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Abstract

We discuss various aspects of the representation theory of the local
nets of von Neumann algebras on the circle associated with positive
energy representations of the Virasoro algebra (Virasoro nets). In
particular we classify the local extensions of the c = 1 Virasoro net
for which the restriction of the vacuum representation to the Virasoro
subnet is a direct sum of irreducible subrepresentations with finite
statistical dimension (local extensions of compact type). Moreover
we prove that if the central charge c is in a certain subset of (1,∞),
including [2,∞), and h ≥ (c − 1)/24, the irreducible representation
with lowest weight h of the corresponding Virasoro net has infinite
statistical dimension. As a consequence we show that if the central
charge c is in the above set and satisfies c ≤ 25 then the corresponding
Virasoro net has no proper local extensions of compact type.

1 Introduction

The idea that the formulation of relativistic quantum physics in terms of local
nets of von Neumann algebras (see e.g. [27]) provides a natural framework
for the classification of two-dimensional conformal field theories was already

∗Supported in part by the Italian MIUR and GNAMPA-INDAM.
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present in the late eighties in the work of Buchholz, Mack and Todorov [3].
As an illustration of this idea these authors classified the local conformal
nets over S1 (compactified light ray) whose common “germ” is the U(1) chi-
ral current algebra, namely the local nets extending the one generated by a
U(1) current. In the same paper they suggested the more general (and ambi-
tious) classification program of conformal field theories S1 whose “germ” is
the Virasoro algebra Vir. In other words, they proposed to classify the local
extensions of the Virasoro nets, i.e. the local nets of von Neumann algebras
on S1 which are generated by the positive energy unitary irreducible repre-
sentations with lowest weight 0 (vacuum representations) of Vir or equiva-
lently (see [45]) by a chiral energy-momentum tensor T (z), cf. [5]. Since the
equivalence class of a Virasoro net is completely determined by the value of
the central charge c in the corresponding representation of Vir, one has to
classify the local extensions of a family of nets labelled by a positive real
number c and this is a clearly well defined problem which in fact turns out
to be equivalent to the one of classifying diffeomorphism covariant nets on
the circle.

In a recent remarkable paper [33] Kawahigashi and Longo have been able
to solve the above problem for all the Virasoro nets with c < 1 and sub-
sequently they used this result to classify all local conformal nets on the
two-dimensional Minkowski space-time, having parity symmetry and central
charge less then 1 [34]. The extension of their results in the c ≥ 1 region
appears to be a very important and difficult challenge.

In the transition from c < 1 to c ≥ 1 two drastic differences are immedi-
ately evident. The first is that the Virasoro nets with c ≥ 1 are all known to
be non-rational. The second is that they are all expected to have irreducible
sectors with infinite statistical dimension [49], a fact that has been proved
by the present author in the case c = 1 [8]. Rationality and the absence of
irreducible sectors with infinite statistical dimension play a fundamental role
in the classification of c < 1 conformal nets and hence, some of the main
ideas in [33] do not apply for the remaining values of the central charge.

The purpose of this paper is give some new insight in the understanding
of the representation theory of c ≥ 1 Virasoro nets and their local extensions
with the above problems in mind, especially concerning the role of infinite
statistical dimension. Our main results are the classification of local exten-
sions of compact type (see Definition 3.2) for the Virasoro net with c = 1
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(Theorem 3.5) 1 and the proof that if the central charge c is in a certain
subset of (1,∞) containing [2,∞), then the irreducible positive energy rep-
resentations with lowest weight h ≥ (c−1)/24 of the corresponding Virasoro
net have infinite statistical dimension (Theorem 5.1 ), a fact that it is ex-
pected to hold for every c > 1 and h > 0 [49]. As a consequence of the latter
result we show that if c ∈ [2, 25] then the corresponding Virasoro net as no
proper local extensions of compact type (Theorem 5.7). As in the c = 1 case
[8], we use oscillator (Fock) representations of Vir to obtain the result on
infinite statistical dimension but the argument we have found for c > 1 is
more intricate and relies in part on recent results of S. Köster [38].

Besides these main results we also provide the proof of some relevant
properties of the Virasoro nets which seem to appear at most implicitly in the
literature, like the fact that every irreducible positive energy representation
of a Virasoro net on a separable Hilbert space comes from a representation
of the Virasoro algebra (Prop. 2.1) or the fact that every local extension of
a Virasoro net is diffeomorphism covariant (Prop. 3.7).

2 Preliminaries

2.1 Conformal nets on S1 and diffeomorphism covari-

ance

Let I be the set of nonempty, nondense, open intervals of the unit circle
S1 = {z ∈ C : |z| = 1}.

A conformal net on S1 is a family A = {A(I) : I ∈ I} of von Neumann
algebras, acting on a infinite-dimensional separable complex Hilbert space
HA, satisfying the following properties:

(i) Isotony.
A(I1) ⊂ A(I2), if I1 ⊂ I2, I1, I2 ∈ I. (1)

(ii) Locality.
A(I1) ⊂ A(I2)

′, if I1 ∩ I2 = ∅, I1, I2 ∈ I. (2)

(iii) Möbius covariance. There exists a strongly continuous unitary repre-
sentation U of PSL(2,R) in H such that

U(g)A(I)U(g)−1 = A(gI), I ∈ I, g ∈ PSL(2,R), (3)
1An equivalent result as been independently obtained by F. Xu [55]
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where PSL(2,R) acts on S1 by Möbius transformations (cf. Appendix
A).

(iv) Positivity of the energy. The representation U has positive energy,
namely the conformal Hamiltonian L0, which generates the restriction
of U to the one-parameter subgroup of rotations r(ϑ), has nonnegative
spectrum.

(v) Existence and uniqueness of the vacuum. There exists a unique (up to
aphase) U -invariant unit vector Ω ∈ HA.

(vi) Cyclicity of the vacuum. Ω is cyclic for the algebra A(S1) :=
∨

I∈I
A(I)

Some consequences of the axioms are [22, 25, 19]:

(vii) Reeh-Schlieder property. For every I ∈ I, Ω is cyclic and separating for
A(I).

