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Maselli A, Dhawan A, Russo M, Cesqui B, Lacquaniti F,
d’Avella A. A whole body characterization of individual strategies,
gender differences, and common styles in overarm throwing. J Neu-
rophysiol 122: 2486–2503, 2019. First published October 2, 2019;
doi:10.1152/jn.00011.2019.—Overarm throwing is a fundamental hu-
man skill. Since paleolithic hunter-gatherer societies, the ability of
throwing played a key role in brain and body co-evolution. For
decades, throwing skill acquisition has been the subject of develop-
mental and gender studies. However, due to its complex multijoint
nature, whole body throwing has found little space in quantitative
studies of motor behavior. In this study we examined how overarm
throwing varies within and between individuals in a sample of
untrained adults. To quantitatively compare whole body kinematics
across throwing actions, we introduced a new combination of spatio-
temporal principal component, linear discrimination, and clustering
analyses. We found that the identity and gender of a thrower can be
robustly inferred by the kinematics of a single throw, reflecting the
characteristic features in individual throwing strategies and providing
a quantitative ground for the well-known differences between males
and females in throwing behavior. We also identified four main
classes of throwing strategies, stable within individuals and resem-
bling the main stages of throwing proficiency acquisition during
motor development. These results support earlier proposals linking
interindividual and gender differences in throwing, with skill acqui-
sition interrupted at different stages of the typical developmental
trajectory of throwing motor behavior.

NEW & NOTEWORTHY Unconstrained throwing, because of its
complexity, received little attention in quantitative motor control
studies. By introducing a new approach to analyze whole body
kinematics, we quantitatively characterized gender effects, interindi-
vidual differences, and common patterns in nontrained throwers. The
four throwing styles identified across individuals resemble different
stages in the acquisition of throwing skills during development. These
results advance our understanding of complex motor skills, bridging
the gap between motor control, motor development, and sport science.

dimensionality reduction; fundamental motor behavior; interindi-
vidual variability; motor development; overarm throwing

INTRODUCTION

Throwing stones, balls, or other sorts of projectiles over
large distances is an exclusive skill of the Homo lineage
(Darlington 1975). Other primates can throw, but only ineffi-
ciently, with poorly accurate actions that typically involve
upper limb movements only (Goodall 1964; Hopkins et al.
2012). Skillful throwing actions must instead be supported by
an erect bipedal stance and involve a complex sequence of
movements encompassing the whole body (Pappas et al. 1985;
Roach and Lieberman 2014). A pulse of kinetic energy starting
in the legs progressively cumulates through pelvis, trunk, and
arm movements in an increasingly rapid chain that eventually
results in the explosive transfer of kinetic energy from the
throwing hand into the projectile. In addition, the resulting
accuracy of fast throws is strictly related to a very precise
timing of finger release in relation to the arm kinematics (Hore
et al. 1995). Only humans can coordinate effectively such a
complex action.

In our modern times, throwing skills are typically considered
in the context of ball sports. Nonetheless, overarm throwing is
de facto one of the few fundamental whole body motor behav-
iors observed in humans (Payne and Isaacs 2012). Alongside
walking, running, and jumping, overarm throwing is indeed an
emergent behavior observed universally across cultures and
geographical regions, even in the absence of specific training
(Williams and Monsma 2006; Young 2009). A clear pattern of
overarm throwing proficiency acquisition is observed indepen-
dently of social and geographical backgrounds. Starting around
the age of 2 yr with simple arm movements from an upright
static stance, throwing proficiency naturally converges, at age
6 to 7 yr, toward a more sequenced pattern of weight shift,
trunk rotation, and steps that closely resembles the strategies
adopted in fast-throwing sports (Stodden et al. 2006a; Wild
1938). Although specific training plays an important role
(Butterfield and Loovis 1993; Thomas et al. 1994), it is not
necessary for the natural acquisition of a complex motor
sequence that effectively optimizes the exploitation of human
biomechanics for shooting fast and accurate projectiles (Lom-
bardo and Deaner 2018a; Young 2009). This is taken as one
compelling piece of evidence for throwing actions to stem from
an inherited motor program attained throughout evolution
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(Butterfield et al. 2012; Lombardo and Deaner 2018b; Young
2009).

Much evidence supports the view that throwing is an inher-
ited motor plan, rather than a skill purely learned from training.
A tight interplay between throwing proficiency and human
evolution has been established in a long tradition of evolution-
ary studies, since Darwin pointed to the ability of hitting
distant moving preys as a key factor in the natural selection
(Darwin 1871). Archaeological evidence, cast within the back-
ground of evolutionary theories, indicates that the selective
pressure for skilled overarm throwing played a dramatic role in
shaping humans’ body anatomy (Roach et al. 2013; Roach and
Richmond 2015), brain structure (Calvin 1982), and cognitive
abilities (Calvin 1983; Darlington 1975). It is therefore not
surprising that overarm throwing is among the few fundamen-
tal behaviors currently observed in the human motor repertoire,
although its selective advantage has long vanished.

Further support that throwing stems from an inherited motor
plan comes from the marked gender differences observed in
throwing performance (Gromeier et al. 2017; Lombardo and
Deaner 2018a). A pronounced male advantage emerges very
early, around the age of 3 yr, when structural differences across
genders are still negligible. The gap is maintained and typically
increases throughout development (Butterfield et al. 2012;
Nelson et al. 1991) and is significantly larger than for other
whole body motor skills, including running and jumping
(Thomas and French 1985). This gender effect cannot be
completely explained by societal and/or cultural factors or by
physical dimorphisms (Butterfield et al. 2012; Nelson et al.
1991; Petranek and Barton 2011). This composite evidence
suggests that the gender gap in throwing is rooted in the higher
involvement of males in combat and hunting activities all
through the evolution of the homo lineage (Lombardo and
Deaner 2018a; Young 2009).

Despite the pervasive interest in throwing behavior as a
window into human evolution, development, and gender dif-
ferences, kinematic analysis of whole body throwing has re-
ceived less attention with respect to other fundamental motor
behaviors, such as reaching, grasping, or locomotion. This is
partly due to naturalistic overarm throwing being a complex
and extremely rapid motor action, with a large number of
degrees of freedom involved (Hore 1996). To overcome this
complexity, most motor studies on throwing have focused on
the control of the throwing arm alone, thereby restricting gross
body movements. A comprehensive set of studies, analyzing
throwing while subjects were seated upright with a fixed trunk,
established important insights into the crucial role of the
fingers’ opening timing, required to be synchronized along
with a sequenced rotations of arm joints, within milliseconds,
to ensure successful performances (Hore et al. 1995, 1996).
Fewer studies have addressed the issue of how this fine motor
control of the throwing arm and hand is coordinated with
whole body movement patterns while strict constraints are still
imposed on the throwing body posture (Hore and Watts, 2005,
2011). Indeed, the sensorimotor control of whole body throw-
ing actions remains largely unexplored (Urbin 2012).

On the other hand, quantitative studies on whole body
overarm throwing have been conducted in the context of sport
science, with a specific focus on how elite athletes are able to
optimize control strategies for maximizing performance (Hi-
rashima et al. 2008; Southard 2002, 2009), i.e., speed and

accuracy, while minimizing the risk of injury (Fleisig et al.
1995; Seroyer et al. 2010; Whiteley 2007). Consequently, the
majority of studies have investigated the specificity of motor
patterns adopted in fast-ball sports. For instance, a right-
handed pitch in baseball begins with a wind-up phase in which
the left knee moves up while the pelvis and trunk rotate
rightward, followed by a stride phase in which the left leg
moves forward and an arm-cocking phase in which the throw-
ing arm moves backward. Next, the acceleration phase follows,
in which the throwing arm projects the ball forward (Sachliki-
dis and Salter 2007). The specific sequence of steps and
torsions in the wind-up, stride, and cocking phases is tuned for
maximizing the storage of elastic and kinetic energy at the
shoulder (Escamilla and Andrews 2009; Fleisig et al. 1995),
which is then transferred onto the throwing hand, resulting in
release velocities as high as 40 m/s (Stodden et al. 2005).
However, outside the sports arena, such extreme velocities are
deemed less essential, more so from an ecological throwing
perspective. In essence, different throwing strategies resulting
in moderate release velocity (at ~10 m/s) can be effective, e.g.,
for killing a prey at a distance of few meters (Wilson et al.
2016).

