <DHO(O)+‘7HD2HO(O)'Z,Z> o dz

A o
oo A(2) (boo (2 ()1 +o$1>zﬁgg§§ E2T)) ( D34y(0) + 0 D?H0(0) - 2,2 o

_ 2) (bodo(z) + O(2% + Auo2))
a %/OR 1+ yulz725)2 <D27'l0(0)~z,z>dz

+0(02)[VHo (0)] +O(@2 + Au?) (IVHo(0) o + 07

=0y b0k )%<D2H0(O)~z,z>dz+o(an)|v7-lo(0)|

+O(020 + Apo?) (\VHO(O)\W +ag)

_ 2|28 (z
= 871(1 + &)1 (0)byo2 ./B(O,R) % <D2H0(O) : z,z> dz

+0(04)[VHo(0)] + 002 + Auod) (IVHo(0) 0w + 7).

Finally we have

1z2%¢o(2) ~ AHH(0) / 1—ylz2™ oo
./( ) (14 |z[>2#)2 < H0(0) Z’Z> dz = 2 JB(OR) (1+ y|z|>+24)3 2 dz
2
T

AH _
_ ;( ) Zi —I—O(R le)
(14 a)3yTre sin 175
s
- : Alog(1.(0)) + O(R"2).
2(1+ a)?h1(0)y T sin 17

On the other side, in view of (4.9), we also see that if R < |z| < r/0y, then it holds

Cn(z) = —dn +O(/\n)\An|+O(‘ |) (5.38)

and thus

1

éﬂ(z)z = d%l +O(/\% | ‘2)

| ‘)|A"‘ +O<
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As a consequence, by Lemma[3.1] we find that

onh1 (0)|z2%(&n — 42 E2) 2
D (0) + 0, D*Ho (0) - 2,2 ) 0y
/B(o,r/vw\Bm,R) (1 + valz[7+2%)2 < 0(0) +ouD"#o(0) -z Z>U :

_( ;  walr) » / pnh1(0)|z[* 2 )
_< ==y d”)~8(0,r/an>\8(o,1<> (1+ 7n|2[+24)2 <DHO(O)+U"D Ho(0) Z’Z>Undz

puh1 (0)]z**(O(An) | An| + O (1

2|

)
DHo(0 D*Hy(0) - z, d
* fromrenaon T o) (DHo(0) +ouD*Ha(0) - 2,2) oz

E 0)|z 20042
— —boAlOg h*(O) /B(O /o )\B(O R) %Uﬁdz + O(U’%(o”%eo _|_ /\1’10_}%))

+ <O(/\n|)|An +0 <%)> (\VHo(O)IUn +05)

= O(R™ )02 + (O(RZ“) + O(An)[An[+ 0O (%)) (|V7—l0(0)\0n +a,3)

+O(0a 20 4+ Au0d)

Collecting the above estimates we conclude that

./B(o,r) fa <D(1°gﬁl + <0n),x> dx

= ~2by{(p)0% +0(0) | VHo(0)| + O (a)) + O + A403) (|VHo(0) o +03)

0@ ) + (O(R) + 0l +0(3) ) (IVHa(O)ler + 7).

Recall that p = 0. Using the assumptions /(p) # 0 and VH((0) = 0 we can
now prove that by = 0.

Lemma 5.4. by = 0.

Proof. By (5.3) and Lemmas[B5.2H5.3] we have for any r € (0,1) and R > 1,
(8(1 + &)?)3bge M / 20, ®(y,0) 2 i
- d + O(ou|An| + %
T o ey 0(e) + Oleul Al + )
_ 128(1 4 a)*borre M 32(1+0c)4b07re*)‘"A10 1 (0) 4+ O(r1~28¢—n)
T (0)72 7% paln (02T
~128(1 + &) bpe M

o(e M
pnh1(0) /O\B(o,r) [Py + £2+2ﬂ<) +2bol(p)oy

—4(1+a)A, —

+0(0) [V Ho(0)] + Oy 1 () + O(020 + Ayo?) (|V’H0(0)\Un + a,%)