(viii) Bisognano-Wichmann property. If ∆I is the modular operator associ-
ated to A(I) and Ω then

∆it
I = U(ΛI((2π)t), (4)

where ΛI is the one parameter subgroup of PSL(2,R) of special con-
formal transformations preserving I.

(ix) Haag duality. For every I ∈ I

A(I)′ = A(Ic), (5)

where Ic denotes the interior of S1\I.

(x) Factoriality. The algebras A(I) are type III1 factors.

(xi) Irreducibility. A(S1) = B(HA), where B(HA) denotes the algebra of
all bounded linear operators on HA.

(xii) Additivity. If S ⊂ I is a covering of the interval I then

A(I) ⊂
∨

J∈S

A(J). (6)
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Furthermore, it follows easily from the strong continuity of the representation
U that conformal nets are continuous from outside, namely

A(I) =
⋂

J⊃I

A(J). (7)

A conformal net A is said to be split if given two intervals I1, I2 ∈ I

such that the closure I1 of I1 is contained in I2, there exists a type I factor
N(I1, I2) such that

A(I1) ⊂ N(I1, I2) ⊂ A(I2). (8)

If Tr(tL0) <∞ for every t ∈ (0, 1) then A is split [13, Theorem 3.2].
A is said to be strongly additive if for every I, I1, I2 ∈ I with I1, I2

obtained by removing a point from I we have

A(I1) ∨ A(I2) = A(I). (9)

It is often convenient to identify S1/{−1} with the real line R. With this iden-
tification, the family of nonempty open bounded intervals of R corresponds
to the family I0 = {I ∈ I : −1 /∈ I}. The restriction A0 of a conformal
net A to I0 can be considered as a net on R. Moreover, since I0 is directed
under inclusion, one can define the quasi-local C∗-algebra (still denoted A0)
(
⋃

I∈I0
A(I))−||·||) as C∗-inductive limit of the local von Neumann algebras

A(I), I ∈ I0.

We now briefly discuss diffeomorphism covariance. Let Diff+(S1) the
group of orientation preserving diffeomorphisms of the circle. It is an infinite
dimensional Lie group modelled on the real topological vector space Vect(S1)
of smooth real vectors fields on S1 with the usual C∞ topology [46, Sect.6].
Its Lie algebra coincides with Vect(S1) with the bracket given by the negative
of the usual brackets of vector fields. Hence if g(z), f(z), z = eiϑ, are real
valued functions in C∞(S1) then

[g(eiϑ)
d

dϑ
, f(eiϑ)

d

dϑ
] = (

d

dϑ
g(eiϑ))f(eiϑ) − (

d

dϑ
f(eiϑ))g(eiϑ). (10)

In this paper we shall often identify the vector field g(eiϑ) d
dϑ

∈ Vect(S1) with
the corresponding real function g(z) ∈ C∞(S1).

Following [33] for every I ∈ I we shall denote by Diff(I) the subgroup
of Diff+(S1) whose elements are the diffeomorphisms of the circle which act
as the identity on I. Note that Diff(I) does not coincide with the group of
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diffeomorphisms of the open interval I, as the notation might erroneously
suggest.

By a strongly continuous projective unitary representation V of Diff+(S1)
on a Hilbert space we shall always mean a strongly continuous homomor-
phism of Diff+(S1) into the quotient U(H)/T of the unitary group of H by
the circle subgroup T. The restriction of the representation V to the Möbius
subgroup of Diff+(S1) always lifts to a unique strongly continuous unitary

representation U of the universal covering group ˜PSL(2,R) of PSL(2,R). We
shall say that V extends U and that V is a positive energy representation if

U is a positive energy representation of ˜PSL(2,R), namely if the correspond-
ing conformal Hamiltonian L0 , which generates the restriction of U to the
lifting r̃(ϑ) of the one-parameter subgroup r(ϑ) of rotations, has nonnegative
spectrum. Note that although for γ ∈ Diff+(S1), V (γ) is defined only up to
a phase as an operator on H, expressions like V (γ)TV (γ)∗ for T ∈ B(H) or
V (γ) ∈ M for a (complex) subspace M ⊂ B(H) are unambiguous and will
be used in the following.

We shall say that a conformal net on S1 is diffeomorphism covari-

ant if there is a strongly continuous projective unitary representation V of
Diff+(S1) on HA extending U ◦q ( where U is the original unitary representa-

tion of PSL(2,R) making A Möbius covariant and q : ˜PSL(2,R) 7→ PSL(2,R)
denotes the covering map) and such that, for every I ∈ I

V (γ)A(I)V (γ)∗ = A(γI), γ ∈ Diff+(S1), (11)

V (γ)AV (γ)∗ = A, γ ∈ Diff(I), A ∈ A(Ic). (12)

2.2 Representations of conformal nets

A representation of a conformal net A is a family π = {πI : I ∈ I} where
πI is a (unital) representation of A(I) on a fixed Hilbert space Hπ, such that

πJ |A(I) = πI if I ⊂ J, I, J ∈ I. (13)

Irreducibility, direct sums and unitary equivalence of representations of a
conformal net can be defined in a natural way, see [22, 25].

If Hπ is separable then, since the local von Neumann algebras A(I), I ∈ I,
are factors, π is automatically locally normal, namely πI is normal for each
I ∈ I, see [51]. Hence, πI(A(I)) is a type III1 factor. The unitary equiva-
lence class a representation π on a separable Hilbert space is called a sector
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and denoted [π]. If π is irreducible then we say that [π] is an irreducible
sector (also called superselection sector). The defining representation π0 of
a conformal net A on the Hilbert space HA is called the vacuum repre-

sentation. The corresponding sector is called the vacuum sector and HA is
said to be the vacuum Hilbert space of A.