When asked to throw and hit a distant target, adults who
have not being trained in throwing-relevant sports display a
heterogeneous spectrum of throwing strategies. A recent study
from our laboratory found a large variability in the gross whole
body kinematics adopted by different throwers, including dif-
ferent types and combinations of stepping patterns and throw-
ing arm trajectories (Maselli et al. 2017). However, although
several studies have analyzed in depth how different throwing
patterns are acquired throughout development (Payne and
Isaacs 2012; Wild 1938), the question of how untrained adults
perform unconstrained naturalistic throwing actions has re-
ceived little attention. Thus the goal of the current work was to
characterize overarm throwing from a novel perspective, draw-
ing inspiration from recent studies on the emergence of mul-
tiple control strategies in complex motor tasks.

A motor task, at whatever complexity level, can be accom-
plished with a virtually infinite number of solutions in the
execution space (Bernstein 1967). However, whereas simple
tasks tend to be executed with a single strategy across repeti-
tions and individuals (Flash and Hogan 1985; Morasso 1981),
in complex motor tasks, multiple strategies emerge at both the
intra- and interindividual levels (Bartlett et al. 2007; Cesqui et
al. 2012; Ganesh et al. 2010; La Scaleia et al. 2015). The
emergence of multiple execution strategies, or task solutions,
has been related to optimization processes that minimize a cost
function with multiple local minima or that result from differ-
ent weights in the combination of distinct elementary optimal-
ity criteria (Clever et al. 2016). In a complex multijoint task
such as whole body overarm throwing, it is not straightforward
to assess how individual solutions might distribute in the action
space, particularly when extreme levels of optimization, such
as those involved in professional sports, are not required. To
this end, our aim was to characterize quantitatively how the
execution of throwing actions are distributed within a hetero-
geneous sample of untrained throwers, both at the individual
and at the interindividual level. Driven by this overall objec-
tive, we addressed the following questions: Is there a contin-
uum of strategies adopted by different individuals, or rather a
limited number of discrete solutions? If so, to what extent are
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these solutions related to developmental aspects of throwing
proficiency acquisition, and to individual and/or gender differ-
ences?

Addressing these issues requires a step-change in the way
throwing actions are described, analyzed, and compared. Pre-
vious studies on overarm throwing were indeed characterized
by either one of the following two main limitations. Develop-
mental studies have typically adopted holistic approaches
based on qualitative descriptions and/or categorizations of
movements (e.g., steps, trunk rotations, vertical vs. horizontal
movements) as observed in real time or filmed unconstrained
throwing actions (Payne and Isaacs 2012; Roberton 1977; Wild
1938). Instead, quantitative descriptions have been adopted for
preselected variables, e.g., release velocities (Roberton et al.
1979), temporal joint lags (Southard 2002), stride lengths, or
angular displacement of specific joints (Fleisig et al. 1999;
Stodden et al. 2006a, 2006b). Similarly, the majority of bio-
mechanics and sport science studies on throwing consist in
quantitatively monitoring and comparing a number of specific
preselected kinematic and kinetic variables (angular velocities,
joint torques, muscle activations, etc.) in relation to perfor-
mance (Escamilla and Andrews 2009; Hirashima et al. 2008;
Urbin et al. 2013). The preselection of critical variables con-
stitutes the main limitation of these quantitative approaches
that, by focusing on a detailed description of cues assumed to
be relevant, are not suited for a comprehensive account of
individual throwing strategies, and may therefore result in a
risk of bias (Lees 2002; Pataky et al. 2013). In the current
work, to overcome such limitations, we introduced a novel
combination of dimensionality reduction and machine learning
techniques that allows us to perform quantitative comparisons
of the whole body kinematics of complex actions without
making any prior assumption on relative relevance of specific
kinematic cues. Because the main focus was the characteriza-
tion of the overarm throwing motor behavior within and across
individuals, we have purposely neglected the fine-tuning as-
pects of the actions, such as the control of ball release strate-
gies, as well as the relationship between throwing strategy and
performance.

METHODS AND MATERIAL

Three-dimensional whole body kinematics of unconstrained
throwing actions were recorded from a sample of 20 untrained
right-handed participants (10 female). Participants were asked
to aim at one of four targets placed at a 6-m distance. Whole
body kinematics were acquired through an optoelectronic sys-
tem monitoring a set of retroreflective markers. Each throw
was represented in terms of the three-dimensional positional
trajectories of 18 markers placed on anatomical joints locations
throughout the body. The data collected and analyzed were
recorded in two sessions, separated in time by 22–23 mo.
Session 1 included 20 participants; the results of a different
analysis of the data have been presented in a previous study
(Maselli et al. 2017). The participant identifications P1–P20
adopted throughout the current article correspond to those of
the previous study. In session 2, we re-recruited six of the
participants that took part in session 1 and asked them to
perform a replica of the previous experimental session.
During the period of about 2 yr between the two sessions,
participants did not get involved in any throwing-related

training. The complete data set included a total of 2,800
throws, of which 2,136 are from session 1, and the remain-
ing 664 from session 2.

We conducted our main analysis on the session 1 data set.
First, we applied a spatiotemporal principal component analy-
sis (stPCA) decomposition to obtain a compact description of
the whole body kinematics of individual throws. Subsequently,
this description was used to characterize individual throwing
strategies, interindividual differences, and typical strategies
recurrent across individuals by means of machine learning
techniques. The outcomes were then considered in light of
current knowledge from throwing proficiency acquisition dur-
ing development and in relation to gender differences. Finally,
the data set from session 2 was examined to assess to what
extent throwing motor behavior in adulthood is stable in time.

Additional information about methods and results are given
in the Supplemental Material available at https://doi.org/
10.6084/m9.figshare.9165287.

Participants

Twenty right-handed participants (10 female, 10 male; age
28.2 � 6.8 yr) with normal or corrected-to-normal vision and
no history of neurological conditions participated in session 1.
Six of them (2 female, 4 male; age: 31.3 � 9.5 yr) also
participated in session 2. Handedness was tested with the
standard Edinburgh Handedness Questionnaire that classified
18 participants as right handed [lateral index (LI): 84.8 � 6.8]
and 2 as ambidextrous (LI � 30 and 26). Participants were
further asked to fill out a brief questionnaire concerning their
experience with sport-related activities. Although some partic-
ipants engaged in throwing sports, they did so at the amateur
level, and none of them reported to be engaged in professional
training. Before participating in each experimental session, all
participants signed an informed consent in accordance with the
Declaration of Helsinki; they received compensation for their
time spent in the laboratory. The data collection was carried
out in accordance with Italian laws and European Union
regulations on experiments involving human participants. The
protocol was approved by the Ethical Review Board of the
Santa Lucia Foundation (Prot. CE/PROG.542).

Experimental Setup and Protocol

Whole body throwing kinematics were recorded with an
optoelectronic system (OptiTrack; Natural Point, Inc., Corval-
lis, OR) consisting of 16 cameras (Flex 13) operating at 120
Hz. All positional data were reconstructed and saved through
dedicated software (Motive Body 1.9, OptiTrack; Natural
Point, Inc., Corvallis, OR).