+O(oa ) + (O(R‘z”‘) + O(Ay)|An| + o%)) (|V%0(0)\an + ag) :
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Recall A, = 0. Since VH((0) = 0 by assumption, after some manipulations, for
r € (0,rp) and any R > 1, we find that

bol(p)o? = 0(02) + O(my1 () + O(R™2* + R™1)o2 + O(o7 720 + Ao
oy o(e=Mn)
+O <I’_g) + T2+2“ 4

by = 0.
provided ¢(p) # 0. Hence we finish the proof. O

which implies

Proof of Theorem[L1] Let x;, be a maximum point of §,, then we have,
|Cn(xp)] = 1. (5.39)
By LemmaM.2land Lemma[5.4lwe have that x;, — p. By Lemma[5.4] it holds that

A

nETmez(1+*>sn = 400, wheres, = |x;, — p|. (5.40)

Setting &, (x) = &(spx + p), then we have &, satisfies
0 = A& + pns2h(sux + p)en(snx + p)&n

— ) _
L pulty (p)[x[**sit2%eM (1 + O(su|x]) +0(1))&n
n .

(1 + Bt s +20)2

On the other hand, by (5.39), we also have

s (=P
(fn( Sn )

In view of (540) and |¢,| < 1 we see that ¢, — ¢p on any compact subset of
R?\ {0}, where { satisfies AGy = 0 in R? \ {0}. Since |&| < 1, we have A&y =

|l —pl
S

= |Cn(xp)| = 1. (5.41)

0 in IR?, which implies & is a constant. At this point, since = 1 and in

view of (5ATI), we find o = 1 or {5 = —1. From which we have |&,(x)| > 1
A

when s, < |x — p| < 1s,, which contradicts to @.6)-@3) since e 20+9 < s, and

lim;,— +o0 8y = 0 and by = 0. This fact concludes the proof of Theorem [l O

6. THE PROOF OF THEOREM [L.2]

In this section we give the proof of the non-degeneracy result stated in The-
orem [[.21 Since the argument is similar to the one yielding local uniqueness of
bubbling solutions we will be sketchy to avoid repetitions, referring to [9] for full
details.

Suppose by contradiction the linearized problem (I.2) admits a non-trivial solu-
tion ¢, where uy, is a singular 1-bubbling solution of (P,,) blowing up at the point
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piforsomei € {1,---,N}. We suppose with no loss of generality that p; = 0 € (),
setw; = a and

iy = uy — log (/ he””dx) LA, = max iy, 0,3(1“‘) =e¢ M,
(@)

Define '
b — Jo ety dx
B n Jo hen dx
- ’ b — Joltendndx '
" Jahetmdx )
which plays the role of the difference of two bubbling solutions, see (£.I) in the
proof of Theorem[LT] Then, &, satisfies

AE, 4+ puh(x)cn(x) Ey(x) =0  inQ),

[1]

(6.1)

[1]

= —dn on d(),

for some constant d, satisfying |d,| < 1 and c,(x) = eln (%),

Step 1. We start by considering the asymptotic behavior of &, near the blow up
point p;. After a suitable scaling, E, converges in C) (IR?) to a solution ¢ of the
linearized problem
s 8y(1+a)? |z
pi g S0
(1 _|_,Y‘Z|2(1+1x))2
where v = ”ﬂ(‘?), see for example Lemma It follows from [27, Corollary 2.2]
that there exists a constant by € R such that
1— ’Y\Z|2+2‘x
1+ qlz[2t 2

E=0inR*> and |é(z)] <1inTR?

En(0z) — by in C)_(R?). (6.2)

Step 2. We next consider the global behavior of X, away from the blow up point
pi. It follows from (2.2) that

en(x) 50 in Ch @\ {0)).
Using then |2 | ~(q) < 1and (&) it is not difficult to see that
Ep— & inCL.(Q\{0}), A&H=0 inQ.
Therefore o = —b in Q) for some constant b and
B, — —b in C).(Q\{0}). (6.3)
Finally, by an O.D.E. argument as in Lemma[4.2] one can show b = by.

Step 3. We then study the asymptotic in the Pohozaev-type identity given by
Lemma [B.0] (with suitable minor modifications, see for example [9]). Using the
assumption VH,,(p;) = 0it is possible to prove that

bol(p;) = o(1) for n large,
see sectionf] Since by assumption £(p;) # 0 we deduce by = 0.
Step 4. The contradiction is then obtained by a blow up argument using b = by = 0

jointly with (6.2) and (6.3) exactly as in the proof of Theorem [L1] see the end of
sectionBl The proof of Theorem[I.2]is completed.
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