A representation π is said to be covariant if there is a strongly continuous

unitary representation Uπ of ˜PSL(2,R) on Hπ such that

AdUπ(g) ◦ πI = πq(g)I ◦ AdU(q(g)), g ∈ ˜PSL(2,R), I ∈ I. (14)

If Uπ can be chosen to be a positive energy representation, then π is said
to be covariant with positive energy. In this case one can always choose
Uπ to be with positive energy and inner, namely such that

Uπ( ˜PSL(2,R)) ⊂ π(A)′′ :=
∨

I∈I

πI(A(I)), (15)

and this choice is unique, see [36] and (the proof of) [1, Lemma 5.14].
Given a covariant representation π of A on a separable Hilbert space Hπ

one has the (isomorphic) type III subfactors πI(A(I)) ⊂ πIc(A(Ic))′, I ∈
I [22]. Hence the corresponding (minimal) index [πIc(A(Ic))′ : πI(A(I))]
[29, 39, 41] is independent of I ∈ I and the statistical dimension d(π) of
π is given by

d(π) = [πIc(A(Ic))′ : πI(A(I))]
1
2 . (16)

A representation ρ of a conformal net A on its vacuum Hilbert space HA is
said to be localized in an interval I0 ∈ I if ρIc

0
is the identity representation.

As a consequence of Haag duality if a representation ρ is localized in I0
and I ∈ I contains I0 then ρI is an endomorphism of A(I) whose index is
the square of the statistical dimension of the representation ρ. Moreover,
for every interval I0 ∈ I and every representation π of A on a separable
Hilbert space one can find a representation ρ, localized in I0 and unitarily
equivalent to π, see [22, 25]. The restriction to A0 of a representation ρ
localized in some I0 ∈ I0 is called a DHR endomorphism and in fact
yields an endomorphism of the quasi-local C∗-algebra A0, see [43, Sect. 3].
The set of DHR endomorphisms is a semigroup (under composition) and it
has a natural (DHR) unitary braiding, see [20, 22]. As usual we shall denote
ε(ρ, σ) the unitary braiding operator associated to the DHR endomorphisms
ρ and σ.
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2.3 Subsystems

A conformal subsystem (or subnet) of a conformal net A is a family
B = {B(I) : I ∈ I} of nontrivial von Neumann algebras acting on HA

such that:

B(I) ⊂ A(I) I ∈ I; (17)

U(g)B(I)U(g)−1 = B(gI) I ∈ I, g ∈ PSL(2,R); (18)

B(I1) ⊂ B(I2) if I1 ⊂ I1, I1, I2 ∈ I. (19)

We shall use the notation B ⊂ A for conformal subsystems. Note that
B is not in general a conformal net since Ω is not cyclic for the algebra
B(S1) :=

∨
I∈I

B(I), unless B = A. However one gets a conformal net B̂

restricting the algebras B(I), I ∈ I, and of the representation U to the

closure HB of B(S1)Ω. Since the map b ∈ B(I) 7→ b|HB
∈ B̂(I) is an

isomorphism for every I ∈ I, because of the Reeh-Schlieder property, as
usual, we shall often use the symbol B instead of B̂, specifying, if necessary,
when B acts on HA or on HB.

Let π be the defining representation of the conformal net B ⊂ A on the
Hilbert space HA (i.e. the restriction to B of the vacuum representation
of A). Because of the separability of HA, for every I0 ∈ I we can find a
representation θ on the vacuum Hilbert space HB of B, which is unitarily
equivalent to π and is localized in I0. Then if I0 ⊂ I ∈ I, θI is a dual
canonical endomorphism for the subfactor B(I) ⊂ A(I), namely there is a
canonical endomorphism (in the sense of [41]) for the latter whose restriction
to B(I) coincides with θI , see [44, Proposition 3.4] and [43, Sect. 3.3].

2.4 Virasoro nets and their representations

Let Vir denote the Virasoro algebra i.e. the complex Lie algebra spanned by
Ln, n ∈ Z and a central element κ with relations

[Ln, Lm] = (n−m)Ln+m + δn+m,0
n3 − n

12
κ. (20)

We shall denote L(c, h) the unique positive energy irreducible unitary repre-
sentation of Vir with lowest weight h and central charge c (see e.g. [14, 30]).
The conformal Hamiltonian L0 is diagonalizable on the corresponding Vir-
module (still denoted L(c, h)) with spectrum h+ N0 and the central element
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κ acts as multiplication by the real number c. Positivity of the energy implies
h ≥ 0 and unitarity (or hermiticity) means that there is a positive definite
sesquilinear form (·, ·) on L(c, h) such that

(ξ, Lnψ) = (L−nξ, ψ), (21)

for ξ, ψ ∈ L(c, h), n ∈ Z.
The above conditions give restrictions on the values of the pair (c, h). In

fact either c ≥ 1 and h ≥ 0 or we have a pair (c(m), hp,q(m)), m ∈ N, where

c(m) = 1 −
6

(m+ 2)(m+ 3)
(22)

and

hp,q(m) =
((m+ 3)p− (m+ 2)q)2 − 1

4(m+ 2)(m+ 3)
, (23)

p = 1, ..., m + 1, q = 1, ..., p, (discrete series representations). For later
convenience we shall denote D ⊂ [1

2
, 1) the set of discrete values of the

central charge in Eq. (22). Accordingly the set of allowed values of the
central charge is D ∪ [1,∞).