In both sessions, participants performed a series of 120
overarm throws from a fixed standing position, always starting
from the same posture. Participants were instructed to hit one
of the four circular targets (40-cm diameter) arranged on a
target board placed at 6-m distance. The targets were arranged
on a rectangular board, with target centers separated by 70 cm
vertically and 80 cm horizontally. Each trial started with a
computer generated pure-tone sound and the instruction on
which target to hit displayed on a computer monitor. The
handling and communication across systems was managed
through a custom-built MATLAB script integrated with Opti-
Track’s NatNet SDK.
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Before starting the experimental session (120 trials), partic-
ipants went through a standard warm-up session including
shadow throws (without the ball), throws generally aimed to hit
the target board, and throws aimed at single targets. Partici-
pants were explicitly instructed to perform one-handed over-
arm throws without any specific constraints other than starting
from the same initial “A” pose (facing the targets/board and
standing upright with arms along the body and hands slightly
separated from the hips).

Data Collection and Preparations

Participants were fitted with a Velcro suit and a beanie cap,
on which retroreflective markers (14-mm diameter) were at-
tached. Each participant was equipped with a standard biome-
chanical marker set consisting of 57 retroreflective markers.
Eight of these markers, located on medial anatomical joints,
were used only for calibration and were removed postcalibra-
tion. The Motive software allowed for a real-time automatic
reconstruction of the moving participant’s skeleton and for
saving data with automatically labeled markers. A customized
foam ball (40 g, 90-mm diameter) was used as projectile. The
ball was embedded with five asymmetrically located retrore-
flective markers; subsequently, a rigid body was created to
track its trajectory. Information from the ball trajectory was
exclusively used to determine the time of ball release. For the
analysis, each throwing action was described as a collection of
spatial trajectories from a subset of 18 joint markers distributed
across the whole body: left and right metatarsal (foot), lateral
malleolus (ankle), femur epicondyle (knee), iliac crest (pelvis),
acromion (shoulder), humerus epicondyle (elbow), ulnar sty-
loid process (wrist), second proximal phalanx (hand), seventh
cervical vertebra (cv7), and anterior head. The head position
was estimated as the mean of the right and left anterior head
markers.

Positional data were interpolated using a cubic spline
method (to fill recording gaps) and subsequently filtered using
a zero-lag Butterworth filter of order 10 and low-pass fre-
quency 15 Hz. For each trial, the throwing action kinematics
were delimited from action onset (the time at which the
right-hand movement was initiated) to ball release, using the
same automatized event-identification procedures described in
Maselli et al. (2017). About 10% of the recorded trials were
discarded due to poor tracking: 2,136 of the 2,400 trials in
session 1 and 664 of the 720 trials recorded in session 2 were
included in the analysis.

All trials from all throwers were time-aligned by normaliz-
ing their duration to the average throwing movement time of
1.2 s, and the corresponding kinematics were resampled on 100
data points. Additionally, the positional data were spatially
scaled so that all participants’ height after scaling corresponded
to the average height (171 cm), whereas the individual relative
lengths of body segments were preserved.

stPCA Decomposition

To provide a compact description of whole body throwing
actions, we performed a spatiotemporal principal component
analysis (stPCA) decomposition, previously introduced for the
description of muscle activities (Klein Breteler et al. 2007;
Russo et al. 2014), joint torques (Russo et al. 2014), and
kinematics of single joint markers (Maselli et al. 2017). The

method consists in a standard PCA decomposition applied to a
data set in which each time sample of each time-dependent
variable is treated as a feature by itself. This is different from
the standard representation of a movement, typically consisting
in an Nf � Nt matrix in which the temporal evolution of each
one of many variables (e.g., positions, joint torques, or muscle
activities) is given in one of the Nf rows, as a set of Nt time
samples. Instead, since each time sample is treated as a vari-
able, a movement is described by an NF � 1 vector, with
NF � Nf � Nt. In this study, because we described the whole
body kinematics as a set of 18 three-dimensional spatial tra-
jectories, each throwing action was represented by a NF-
dimensional vector (xi), with NF � 5,400 (18 joint markers � 3
Cartesian coordinates � 100 time samples). The whole data set
including all throws from all participants could therefore be
arranged into an NF � NT matrix, X � [x1,x2,...,xNT

], with NT

being the number of throws in the data set. Applying standard
PCA to the matrix X allows us to identify a set of vectors pST

that can be linearly combined for reconstructing all the throws
in X:

xi � x� � � j�1
NF ci,j pj

ST,

where x� represents the mean throw, defined as the set of
joint-marker trajectories averaged across all trials from all
participants (shown in Supplemental Fig. S3), and ci,j are scalar
coefficients. In turn, each pj

ST
can be rearranged into a set of 18

spatial trajectories that, when added to x�, represent a whole
body movement spanning the whole duration of the throwing
action (see Fig. 3 and Supplemental Fig. S4). The pST vectors
can be therefore interpreted as building blocks of whole body
movements that, appropriately weighted and combined, allow
us to describe the whole body kinematics of all throwing
actions in the data set. As in standard PCA, pST vectors are
ordered according to the amount of data variation accounted
for so that the first few components can typically account for a
large fraction of the total variation. In this way, an extremely
compact representations at a good level of accuracy can be
achieved.

Identity and Gender Recognition

Linear discriminant analysis (LDA) was applied to stPCA
representations of the throwing kinematics to explore whether
it would be possible to recognize the identity or gender of a
thrower based on approximated low-dimensional descriptions
of single throwing actions. LDA is a standard supervised
classification technique used to allocate new observations into
one of NG � 2 known groups (usually referred to as classes),
based on previous observations for which the group assignment
is known (training data set). The method consists in finding
discriminant functions that divide the features space into NG
regions, by maximizing the ratio of the between-groups to the
within-group variabilities in the training set (Mardia et al.
1979). We applied LDA to the 20-class problem of identity
recognition, as well as to the 2-class problem of gender
recognition. The Euclidian distance in the stPCA coefficients
space was used as metric for the distance between two obser-
vations. LDA results are reported in terms of the misclassifi-
cation errors (MEs), as resulting from a leave-one-out cross-
validation procedure. The latter consists in performing the
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classification assignment of each single observation (the one
left out) based on the training set defined by the rest of the
observations, repeating the same procedure for all observations
in the data set, and defining ME as the percentage of misclas-
sified observations. LDA performances for both classification
problems have been examined for the case of different stPCA
dimensionalities (from 1 to 10 dimensions).

Cluster Analysis

We applied cluster analysis to the entire set of throwing
actions (all trials from all participants) with the aim of explor-
ing the existence of typical throwing styles, recurrent across
individuals. Cluster analysis is a standard unsupervised ma-
chine learning method used to group a set of observations
based on their reciprocal similarity. The method was applied in
the five-dimensional stPCA coefficient space, using the Euclid-
ean distance as the metric quantifying the distance between
throws. We opted for the k-means clustering method, in par-
ticular using the k-means�� method for cluster center initial-
ization (Arthur and Vassilvitskii 2007), and performed 20
replications to further minimize the possible impact of mis-
leading local minima. Because the k-means method requires
the number of clusters Nk as an input, we first determined the
optimal clustering solution, namely, the optimal value of Nk in
the range 1 to 10, using three different methods: the Calinski–
Harabasz method (Calinski and Harabasz 1974), the Silhouette
method (Rousseeuw 1987), and the Davies–Bouldin method
(Davies and Bouldin 1979). Additionally, we directly tested the
hypothesis that our data were actually structured into clusters.
To this end, we computed the normalized Hubert statistics for
the optimal number of clusters. We then compared it with the
statistics obtained for the same number of clusters identified in
100 sets of the same number of random stPCA coefficients
uniformly distributed between the 2.5% percentile and the 97.5%
percentile of each stPCA coefficient (Theodoridis and Koutroum-
bas 1999).