Now let H(c, h) be the Hilbert space completion of the module L(c, h).
Then the Virasoro algebra acts on H(c, h) by unbounded operators on the
common invariant domain L(c, h) ⊂ H(c, h) which can in fact be identified
with the subspace Hfin(c, h) of finite energy vectors i.e. the linear span of the
eigenvectors of the conformal Hamiltonian. The (chiral) energy-momentum
tensor T(c,h)(z), z = eiϑ ∈ S1 associated to L(c, h), is defined by the formal
power series

T(c,h)(z) =
∑

n∈Z

Lnz
−n−2 (24)

For a function on S1, ϑ 7→ f(eiϑ) with finite Fourier series (trigonometric
polynomial), the operator

T(c,h)(f) =
∑

n∈Z

Lnfn, (25)

where

fn =

∫ 2π

0

dϑ

2π
e−inϑf(eiϑ), (26)
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belongs to Vir and hence is well defined on Hfin(c, h) and leave it invariant.
Also the following (formal) notation is used

T(c,h)(f) =

∮

S1

zdz

2πi
T(c,h)(z)f(z) =

∫ 2π

0

dϑ

2π
T(c,h)(e

iϑ)ei2ϑf(eiϑ). (27)

The Virasoro net A(Vir,c) can be defined as in [5] as the net generated
by the energy-momentum tensor Tc(z) := T(c,0)(z) in the representation of
lowest weight 0 on H(c, 0) =: HA(Vir,c)

. First of all one can show that the map
f 7→ Tc(f) extends (uniquely) to an operator valued distribution (Wightman
field) on the invariant domain C∞(L0), the subspace of smooth vectors for
L0. Moreover the linear energy-bounds established in [5] (also cf. [24]) imply
that for every smooth real valued function f , Tc(f) is essentially self-adjoint
(on any core for L0) and that eiTc(f1) commutes with eiTc(f2) when the real
smooth functions f1 and f2 have disjoint supports (in fact these properties
also hold in the representations with h > 0). It follows that the net of von
Neumann algebras defined by

A(Vir,c)(I) = {eiTc(f) : f ∈ C∞(S1), real, supp f ⊂ I}′′, I ∈ I. (28)

is local and in fact one can verify all the other axioms of a conformal net.
In particular the representation U of PSL(2,R) is obtained by integrating
the self-adjoint part of the (complex) Lie subalgebra of Vir spanned by
L−1, L0, L1 and the vacuum vector Ω is the (normalized) lowest weight vector
in L(c, 0).

An alternative construction is obtained by integrating the representa-
tions L(c, 0) of Vir to the corresponding projective unitary representations
of Diff+(S1). In fact as shown by Goodman and Wallach [24] (cf. also [53]),
for each allowed pair (c, h) there is a unique strongly continuous projective
unitary representation V(c,h) of Diff+(S1) on H(c, h) satisfying

V(c,h)(exp(f)) = p(eiT(c,h)(f)) (29)

for every real smooth function (vector field) f on S1. Here exp(f) ∈ Diff+(S1)
denotes the exponential of the vector field f , namely t 7→ exp(tf) is the
unique one-parameter group of diffeomorphisms generated by f , and p :
U(H(c, h)) 7→ U(H(c, h))/T denotes the quotient map. Then the net A(Vir,c)

can be defined by

A(Vir,c)(I) = {V(c,0)(γ) : γ ∈ Diff(I)}′′, (30)

10



I ∈ I.
The two definitions are equivalent because the group generated by the

exponentials of smooth vector fields with support in I ∈ I is dense in Diff(I),
see [40, Sect. V.2]. From the second one the diffeomorphism covariance of
the Virasoro nets is explicit.

As a consequence of the finiteness of the (vacuum) Virasoro characters
χ(t) := Tr(tL0) for every t ∈ (0, 1) the Virasoro nets are split for every allowed
value of the central charge. For c ≤ 1 the Virasoro nets are strongly additive
[33, 55] while for c > 1 they are not [5].

We now discuss some properties of the representation theory of the Vi-
rasoro nets that we shall need in the following. Let H(c, h) be the Hilbert
space completion of Vir module L(c, h) as at the beginning of this subsection
and let T(c,h)(z) be the corresponding energy-momentum tensor. A represen-
tation of A(Vir,c) on H(c, h) will be denoted πc

h if for every I ∈ I and every
real smooth real function f on S1 with support in I, the following hold

πc
hI(e

iTc(f)) = eiT(c,h)(f). (31)

It is immediate to verify that if a representation satisfying Eq. (31)
exists, then it is unique. More complicate is to demonstrate the existence
of such representations. Of course the vacuum representation πc

0 exists for
every allowed value of c i.e. for each c ∈ D ∪ [1,∞). If c < 1 and h is
a corresponding allowed value of the lowest weight then the representation
πc

h exists as a consequence of the Goddard, Kent, Olive coset construction
[23] and the local equivalence of positive energy representations of the loop
groups LSU(2) at fixed level [22, 54], cf. [40, V.3.3.2] and [33, Sect. 3]. If
c ≥ 1 the existence of πc

h has been proved by D. Buchholz and H. Schulz-
Mirbach for every h ≥ (c− 1)/24. Finally if c ∈ (D + 1)∪ [2,∞), then c− 1
is an allowed value of the central charge. Then using the embedding

A(Vir,c) ⊂ A(Vir,c−1) ⊗ A(Vir,1)

one can easily construct, for every h ≥ 0, the representation πc
h as a subrep-

resentation of the restriction to A(Vir,c) of πc−1
0 ⊗ π1

h.
2 As far as we know

the existence of the representation πc
h for the remaining allowed pairs (c, h)

is still an important open problem.

2I learned this argument in an unpublished manuscript of D. Buchholz [6].
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Proposition 2.1. If π is an irreducible covariant representation with positive
energy of the Virasoro net A(Vir,c) on a separable Hilbert space Hπ then it is
unitarily equivalent to πc

h for some h ≥ 0.

Proof. Let V(c,0) be the unique projective unitary representation of Diff+(S1)
on HA(Vir,c)

such that Eq. (29) holds with h = 0. From [37, Sect. 2] (cf.
also [33, Lemma 3.1]) we know that there is a strongly continuous positive
energy projective unitary representation Vπ of Diff+(S1) on Hπ such that
p(πI(V(c,0)(γ))) = Vπ(γ) for each I ∈ I and γ ∈ Diff(I). Then it follows
from the irreducibility and local normality of π that Vπ is irreducible. As a
consequence of Theorem A.2 in the Appendix , there is on H

fin
π a positive

energy representation Rπ of the Virasoro algebra with central charge c′ ∈
D ∪ [1,∞), which is unitarily equivalent to L(c′, h) for some h ≥ 0. Let

T π(z) =
∑

n∈Z

Lπ
nz

−n−2

be the corresponding energy-momentum tensor. Then, for every real smooth
vector field f on S1, we have

Vπ(exp(f)) = p(eiT π(f)).

It follows that if I ∈ I and the support of f is contained in I

πI(e
iTc(f)) = eiαI (f)eiT π(f),

where αI(f) is a real constant. Now, it is fairly easy to check that there is a
(necessarily unique ) distribution α such that α(f) = αI(f) for every I ∈ I

and every real function f with support in contained in I and that Möbius
covariance implies that α = 0. Hence we have the equality

πI(e
iTc(f)) = eiT π(f),

which implies c′ = c. The conclusion then follows because the representation
Rπ of Vir is unitarily equivalent to L(c, h) for some h ≥ 0.

We conclude this subsection with the following proposition.

Proposition 2.2. Let π be a positive energy covariant representation of the
Virasoro net A(Vir,c) on a separable Hilbert space and let Uπ be the corre-

sponding unique inner unitary representation of ˜PSL(2,R). Assume that
Uπ(r̃(2π)) ∈ C1. Then the following hold:

12



(a) The representation π is a direct sum of irreducible covariant positive
energy representations.

(b) There exists a unique strongly continuous projective unitary represen-
tation Vπ of Diff+(S1) on Hπ satisfying

p(πI(e
iTc(f))) = Vπ(exp(f)), (32)

for every I ∈ I and every real smooth function f with support contained
in I. Moreover, this representation satisfies

Vπ(γ) ∈ πI(A(Vir,c)(I)) ∀I ∈ I, ∀γ ∈ Diff(I), (33)

Vπ(q(g)) = p(Uπ(g)) ∀g ∈ ˜PSL(2,R). (34)

Proof. The net A(Vir,c) has the split property and hence, has a consequence
of [35, Proposition 56], π has a direct integral decomposition

π =

∫ ⊕

X

πλdµ(λ),

where, for almost every λ, πλ is an irreducible representation of A(Vir,c) on
a separable Hilbert space H(λ). Since Uπ(g) ∈ π(A(Vir,c))

′′ for each g ∈

˜PSL(2,R) we also have the decomposition

Uπ(g) =

∫ ⊕

X

Uλ(g)dµ(λ).

If hπ is the lowest eigenvalue of Lπ
0 we have by assumption Uπ(r̃(2π)) = e2πihπ .

Hence Uλ is, for almost every λ, a positive energy representation satisfying
Lλ

0 ≥ hπ and Uλ(r̃(2π)) = e2πihπ . It follows that, for almost every λ, πλ is
an irreducible covariant representation of A(Vir,c) with positive energy which,
because of Prop. 2.1, is unitarily equivalent to πc

hπ+nλ
for some nλ ∈ N0.

Now let Xn = {λ ∈ X : πλ ' πc
hπ+n}. Then, it follows from [35, Lemma 60],

that {Xn : n ∈ N0} is a family of pairwise disjoint measurable subsets of X
such that µ(X\

⋃
n∈N0

Xn) = 0. Hence

π '
⊕

n∈N0

∫ ⊕

Xn

πλdµ(λ)
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and since
∫ ⊕

Xn
πλdµ(λ) is unitarily equivalent to a (possibly zero) multiple of

πc
hπ+n, (a) follows.

Now it follows from (a) and Prop.2.1 that on the dense subspace C∞(Lπ
0 )

of smooth vectors for Lπ
0 there is a projective representation η of the Lie

algebra of smooth real vector fields on S1 by essentially skew-adjoint op-
erators satisfying eη(f) = πI(e

iTc(f)) if I ∈ I and suppg ⊂ I. Moreover η
satisfies the assumptions in [53, Theorem 5.2.1] (cf. the proof of [53, Theo-
rem 6.1.1] and the discussion in [38, Appendix]). Hence it can be integrated
to a unique strongly continuous projective unitary representation of the cov-
ering group of Diff+(S1) which, since by assumption e2πiLπ

0 = e2πihπ , factors
through Diff+(S1) giving a representation Vπ satisfying Eqs. (32) and (34).
The remaining claim in (b) then follows easily.

3 Local extensions

Definition 3.1. We define a local extension of a conformal net A to be a
conformal net (B, U,HB) together with a conformal subsystem C ⊂ B such

that the corresponding conformal net Ĉ on HC is isomorphic to A and such
that

U(PSL(2,R)) ⊂ C(S1). (35)

In agreement with the notation for conformal subsystems, since A and
Ĉ are isomorphic, we shall often identify A and C and accordingly we shall
write A ⊂ B instead of C ⊂ B.

Condition (35) implies that C ⊂ B is a full subsystem, namely that

C(S1)′ ∩ B(I) = C1 I ∈ I. (36)

It prevents trivial extensions of the type A ⊂ A⊗ C, cf. [3]. For finite index
subsystems condition (35) is automatically satisfied and we don’t know any
example of a full conformal subsystem violating it. Note that in the literature
the term “local extension” is often used in a weaker sense (see e.g. [44]).

A class of examples of local extensions is obtained by considering fix
points subsystems under compact group actions. More precisely given a
conformal net B and a strongly compact group G of (vacuum preserving)
internal symmetries of B one can define the fixed point subsystem A ≡
BG. This kind of construction is paradigmatic in the algebraic approach to
quantum field theory, see [15, 18].
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One has A(S1)′ = G′′ (cf. [18, Theorem 3.6]) and since U and G com-
mute (see [22, Lemma 2.22]), condition (35) is satisfied. Hence B is a local
extension of A in the sense of Definition 3.1.

If π is the identical representation of A on HB one has

π =
⊕

ξ∈Ĝ

d(ξ)πξ, (37)

where Ĝ is set of equivalence classes of irreducible unitary representations
of G, the πξ are mutually inequivalent irreducible covariant representations
of A (with trivial univalence) appearing with multiplicity d(ξ) equal to the
dimension of the representations of G of class ξ and satisfying d(πξ) = d(ξ),
see [18, 28, 47] and [41, I Sect. 7]. Moreover, the vacuum representation of
A is associated to the trivial one dimensional representation of G and the
corresponding Hilbert space HA coincides with the subspace of G-invariant
vectors of HB.