Additional Analysis on Stepping Patterns and Throwing Arm
Trajectories

Results from the cluster analysis were next inspected to
characterize how the stepping patterns and the throwing arm
trajectories were distributed in each cluster. For characterizing
the stepping pattern in each throw, we computed the length of
the right and left feet paths from action onset to ball release,
indicated thereafter as LRF and LLF. To analyzes the distribu-
tion of arm trajectories, we first considered the kinematics of
the throwing arm joint markers (right elbow, right wrist, and
right hand) in a body-centered reference frame with the origin
fixed at the right shoulder location, the x-z plane aligned with
the frontal plane (the x-axis directed from the left to the right
shoulder and the z-axis orthogonal to it and directed upward),
and the y-z plane aligned with the sagittal plane (the y-axis
pointing outwards in the direction of throw). Furthermore, we
characterized each hand trajectory with two spatial param-
eters quantifying the extent of lateral and anterior excur-
sions during the rising phase. More specifically, we consid-
ered the kinematics of the hand from onset to the time at
which the hand rose above the right shoulder: tR � min[t;
z(t) � 0]. The lateral excursion was next defined as the x
value corresponding to the maximum or minimum displace-

ment from the initial position, selecting the value with the
larger absolute value. An analogous definition was applied
to the y-coordinate to define the anterior excursion. These
two features were introduced for differentiating among
alternative modalities of throwing behavior that have been
observed and categorized in developmental studies (Rober-
ton 1977; Roberton et al. 1979): the throwing arm trajecto-
ries opening outward vs. moving inward, and/or moving
backward vs. projecting forward in the direction of throws,
during the initial rising phase.

RESULTS

Intra- and Interindividual Differences Are Reflected in
Throwing Kinematics

When asked to throw at 6-m distant targets, participants
exhibited a heterogeneous spectrum of individual throwing
strategies. For this study we define individual strategies as the
set of joint-marker trajectories (from action onset to ball
release) averaged across all throws from each individual,
independently of the aimed target and the associated perfor-
mance. Figure 1 shows all the individual strategies observed in
session 1. Clear interindividual differences can be appreciated
in gross movement components as stepping patterns, arms
trajectories, and their combinations. Interindividual differences
are also clear at the level of the intraindividual variability,
shown for two representative participants (P1 and P4) in Fig.
2A. Whereas P4 appears stable across trials, with variability
mainly present in the throwing arm kinematics, P1 exhibits
large intertrial variability. A comprehensive view of the inter-
individual differences in the subjective variability is given in
Fig. 2B, where the heatmap shows the normalized intraindi-
vidual variability characterizing the spatial trajectories of sin-
gle joint markers, and the bar plot shows the corresponding
average across all joint markers. Intraindividual variabilities
are quantified in terms of spatial standard deviations (stdintra,j)
averaged over time and are normalized to the interindividual
standard deviations (stdinter).

For the majority of participants, intraindividual variability
represents a small fraction of the variability across partici-
pants. This suggests that, with few exceptions (e.g., P1 and
P20), individual strategies are well characterized despite the
variations associated with 1) different task conditions, i.e.,
throwing to different targets, and 2) intrinsic variability in
motor execution. This supports the validity of the definition
of individual throwing strategy as the set of trajectories
averaged across all throws for each individual. To keep trace
of the level of intraindividual variability, we introduced a
stability index, Sj � 1 � [stdintra,j/stdinter], which quantifies
to what extent an individual j reproduces similar kinemat-
ics across different throws executions (values are listed in
Table 1).

stPCA Provides Compact Descriptions of Whole Body
Throwing Actions

When applying stPCA to all the trials of the session 1 data set,
we found that the first 5, 10, and 23 pST components accounted for
75%, 90%, and 97% of the total variation, respectively (Supple-
mental Fig. S1). When the averaged trials of each participant, i.e.,
individual throwing strategies, are considered, stPCA leads to an
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even higher accuracy. Figure 1 shows the comparison of the
recorded individual throwing strategies with the corresponding
approximated descriptions resulting from a 10-dimensional recon-
struction of the kinematics. Despite the dramatic reduction in
dimensionality, the approximated descriptions capture the main

features of the original individual strategies. The accuracy of the
description increases rapidly with the number of pST components
used for the reconstruction. However, five-dimensional descrip-
tions are already suited for capturing the main features of a
throwing strategy (Supplemental Fig. S2).

P1 - M P2 - M P5 - MP4 - MP3 - F

P6 - F P7 - M P10 - FP9 - FP8 - M

P11 - M P12 - F P15 - FP14  - MP13 - M

P16 - F P20 - FP19 - FP18 - MP17 - F

Fig. 1. Interindividual differences in throwing kinematics. Mean joint-marker trajectories (averaged over all trials performed, independently of the aimed target)
are shown for all the 20 participants (P1–P20) in session 1 (dark blue trajectories). Trajectories are displayed from the throwing action onset to ball release. Stick
diagrams and corresponding joint-marker trajectories are shown from a right-frontal perspective. Posture and joint-marker positions at action onset are shown
by gray solid-line stick diagrams and squares. Similarly, black solid-line stick diagrams and triangles represent the posture at ball release. Individual throwing
kinematics, as approximately described in vector space defined by the first 10 spatiotemporal principal components vectors, pST (light blue trajectories), are shown
along with corresponding original data. Dashed-line stick diagrams represent the pST reconstructed posture at action onset (gray) and ball release (black). The
gender of each participant (F, female; M, male) is indicated above the corresponding throwing kinematics.
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Principal components vectors. Figure 3 provides two visual
representations of the whole body movement patterns associ-
ated with the first three pST vectors, offering an intuitive view
of pST as building blocks of whole body movements. Figure 3,
top, shows how each pST modifies the mean throw when added
or subtracted with a unitary weight. The corresponding heat-
maps (Fig. 3, bottom) show the spatiotemporal structure of a
single pST, which corresponds to the displacement from the
mean throw associated to a positive unitary weighted pST

contribution.
The first vector, p1

ST, is associated with the left foot
stepping backward and the right foot forward or vice versa
depending on the sign of the associated coefficient. Con-
comitantly, the left arm shifts backward and leftward. The
second vector, p2

ST, is associated with a bulk motion of the
whole body in the forward direction, corresponding to
increments along the positive y-axis visible in the heatmap
for all joint markers. The larger displacement at shoulders

level with respect to the displacement of the pelvis corre-
sponds instead to a trunk forward tilt. Similarly, p3

ST corre-
sponds to a bulk lateral shift, as indicated in the heatmap by
the clear displacement along the negative x-axis (Fig. 3,
bottom, left side of heatmaps) of all joint markers. Concur-
rently, the left arm rises and moves forward, with respect to
the mean throw trajectories. Similarly to p1

ST, p4
ST is charac-

terized by a stepping pattern with the feet moving in
opposite directions (Supplemental Fig. S4).

Higher order pST components exhibit a complex and
unsystematic spatiotemporal structure, always involving the
throwing arm besides other pST-specific body segments
(Supplemental Fig. S4). This indicates that, differently from
the first four pST characterized by coordinated whole body
movement patterns, higher order components play a key role
in fine-tuning the limb trajectories, and thus allow recon-
struction of the fine details of single throws.

-1.4
-1.2

-1
Y [m]

-0.4-0.8 -0.2

X [m]
0-0.6 0.20.40.6

0.2

0.4

-1.4

0.6

0.8

-1.2

1

Z 
 [m

]

Y [m]
-0.4

1.2

-1 -0.2

1.4

X [m]

1.6

0-0.8 0.20.4

P1

10 11 12 13 14 15 16 17 18 19 20

participant ID

r-Foot
r-Ankle
r-Knee

r-Pelvis
r-Should
r-Elbow
r-Wrist
r-Hand

cv7
Head

l-Hand
l-Wrist

l-Elbow
l-Should
l-Pelvis
l-Knee
l-Ankle
l-Foot

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

B 0.8

0.6
0.4

0.2

0

0.8

0.6
0.4

0.2

0

in
tra

-In
di

vi
du

al
 S

D
 / 

in
te

r-
In

di
vi

du
al

 S
D

  

0.2

0.4

0.6

0.8

1

Z 
 [m

]

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9

P4

Fig. 2. Intraindividual variability. A: examples of intra-
individual variability in throwing action for representa-
tive participants P1 and P4 (those with higher and lower
variability, respectively). Stick diagrams and corre-
sponding joint-marker trajectories are shown from a
right-frontal perspective. Solid lines represent the joint-
marker trajectories averaged over 104 throws from P1
and 118 throws from P4, whereas the corresponding
shaded areas encompass the corresponding variability
within �1 SD. Different colors correspond to different
joint markers. Posture and joint-marker positions at ac-
tion onset are shown by gray dashed-line stick diagrams
and circles. Similarly, gray solid-line stick diagrams and
triangles represent the posture at ball release. B: heatmap
shows the intraindividual variability (stdintra), normal-
ized to the corresponding interindividual variability
(stdinter), for each participant and all the 18 joint markers
included in the analysis. Bar plot shows the correspond-
ing normalized mean intraindividual variability (aver-
aged across joint makers) for each participant. Variabil-
ity is defined as the mean standard deviation across all
trials averaged across time for each joint marker in the
heatmap and further averaged across joint markers in the
bar plot. cv7, Cervical vertebra 7; ID, identification; l,
left; r, right; should, shoulder.
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Representation of individual throwing actions by stPCA
coefficients. It is of interest to inspect how different throwers
are represented in the stPCA coefficient space. In particular,
our first goal was to assess to what extent different throwers are
represented in specific subregions of the stPCA coefficient
space and if these tend to overlap and/or to cluster into groups.
Analogously, it is of interest to explore whether gender is
reflected in a preferred subregion.

Figure 4A shows (from two different perspectives) the dis-
tributions of the stPCA coefficients describing throws from
individual participants, represented as covariance ellipsoids in
the subspace defined by the first three pST vectors. The ellip-
soid’s center corresponds to the coefficients of the individual
throwing strategies, namely, the mean across all trials from
each participant. The principal semi-axes correspond to the
75% (for better legibility) of the standard deviations in the
three directions of higher variability. Individual ellipsoids have
a considerable degree of segregation, which increases in sub-
spaces defined by higher order pST (Supplemental Fig. S5).
Furthermore, a trend for clustering of individual ellipsoids in
subgroups can be qualitatively appreciated: the region of pos-
itive p3

ST coefficients hosts two isolated groups of participants,
one group in the subregion of positive p1

ST coefficients (i.e., P6,
P10, P19; as visible in Fig. 4A, view 1) and the other one in the
region where p1

ST and p2
ST coefficients are both negative (i.e.,

P2, P11, P13; as visible in view 2).
Similarly, Fig. 4B shows the distributions of throws per-

formed by female and male participants, now with ellipsoid
semi-axes corresponding to 1 SD. A high degree of separation
between the two groups is visible. Female throwers preferen-

tially occupy the region of positive p1
ST and p2

ST coefficients
(right step and farther forward projection), whereas males
occupy the region of negative coefficients (left step and limited
forward projection). Despite the qualitative and intuitive in-
sights offered by these three-dimensional representations, it is
not possible to provide a comprehensive visualization of the
more complex structures present in stPCA subspaces at higher
dimensionalities. The results from analysis techniques tailored
for exploring such structures, linear discriminant analysis
(LDA) and cluster analysis, are reported below.

Compact stPCA Descriptions of Throwing Actions Allows for
Identity and Gender Recognition

Figure 5 shows the results from LDA classification of
thrower identity (20-class problem) and gender (2-class prob-
lem), as a function of the number of pST vectors used for
reconstructing the kinematics. Figure 5, A and C, shows the
misclassification error (ME). Figure 5, B and D, shows the
confusion matrixes obtained when LDA was run in the 5- and
10-dimensional stPCA spaces for identity and gender recogni-
tion, respectively. Remarkably, for both classification prob-
lems, a one-dimensional description of throwing actions (the
p1

STcoefficients alone) allows for MEs well below chance
levels: 67% and 34% for identity and gender recognition,
respectively, to be compared with the 95% and 50% corre-
sponding chance levels (1 minus the inverse of the number of
classes in the problem). Note that the number of trials in our
sample, Nt � 2,136, is high enough for the theoretical chance
level to be a reliable reference (Combrisson and Jerbi 2015). In
both cases, MEs decrease with the number of pST defining the

Table 1. Relevant demographic information, throw duration, and results of analysis for participants in session 1

Participant ID Height, m Throw Duration, s Gender Stability Index

Identity Recognition Rate, % Style Assigned

5D 10D NS RS LS DS

Cluster S1: no-step
P1 1.84 1.61 � 0.29 M 0.24 26 89 33 23 28 16
P3 1.55 1.04 � 0.23 F 0.78 93 100 100
P4 1.82 0.81 � 0.07 M 0.83 99 100 100
P8 1.70 0.92 � 0.13 M 0.74 68 95 100
P9 1.59 1.13 � 0.22 F 0.40 80 99 89 5 6
P16 1.62 1.05 � 0.15 F 0.58 70 100 72 28
P20 1.63 1.27 � 0.36 F 0.31 15 96 54 44 2

Cluster S2: right-step
P6 1.80 1.41 � 0.12 F 0.71 96 100 100
P10 1.51 1.02 � 0.21 F 0.61 86 99 14 86
P19 1.62 1.70 � 0.36 F 0.56 94 97 100

Cluster S3: left-step
P5 1.90 1.12 � 0.10 M 0.56 92 99 2 86 12
P7 1.80 1.00 � 0.32 M 0.37 93 97 3 97
P12 1.53 1.27 � 0.15 F 0.36 88 99 12 86 2
P14 1.70 0.95 � 0.30 M 0.52 93 98 37 63
P15 1.78 1.25 � 0.12 F 0.66 92 100 15 85
P17 1.73 1.23 � 0.27 F 0.41 83 98 93 7
P18 1.74 1.24 � 0.20 M 0.54 97 100 97 3

Cluster S4: double-step
P2 1.73 1.04 � 0.18 M 0.64 96 100 13 87
P11 1.84 1.73 � 0.32 M 0.33 87 93 14 86
P13 1.84 1.84 � 0.26 M 0.50 96 96 4 5 91

Relevant demographic information (height and gender) of participants in session 1 is summarized, together with average (�SD) throw duration and summary
results from analysis of the throwing kinematics. This includes the stability index, the recognition rate of the participant’s identify obtained using a 5 (5D)- and
10-dimensional 10D) spatiotemporal principal components analysis description of the kinematics, and the percentage of throws assigned to the 4 throwing styles
as resulting from cluster analysis. Bold type highlights the most frequent throwing style of each participant. F, female; M, male; S1–S4, styles 1–4 (NS, no step;
RS, right step LS, left step; and DS, double step, respectively).
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predictor space: thus the 10-dimensional description reaches
the 2% and 5% ME level for identity and gender recognition,
respectively.

Confusion matrixes (CMs) in Fig. 5, B and D, provide more
insights into the results. The CM is a Nc � Nc matrix, with Nc
being the number of classes in the problem. Each CM’s
element xij represents the percentage of trials belonging to
class i and classified as an element of class j. Perfect classifi-
cation corresponds to a CM with all zeros off the diagonal and
100% along the diagonal. For gender recognition, both CMs
values given in Fig. 5D indicate a higher probability to mis-

classify females as males than vice versa. This could be due to
the larger interindividual variability in the male group. For
identity recognition, the CMs structure highlights how most of
the misclassified trials belong to the two participants with
lower stability indexes, P1 and P20. When P1 and P20 are
removed, the average ME decreases from 17% to 11% for the
5-dimensional description and from 2.2% to 1.6% for the
10-dimensional one. In the 10-dimensional case, correct iden-
tification rates above 90% can be achieved even for the most
unstable participants. This confirms that higher order pST

vectors capture information about subtle features of the indi-
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vidual kinematics, which are missing in the average definition
of individual throwing strategies.