We denote by ∆ ≡ ∆B the semigroup of DHR endomorphism of A0 which
are unitarily equivalent to a finite direct sum of representations πξ, ξ ∈ Ĝ.
Then the (DHR) braiding on ∆ gives in fact a permutation symmetry, ∆
is a dual of G in the sense of Doplicher-Roberts duality theory [16, 17] and
one can recover the local extension B by Doplicher-Roberts reconstruction
theorem [18], see [47, Prop. 3.8] for the necessary adaptations to conformal
nets on S1.

More generally, let A be a conformal net on S1 and let ∆ be a semigroup
of DHR endomorphisms of A0, all covariant with finite dimension. Assume
that the DHR braiding on ∆ is in fact a permutation symmetry (para-Bose
statistics for the endomorphisms in ∆) and that ∆ is specially directed in
the sense of [16, Sect. 5]. Then Doplicher-Roberts construction provides a
local extension B of A and a strongly compact group G of vacuum preserving
internal symmetries of B such that A coincides with the fixed point net B

G.
Note that by [17, Theorem 3.4] (see also [18, Lemma 3.7]) if ∆ has direct
sums, subobjects and conjugates then it is specially directed.

In the following we shall use the notation B = Ao∆ for the net obtained
through the above Doplicher-Roberts cross product construction.

The decomposition in Eq. (37) suggests the following generalization of
the local extensions with compact group action discussed above, cf. [44, Sect.
5].
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Definition 3.2. A local extension B of a conformal net A is of compact

type if the corresponding representation π of A on HB satisfies

π =
⊕

niπi, (38)

where the πi are (necessarily covariant with positive energy) mutually inequiv-
alent irreducible subrepresentations of π with finite dimension appearing with
multiplicity ni and having finite statistical dimension.

Although we did not assume in Definition 3.2 any bound on the mul-
tiplicities ni, these turn out to be finite as a consequence of the following
proposition, cf. [33, Prop.2.3] and [10] for related results.

Proposition 3.3. Let B be a local extension of compact type of a conformal
net A on S1 and let π be the corresponding representation of A on HB. Then
the following hold:

(a) On HB we have

A(I) ∨ A(Ic) = A(S1), I ∈ I. (39)

(b) The local extension B is irreducible, namely

A(I)′ ∩ B(I) = C1, I ∈ I. (40)

(c) Every irreducible representation of A is contained in π with finite (pos-
sibly zero) multiplicity.

Proof. Let θ be a representation of A localized in I ∈ I and equivalent to
π. Then for J ⊃ I, θJ is a dual canonical endomorphism for the subfac-
tor A(J) ⊂ B(J). By assumption π is a direct sum of covariant repre-
sentations with finite statistical dimension. Hence we can find isometries
Vi ∈ A(I), i ∈ N, with orthogonal ranges, satisfying Ei := ViVi

∗ ∈ θ(A(S1))′,∑
i∈N

Ei = 1 and such that the representations σi defined by σi
J(·) =

Vi
∗θJ (·)Vi, J ∈ I are irreducible, covariant, localized in I and with finite sta-

tistical dimension. If T ∈ θI(A(I))′ ∩A(I) then Vi
∗TVjσ

j
I(·) = σi

I(·)Vi
∗TVj

for i, j ∈ N and hence by the equivalence of local and global intertwin-
ers for localized representations with finite dimension [25, Theorem 2.3]
we have Vi

∗TVjσ
j
J(·) = σi

J(·)Vi
∗TVj for every J ∈ I. It follows that

EiTEj ∈ θ(A(S1))′ and hence T ∈ θ(A(S1))′. Since T ∈ θI(A(I))′∩A(I) was
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arbitrary and θ(A(S1))′ ⊂ θI(A(I))′∩A(I) by Haag duality, we conclude that
θ(A(S1)) = θI(A(I)) ∨ θIc(A(Ic)). Hence π(A(S1)) = πI(A(I)) ∨ πIc(A(Ic))
which proves (a). Now, recalling that U(PSL(2,R)) ⊂ A(S1), by definition
of local extensions, we find C1 = A(S1)′ ∩ B(I) and hence (b) follows from
(a) and locality. Finally (c) follows from [28, p. 39]

Since the defining extensions of the fixed point nets under compact groups
of internal symmetries and the finite index extensions are of compact type
we can conclude that (b) of Prop. 3.3 generalizes the irreducibility results
for conformal subsystems in [7, Prop. 2.1] and [13, Corollary 2.7] (the latter
in the local case).

Remark 3.4. If B is a local extension of compact type of a conformal net A

on S1 then it follows from Proposition 3.3 (and its proof) that A(I) ⊂ B(I),
I ∈ I is an irreducible discrete inclusion of infinite factors in the sense of
[28, Definition 3.7].

We now consider the Virasoro net A(Vir,1) with c = 1. By [49, Prop. 4]
A(Vir,1) is the fixed point net under the action of SO(3) on the conformal net
ASU(2)1

associated to the level one vacuum representation of the loop group
LSU(2). The corresponding representation π of A(Vir,1) on HASU(2)1

satisfies

π =
⊕

j∈N0

(2j + 1)π1
j2, (41)

where π1
j2 is the representation of A(Vir,1) with lowest weight j2. As a conse-

quence d(π1
j2) = 2j + 1 for each j ∈ N [49, Corollary 6].

We can consider the permutation symmetric semigroup ∆ of DHR en-
domorphisms of A(Vir,1) which are localized in some I ∈ I0 and equivalent
to a finite direct sum of representations of the type π1

j2, j ∈ N0. Then, as
discussed above, ASU(2)1

can be identified with the Doplicher-Roberts cross
product A(Vir,1) o ∆.

Now let B be a local extension of compact type of A(Vir,1) and let π
be the corresponding representation of A(Vir,1) on HB. By Prop. 2.1 and [8,
Theorem 4.4] every irreducible subrepresentation of π is equivalent to a DHR
endomorphism in ∆ (note that only subrepresentations with integer lowest
conformal energy can appear) and hence

π '
⊕

i∈N

σi, (42)
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where σi ∈ ∆, for each i ∈ N. The local extensions of A(Vir,1) with the
above property have been independently classified by the author (cf. the
announcement in [32]) and by Feng Xu [55, Sect. 4.2.2]. The resulting
possibilities are described in the following theorem (we outline our original
proof below).

Theorem 3.5. A local extension B of A(Vir,1) is of compact type if and only
if B is isomorphic to a fixed point net AH

SU(2)1
for some closed subgroup H

of SO(3).

Proof. The “if part” is a straightforward consequence of the fact that ASU(2)1

is an extension of compact type of A(Vir,1), cf. Eq. (41). Now let B be an
extension of compact type of A(Vir,1) and let π be the corresponding repre-
sentation of A(Vir,1) on HB. Given a representation θ of A(Vir,1) localized in
I ∈ I0 and unitarily equivalent to π (so that if J ⊃ I, θJ is a dual canonical
endomorphism for the inclusion A(Vir,1)(J) ⊂ B(J)) we deduce from Eq. (42)
that θ is equivalent to (possibly infinite) direct sum of DHR endomorphisms
in the permutation symmetric semigroup ∆ defined after Eq. (41). It follows
that the monodromy operator εM(ρ, θ) := ε(ρ, θ)ε(θ, ρ) is trivial (i.e. equal
to 1) for every ρ ∈ ∆. We now use the extension of DHR endomorphisms as
defined in [44, Prop. 3.9] (cf. also [50, Sect. 3.4.7]) and called α-induction in
[2]. For every ρ ∈ ∆, the triviality of the monodromy operator εM (ρ, θ) im-
plies that its extension αρ (we use the notation in [2]) to B0 is still localized
in an interval in I0, see [44, Prop. 3.9].

Now the crucial point is that the functorial properties α-induction (called
homomorphism properties in [2]) imply that α∆ is still a specially directed
permutation symmetric semigroup of Möbius covariant (bosonic) DHR en-
domorphisms of B0. These functorial properties have been established in
[11, 12] for inclusions of local nets on the four dimensional Minkowski space-
time and in [2] for finite index nets of subfactor on the real line.

Due to the triviality of the monodromy (which is automatic in four space-
time dimensions) one can use the arguments in [11, 12] (see also [9, Sect. 2]
for an overview) to get the desired structure on α∆. Hence, as recalled at the
beginning of this section, we can use the Doplicher-Roberts cross product
construction to define a local extension B o α∆ of the conformal net B.

The next point is that the proof of [12, Theorem 3.5] can be adapted to
our situation to show that there is a natural inclusion (up to isomorphism)

ASU(2)1
= A(Vir,1) o ∆ ⊂ B o α∆
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(compatible with A(Vir,1) ⊂ B ) and in fact it turns out that B o α∆ is a
local extension of ASU(2)1

. But the latter conformal net has no proper local
extensions (see e.g. [3] and [33]) and hence we conclude that B o α∆ =
ASU(2)1

. Accordingly B = AH
SU(2)1

for some closed subgroup H of SO(3) as
claimed.

The above proof relies on specific properties of the representation cate-
gory net A(Vir,1), namely on the fact that the subcategory of representations
with finite statistical dimension (and trivial univalence) is permutation sym-
metric, a fact that appears to be rather exceptional for conformal nets on S1.
However in the case of local nets on the four dimensional space-time similar
ideas have been used by the author and R. Conti to study local extensions
in a fairly general context [10]. As matter of fact the above mentioned inves-
tigation in [10] inspired our proof of Theorem 3.5.

Coming back conformal nets on S1 we remark that there are well known
local extensions of the Virasoro net with c = 1 which are not conformal
subsystems of ASU(2)1

(see e.g. [3] ) and hence are not of compact type as
a consequence of Theorem 3.5. However F. Xu has made further progress
and classified the local extensions B of the c = 1 Virasoro net such that the
corresponding representation of A(Vir,1) on HB contains a subrepresentation
equivalent to some π1

j2, j ∈ N [55, Theorem 4.6]. The above condition is
called “spectrum condition” in [55] where it is conjectured that all nontrivial
extensions of the c = 1 Virasoro net have to satisfy it. This motivates the
following definition

Definition 3.6. A local extension B of a conformal net A is maximally

non-compact if the corresponding representation π of A on HB satisfies the
following condition: the only subrepresentation of finite statistical dimension
of π is the vacuum subrepresentation.

From the previous discussion we can conclude that a local extension of
the c = 1 Virasoro net satisfies Xu’s spectrum condition if and only if it is not
maximally non-compact. No examples of maximally non-compact extensions
of this net seem to be known. We shall however exhibit in Section 5 various
examples of maximally non-compact extensions for the Virasoro nets with
c > 1.

We conclude this section with the following proposition.

Proposition 3.7. Let B be a local extension of the Virasoro net A(Vir,c).
Then the following hold:
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(a) A(Vir,c)(I)
′ ∩ B(I) = C1, for every I ∈ I;

(b) The net B is diffeomorphism covariant.