Clustering in pST Coefficient Space Reveals Typical
Throwing Styles

We performed cluster analysis with the aim of assessing
whether the whole ensemble of throwing actions can be sub-
divided into a limited number of groups occupying different
regions of the stPCA space. Cluster analysis was performed in
the five-dimensional stPCA space. LDA showed that this
description guarantees high classification accuracy for most
participants. We also reasoned that the finer kinematics details
captured at higher dimensions should not be relevant when
looking for general features of throwing actions shared by
multiple individuals.

The Calinski–Harabasz criterion (Calinski and Harabasz
1974), applied to Nk in the range [1,10], indicates that data
optimally cluster into Nk � 4 groups. This result was con-
firmed by the Davies–Bouldin (Davies and Bouldin 1979) and
the silhouette criteria (Rousseeuw 1987). We additionally
tested the hypothesis that our data were structured into clusters,
by comparing the normalized Hubert statistics for four clusters
with the one obtained for a uniform distribution. Results
showed that the null hypothesis that a uniform distribution
could explain our data as well as for the case of four clusters
can be rejected with a P value �0.01.

Results from the k-means�� method (Arthur and Vassil-
vitskii 2007) with Nk � 4 are shown in Fig. 6. The mean
throwing trajectories averaged across all trials assigned to each
cluster, independently of the thrower’s identity, are shown for
the four resulting clusters. We refer to them as typical

throwing styles. Each panel of Fig. 6 reports the number of
participants with the highest fraction of throws assigned to
the corresponding style, their identity, and the fraction of
throws assigned to that style for each thrower. For 16 of 20
participants, this fraction is above 85%. The fraction of
throws assigned for each participant to the other (nondomi-
nant) styles is reported in Table 1. Not surprisingly, P1 and
P20, who exhibit the most unstable throwing behavior (S �
0.31), are the participants with the lower levels of associa-
tion with a single style, 33% and 54%, respectively. For P14
and P16, the highest fraction of throws assigned to the same
style is instead 63% and 74%, respectively. Style 1 and style
3 are the most frequently adopted strategies, whereas style 2
and style 4 are adopted less frequently and appear to be
gender specific.

To gain more insights on the main features and relative
differences characterizing throwing strategies in the four clus-
ters, we quantified differences between pairs of cluster cen-
troids in terms of the distance of the corresponding joint-
marker trajectories averaged throughout the action course. The
results are plotted in Fig. 7. For all centroid pairs (with the
exception of style 4 vs. style 3), the most distant trajectories are
associated with the lower limbs. In some cases, and to a lower
extent, differences emerge between the trajectories of the
throwing arm (style 2 vs. style 1, style 3 vs. style 2, style 4 vs.
style 2) and of the left arm (style 3 vs. style 1, style 3 vs. style
2, style 4 vs. style 2). Different is the case of style 4 vs. style
3, for which differences in the average throwing trajectories are
milder but distributed throughout the whole body. More details
about the spatiotemporal differences across clusters centroids
are presented in the Supplemental Fig. S6.
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Overall, differences across clusters’ centroids point to the
stepping pattern as the most prominent source of differentiation
between throwing styles. To corroborate that throwing styles
correspond to different stepping patterns, we computed the
distributions of trials assigned to each cluster in the plane
defined by the lengths of the paths traveled by the left and right
feet. The results are show in Fig. 8. Trials assigned to style 1
are concentrated in the vicinity of the origin, corresponding to
the large majority of throws performed from a standing posture
with no stepping. We indicate this as the no-stepping style.
Trials in style 2 are compressed along the axis of right foot path
length LRF, with LLF � 10 cm and peaking at zero, in a region
with LRF � 40 cm. We therefore indicate this as the right-step
style. Style 3 was instead designated the left-step style, because
its distribution concentrated along the LLF axis, in a region with
LLF � 40 cm and values of LRF peaking at zero. Trials in style
4 occupy preferentially the central part of the plane, i.e., both
LLF and LRF are distributed in a region within 20 and 60 cm,
corresponding to a double-step pattern. Style 4 is therefore
designated as the double-step style. Whereas the no-step and
right-step distributions are very compact and fairly segregated,

the left-step and double-step distributions have larger tails that
extend toward each other.

We next inspected differences in the throwing arm trajecto-
ries associated with different throwing styles. Figure 9 illus-
trates the right-hand kinematics in the four styles. The solid
lines in Fig. 9A show the average displacement of the right
hand from its initial positions for each style; the corresponding
dispersion (time-dependent standard deviation across all trials
assigned to each cluster) is shown as shaded area. The wide
overlap of the shaded areas indicates that the throwing arm
trajectories span the kinematic space in a continuous fashion
rather than clustering into discrete groups, as confirmed by
cluster analysis performed on the arm kinematics alone (see
Supplemental Material). Still, there are interesting differences
to highlight. The average trajectory associated with the right-
step style clearly deviates from the others, with the preparatory
rising phase of the throwing arm preferentially performed by
moving the hand forward toward the direction of throw (pos-
itive y-values) and inward toward the body midline (negative
x-values). Differences among the remaining three styles are
also noticeable: the double-step style is characterized by a later
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peak of lateral displacement; the left-step style has a prominent
early peak in the anterior displacement; and the no-step has a
later peak in both lateral and anterior displacement.

To further examine how the throwing arm kinematics vary
within each throwing style, we looked at the distribution
among throws of lateral and anterior excursions during the
rising phase associated with the different throwing styles.
Analogously to what done for inspecting the stepping pattern
(see Fig. 8), Fig. 9B shows the throws counts distribution as a
function of the lateral and anterior excursions for all styles.
Although, as expected, the distributions are spread, clear peaks
are observed that point to the preferred style-specific arm
strategy. For the no-step style, the largest peak corresponds to
the rising phase of the throwing arm in which the arm opens
outward and is kept back, at the level of the shoulders (back-
swinging). In the right-step style, most of throws are performed
by raising the throwing hand, moving it forward and toward the
body midline. The left-step style exhibits instead a marked
preference for a back-swinging action of the throwing hand.
Finally, in the double-step style, whereas the largest peak
corresponds to a back-swinging strategy, a second peak is
observed in the region where the throwing hand moves inward.
For a closer inspection, trials in the latter peak are all associ-
ated with P13, who displays a unique throwing strategy among
our sample of 20 participants, consisting in bringing the two
hands close together and to the chest before performing a
back-swinging action with the throwing arm.

Instability in Individual Throwing Styles Drives Identity
Misclassification

We inspected the relationship between instabilities in indi-
vidual throwing styles and the failing of identity recognition in
the five-dimensional description of the throwing kinematics.
Both instability and recognition failure are maximum for P1
and P20, who tended to switch between different throwing
styles across trials (Table 1), with a seemingly exploratory
behavior. Identity-recognition accuracy is also below average
(70%) for P16, who also showed occasional changes in throw-
ing techniques from the most recurrent style, the no-step style,
to the second choice, the left-step style. In fact, incorrect
assignments of P16 throws are attributed mostly to P15, who
consistently adopted the left-step styles.

The cases of P14 and P8 are different. Whereas the case of
P14 is characterized by a large instability in the throwing style
adopted but a high identity-recognition rate, the opposite is true
for P8. The latter, who regularly threw with a no-step style, is
misclassified with either P3 or P4, both of whom adopted the
same style. In this case, misclassification is due to P8’s throws
being represented in a region of the stPCA space that encom-
passes those representing both P3’s and P4’s throws (Fig. 4).
On the other hand, although P14 tended to switch from the
left-step to the no-step style, the fact that his throws were
represented in exclusive ranges of the p4

ST and p5
ST coefficients

(Supplemental Fig. S5) ensured an optimal identity recogni-

Style 2 “Right-Step”

NP = 3  

P6-F    : 100%,  
P10-F  : 86%  
P19-F  : 100%

Style 3 “Left-Step”

NP = 7   

P5-M    : 86%
P7-M    : 97%
P12-F   : 86%
P14-M  : 63%
P15-F   : 85%
P17-F   : 93%
P18-M  : 97%

Style 4 “Double-Step”

NP = 3  

P2-M    : 87%
P11-M  : 86%
P13-M  : 91%

Style 1 “No-Step”

NP = 7  

P1-M   : 33%
P3-F    : 100%
P4-M   : 100%
P8-M   : 100%
P9-F    : 89%
P16-F  : 72%
P20-F  : 54%

Fig. 6. The four typical throwing styles
emerging from cluster analysis. Each panel
shows the mean throwing trajectories aver-
aged across all trials assigned to the corre-
sponding cluster, independently of the indi-
vidual thrower. Different colors correspond
to different joint markers. Throwing styles
can be adopted by different throwers. Each
panel further reports the number of partici-
pants for whom the highest fraction of throws
is assigned to the corresponding style (NP), the
participant identity (ID; P1–P20), and the frac-
tion of throws that is assigned to the specific
throwing style represented. F, female; M, male.
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tion. For the same reason, P11 and P12, both represented in a
sparsely populated region of the stPCA space (Fig. 4 and
Supplemental Fig. S5), are characterized by high identity-
recognition rates despite having low stability indexes (S �
0.36).

Gender Is Reflected in Different Throwing Styles

As noticed above, the right-step and double-step styles
appear to be gender specific, each being populated mainly by
females (92% of all right-step throws) and males (98% of all
double-step throws), respectively. However, considering the
limited number of throwers assigned to these styles (N � 3 in
each), the gender specificity of these two throwing strategies
cannot be generalized. The different combinations of arm
trajectories and stepping patterns shown in Figs. 8 and 9 offer
additional hints with respect to gender differences. In the
no-step group, the throwing arm trajectory differs from the
more frequent back-swinging trajectory for all the three female
throwers in the group, characterized by throwing arm trajecto-
ries in the anterior sagittal plane, similar to those of the
throwers of the right-step group (Supplemental Fig. S7). Con-
cordantly, in the left-step group, the only participant displaying
this type of throwing arm trajectory was female.

Individual Throwing Styles Tend to Be Stable over Time

We assessed the individual stability in the preferred throw-
ing strategy over time by performing a second recording

session (session 2) in which we re-recruited six of the session
1 participants after 22/23 mo (P4, P5, P8, P13, P16, and P20).
The new data set was projected onto the pST vectors extracted
from session 1 so that the new throws could be represented in
the stPCA space previously defined. We next used the five-
dimensional description to assign new throws to one of the four
identified throwing styles, based on minimum distance in the
stPCA space. Results are summarized in Fig. 10 and Table 2.
Remarkably, after about 2 yr, five of six participants retained
their preferred throwing style, which in some cases (P5, P13,
and P20) became even more frequent. It is worth noting that
the one participant who changed her preferred throwing style
(P16) stabilized on her earlier “second choice.”

DISCUSSION

The main goal of the current study was to perform quanti-
tative and objective comparisons of overarm throwing behavior
within and between individuals. Because we were interested in
overarm throwing as a fundamental whole body motor behav-
ior, the study was performed on a sample of untrained adults.
By applying a spatiotemporal decomposition to the whole body
kinematics of throwing actions, we achieved a very compact
yet meaningful representations of complex actions. A five-
dimensional stPCA representation of single throws accounted
for more than 75% of the total variation observed in more than
2,000 throws from 20 individuals. A 10-dimensional descrip-
tion achieved a 90% level of accuracy. Such extremely com-
pact representations provided features that could be processed
by machine learning algorithms to quantitatively characterize
and compare individual throwing strategies. We could then
relate the throwing kinematics of a specific action to the gender
and identity of the thrower with a high degree of accuracy.
Moreover, we identified four main throwing styles, mainly
differing in the stepping patterns and associated with preferred
throwing arm kinematics modes, which are recurrent across
individuals. In the following, we discuss how our approach
relates to previous methods developed for studying the kine-
matics of complex whole body movements. We then elaborate
on how our results relate to previous literature on the acquisi-
tion of throwing skills throughout development, on the marked
gender differences observed in throwing proficiencies, and on
how complex tasks involving many degrees of freedom can be
accomplished with different solutions.

The combination of dimensionality reduction and machine
learning techniques is not new in the field of motor behavior.
It has been adopted for the analysis of simple reaching tasks
(Ansuini et al. 2016), for the analysis of whole body kinematics
both in the field of human-computer interaction (Venture et al.
2016; Zhang and Venture 2012) and in the fields of biome-
chanics and sport science (Huys et al. 2008). The main novelty
of our approach consists in the use of the spatiotemporal PCA
decomposition for representing the whole body kinematics of
complex motor tasks, which are shown to support remarkably
compact representations of the complex kinematics character-
izing noncyclic actions. Conventional PCA, largely used for
the representation of whole body movements (Daffertshofer et
al. 2004; Gløersen et al. 2018; Huys et al. 2008), implies the
identification of principal postures that are linearly combined
with time-dependent weight coefficients. By adopting a stPCA
decomposition, it is instead possible to represent complex
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actions as linear combinations of principal “movements”
weighted by scalar coefficients, which makes the resulting
representation more compact (see Russo et al. 2014 for a
formal comparison of the two methods). The difference is
particularly relevant for the representation of noncyclic actions
that, differently from the case of cyclic type of motor behavior
(e.g., walking, running, and skiing), do not support the extrac-
tion of few parameters (e.g., period or amplitude) from the
time-dependent PCA coefficients. At the same time, stPCA is
characterized by the same limitations of standard PCA as a
means to represent biological motion (Federolf et al., 2014).
One of the most relevant limitation is the fact that the resulting
vector space is defined in terms of principal vectors that do not
automatically provide information about control strategies and
biomechanical functions. Furthermore, the specific shape of PC
vectors depends on the reference frame in which the kinematics
are originally described and on the specific data set used for the
extraction. This implies that the shape of the principal vectors
will not always guarantee optimal performances in terms of
dimensionality reduction, nor always guarantee to disentangle
movement components that may be truly dissociable in terms
of control strategy. Here, however, we do not adopt the stPCA
representation as an end-point description of the kinematics,
but as a tool supporting an unbiased quantitative comparison of
throwing actions across and within individuals. For this reason,
the limitations discussed above play a minor role on the
outcomes of our study, which highlight the identity and gender
footprints entailed in the whole body kinematics of throwing
actions and the existence of four main throwing styles recurrent
across individuals.

The mean kinematics associated with the four typical throw-
ing styles emerging from cluster analysis present some surpris-

ing analogies with the different “stages” of throwing skill
acquisition during development. Previous studies have high-
lighted specific sequences in the acquisition of skilled throw-
ing, in which different motor patterns progressively emerge in
the whole body kinematics. The first of these studies distin-
guished four stages, progressively acquired from about age 2 to
6 yr (Wild 1938). From a stationary base of support, throwing
typically evolves into a weight-shifting stepping mode; con-
currently, the throwing arm trajectory shifts from an anterior-
posterior to a horizontal plane. The first two stages are char-
acterized by a stationary support, with the arm kinematics
initially moving in the anterior sagittal plane (years 2 to 3) and
then shifting toward a lateral horizontal plane with the involve-
ment of trunk rotation (years 3 to 5). Next, stepping patterns
emerge; first with the leg ipsilateral to the throwing arm
moving forward (years 5 to 6), and eventually with the con-
tralateral leg. Other authors refined this coarse categorization
highlighting different developmental stages in a set of body-
part-specific components, focusing in particular on the trunk
rotation and the throwing arm movements in the preparatory
and forward swing phases (Roberton 1977; Roberton et al.
1979). Different components may proceed throughout their
specific skill acquisition sequence at different rates, resulting in
a variety of whole body throwing profiles observable within
and across throwers (Langendorfer and Roberton 2002; Payne
and Isaacs 2012).

Generally, during development, preparatory movements are
progressively introduced in the throwing behavior that tends to
eventually converge toward a profile that optimizes forceful
throws and is indeed evident in fast-ball sports athletes (Stod-
den et al. 2006a, 2006b). However, not all individuals achieve
this final stage, because skill acquisition can stop progressing

No-Step

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

Right-Step

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

0

0.05

0.1

0.15

0.2

0.25

Left-Step

0 0.2 0.4 0.6
LRF [m]

0

0.2

0.4

0.6

0.8

0

0.05

0.1

0.15

0.2

Double-Step

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

0

0.05

0.1

L LF
 [m

]

fra
ct

io
n 

of
 th

ro
w

s
Fig. 8. Normalized and smoothed distributions of throws
counts are shown for the 4 throwing styles as a function
of the path lengths of the right (LRF) and left foot (LLF).

2499INDIVIDUAL DIFFERENCES AND COMMON STRATEGIES IN THROWING

J Neurophysiol • doi:10.1152/jn.00011.2019 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Fondazione Santa Lucia Biblio (193.205.149.204) on June 8, 2020.



at a certain stage of development. A clear gender gap in
throwing proficiency is retained throughout development, and
girls are more prone to stabilize at an intermediate stage of
throwing proficiency (Butterfield et al. 2012; Nelson et al.
1991; Petranek and Barton 2011). Unbiased results from our
clustering analysis are in line with these general observations.
Whereas the four typical styles emerging from the cluster
analysis nearly correspond to the main stages in the skill
acquisition sequence first reported by Wild (1938), the pres-
ence of different throwing arm kinematics within each main
style is in line with the component approach of Roberton and
colleagues (Langendorfer and Roberton 2002). In fact, a given
stage of development in the feet movement components may
be combined with different stages in the arm movement com-
ponents. The gender representation that we found in combina-

tions of components characterizing individual throwing strat-
egies is in agreement with the established evidence that fe-
males are typically less proficient than males in overarm
throwing throughout development and that they stop earlier on
the different possible branches of skill acquisition (Nelson et
al. 1991; Young 2009).

The emergence of a limited number of typical throwing
styles, recurrent across participants and in most cases stable
within participants, has important implications in the context of
motor control studies. Previous researchers have discussed
how humans, when facing a complex motor task, may adopt
multiple solutions (Ganesh and Burdet 2013). This behavior is
different from that observed for simple motor tasks, such as a
reach-to-grasp action, in which the central nervous system
(CNS) tends to select the one solution, among a set of virtually
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Fig. 9. Throwing (right)-hand kinematics in the 4
whole body throwing styles. A: mean (averaged
across trials assigned to each cluster) lateral (left),
anterior (middle), and vertical (right) excursions
(displacement from the initial position) of the hand
as a function of the time throughout the action
course, from action onset to ball release. The shown
kinematics is described in the body reference frame,
with the x-z plane aligned with the frontal plane and
the y-axis pointing in the direction of throw. Solid
curves correspond to the 4 cluster centroids (i.e., the
kinematics averaged across all throws assigned to
each cluster): green, no-step cluster; blue, right-step
cluster; magenta, left -step cluster; and red, double-
step cluster. Shaded areas show the corresponding
(same color coding) SD. B: normalized and
smoothed distributions of throw counts are shown
for the 4 throwing styles as a function of the lateral
and anterior excursions of the throwing hand during
the rising phase of the throwing action.
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infinite possibilities, that simultaneously minimizes the meta-
bolic cost of the action and the error (Burdet and Milner 1998;
Harris and Wolpert 1998). In complex tasks, instead, motor
behavior is not driven by global optimization, since distant
local minima exist corresponding to different motor plans that
solve the task in suboptimal manners (Ganesh and Burdet
2013; Kodl et al. 2011). The selection of a specific solution
may emerge from the interaction between motor memories and
local minimization of error and effort (Ganesh et al. 2010). In
particular, while learning complex motor tasks, humans often
adopt exploratory behavior, which serves for gathering infor-
mation about the landscape of the possible solutions and about
the tolerance of such solutions to the motor variability intrinsic
to the CNS (Cusumano and Cesari 2006; Müller and Sternad
2009). With practice, explorative behaviors tend to dampen as
the task execution converges toward a single solution, not
necessarily the optimal one (Ganesh et al. 2010; Müller and
Sternad 2004). In this framework, the typical throwing styles
we found, and their substyles observable at the level of indi-

vidual strategies, may be regarded as possible counterparts of
local minima of a cost-function manifold. The finding that
most participants were stable in their throwing strategy sug-
gests that, in adulthood, throwing is typically an acquired
motor plan that does not recruit explorative strategies. Results
from the second session confirm this conclusion. All the
retested participants exhibiting a stable throwing behavior
during the first session retained their style even after 2 yr. The
throwers who were instead unstable, showing a more explor-
atory behavior in the first session, tended to stabilize with time
into one of the preferred solutions previously adopted. Because
of the small sample size of session 2, however, these consid-
erations should be regarded as tentative conclusions and will
require further confirmation.

The combination of stPCA representations with linear dis-
criminant and cluster analyses presented in this study provides
an innovative method for studying the whole body kinematics
of naturalistic motor behaviors. In the context of overarm
throwing, the results presented here serve as a first step in this
direction and could be further extended to address more in
depth some of the important aspects that developmental and
gender studies have raised in the past. For example, our cluster
analysis does not capture the multilevel structure of the “com-
ponents” approach, in which the kinematics of the different
body parts can be combined at different developmental stages,
resulting in a branching structure of possible individual throw-
ing techniques (Langendorfer and Roberton 2002). This may
be due to different stepping patterns being well segregated in
the stPCA representation, whereas the kinematics of the throw-
ing arm span, within and across participants, a more continuous
region of the stPCA coefficient space. A higher dimensional
description of the kinematics, combined with a hierarchical
clustering approach, may possibly capture such branching
structures. However, this goes beyond the scope of the present
study. Similarly, the mechanisms governing the way in which
the unstable behavior observed in some throwers evolves both
across trials within a single session, and across sessions spaced
in time, deserve further investigation.

The approach proposed here for the study of throwing
behavior can be adopted for a large variety of naturalistic
motor actions and real-life motor skills, from sporting perfor-
mances to daily living activities. In turn, this could pave the
way for a variety of quantitative studies aimed at characterizing
interindividual and intraindividual variability in complex nat-
uralistic motor behaviors, with a spectrum of possible applica-
tions that range from medical diagnosis to autonomous recog-
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styles adopted by participants in at least 10% of the throws performed in
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throws assigned to a given style is reported next to the corresponding symbol,
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step; DS, double step. In general, individual preferred throwing styles are
retained, and in some cases stabilize, over time. Only participant P16 changed
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Table 2. Percentage of throws assigned to four throwing styles previously identified based on session 1

Participant ID

Style Assigned

No Step Right Step Left Step Double Step

Session 1 Session 2 Session 1 Session 2 Session 1 Session 2 Session 1 Session 2

P4 100 100
P5 2 86 100 12
P8 100 100
P13 4 5 91 100
P16 72 28 90 10
P20 54 96 44 2 2

Values are, for both session 1 and session 2, the percentages of throws assigned to the 4 throwing styles as resulting from cluster analysis. Bold type highlights
the most frequent throwing style of individual participants for both experimental sessions.
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nition of identity and/or activities in human computer interac-
tion.
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