Proof. Let π be the representation of A(Vir,c) on HB associated with the
local extension B. If V is the corresponding strongly continuous projective
unitary representation of Diff+(S1) on HB given by (b) of Prop.2.2, then
V (γ) ∈ A(Vir,c)(I) if γ ∈ Diff(I), for each I ∈ I. Moreover, for every g ∈
PSL(2,R) we have V (g) = p(U(g)), where U is the representation makes B

Möbius covariant. Hence, it follows from [38, Theorem 12] that

A(Vir,c)(I)
′ ∩ B(I) = U(PSL(2,R))′ ∩ B(I) = C1

which proves (a).
Now let I be a given interval in I and let γ ∈ Diff+(S1) be such that

γI = I. Since γ preserves the orientation it must keep fixed the boundary
points of I. An elementary argument (which we omit here) then shows that
for every J ∈ I containing the closure of I we can find a diffeomorphism
γJ ∈ Diff(J) with γJ |I = γ|I , i.e. γ−1γJ ∈ Diff(Ic). Since V (γ−1γJ) ∈
A(Vir,c)(I

c) ⊂ B(Ic), we find

V (γJ)B(I)V (γJ)∗ = V (γ)V (γ−1γJ)B(I)V (γ−1γJ)∗V (γ)∗ = V (γ)B(I)V (γ)∗

and hence V (γ)B(I)V (γ)∗ ⊂ B(J), for every J ∈ I containing the closure
of I. Thus, being conformal nets continuous from outside, we conclude that
V (γ)B(I)V (γ)∗ ⊂ B(I). If γ is arbitrary we can always find a g ∈ PSL(2,R)
such that gI = γI. It follows that

V (γ)B(I)V (γ)∗ = U(g)V (g−1γ)B(I)V (g−1γ)∗U(g)∗

⊂ B(gI) = B(γI),

and hence, for every I ∈ I, γ ∈ Diff+(S1), we have

V (γ)B(I)V (γ)∗ = B(γI)

and also (b) is proved.

Remark 3.8. If B is a diffeomorphism covariant net on S1 and V is the
corresponding projective unitary representation of Diff+(S1) one can define
a covariant subsystem C of B by

C(I) = {V (γ) : γ ∈ Diff(I)}′′ I ∈ I. (43)
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Arguing as in the proof of Prop. 2.1 it can be shown that the conformal net
C on S1 is isomorphic to A(Vir,c) for some c ∈ D ∪ [1,∞). It follows that
the correspondence between diffeomorphism covariant nets on S1 and local
extensions of the Virasoro nets is one-to-one, cf. [33].

4 On the oscillator representations of the Vi-

rasoro nets with c > 1

Let (AU(1), U,HU(1)) be the conformal net generated by the U(1) chiral cur-
rent algebra, see [3, 5]. The Hilbert space HU(1) and the net AU(1) can be
identified with the Fock space eH1 , where H1 is acted on by the irreducible
representation of PSL(2,R) of lowest weight 1, and with the corresponding
second quantization net respectively [26].

We denote H
fin

U(1) the dense subspace of finite energy vectors, i.e. the

algebraic direct sum of the L0 eigenspaces. Then H
fin

U(1) carries the unique

irreducible lowest weight representation of the oscillator (Heisenberg) algebra

[Jn, Jm] = nδn+m,0 m,n ∈ Z, (44)

J0 = q1, (45)

with lowest weight q = 0, see [3] and [30, Sect. 2.2]. The corresponding
lowest weight vector is the vacuum vector Ω and for ξ, ψ ∈ H

fin

U(1), n ∈ Z we
have

(ξ, Jnψ) = (J−nξ, ψ), (46)

(hermiticity). Note that defining Jq
n := Jn, J

q
0 = q1 we obtain a unitary

representation of the oscillator algebra with arbitrary lowest weight q ∈ R.
The U(1) current J(z), z = eiϑ ∈ S1 is defined as an operator valued

distribution by

J(z) =
∑

n∈Z

Jnz
−n−1 (47)

and the common invariant domain for the smeared field operators

J(u) =

∮

S1

dz

2πi
J(z)u(z) u ∈ C∞(S1)

can be chosen to be the subspace C∞(L0) of smooth vectors for L0. For a
real function u ∈ C∞(S1), J(u) is essentially self-adjoint and the unitary op-
erators W (u) := eiJ(u) with u ∈ C∞(S1) real, supp u ⊂ I generate AU(1)(I)
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for every I ∈ I. Moreover the Weyl relations hold:

W (u)W (v) = W (u+ v)e−
∮

S1
dz
4πi

u′(z)v(z), (48)

for real smooth functions u, v, where u′(z) denotes the derivative d
dz
u(z) =

−ie−iϑ d
dϑ
u(eiϑ).

As shown in [3] (see also [4]) for every q ∈ R there is a covariant irreducible
representation of AU(1) (BMT-automorphism) γq on HU(1) such that

γqI
(W (u)) = eiq

∮
S1

dz
2πi

z−1u(z)W (u) = eiJq(u), (49)

for I ∈ I, u ∈ C∞(S1) with support in I. Here the field Jq(z) is defined by

Jq(z) =
∑

n∈Z

Jq
nz

−n−1 = J(z) + qz−1. (50)

γq1 and γq2 are inequivalent if q1 6= q2. Moreover, if ϕ is a real smooth
function such that −iϕ′(z) = z−1q for z ∈ I then

γqI
(·) = AdW (−ϕ)(·), (51)

and hence γq is locally implementable by Weyl unitaries. In fact Eq. (51)
can be used to define the representation γq. Note that γ0 is the vacuum
representation of AU(1) and that for every I ∈ I, we have

γqI
(AU(1)(I)) = AU(1)(I). (52)

We now come to the oscillator representations of the Virasoro algebra.
For λ, q ∈ R, n ∈ Z the operators

L(λ,q)
n = δn,0

λ2

2
+

1

2

∑

j∈Z

: Jq
−jJ

q
j+n : +iλnJq

n, (53)

where the colons denote normal ordering, define a positive energy unitary
representation R(λ, q) of the Virasoro algebra on H

fin

U(1) with central charge

c = 1 + 12λ2 , see e.g. [30, Sect. 3.4]. Since L0 coincides with L
(0,0)
0 (by the

Sugawara formula) we have L
(λ,q)
0 = L0 +(λ2 + q2)/2 and hence Ω is a lowest

energy vector for these representations with energy (λ2 + q2)/2.
We associate to the above representations the energy-momentum tensors

T (λ,q)(z) defined by

T (λ,q)(z) =
∑

n∈Z

L(λ,q)
n z−n−2. (54)
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Then the following holds (see [21, Remark 4.2])

T (λ,q)(z) =
1

2
: Jq(z)2 : −iλ

(
1

z
+

d

dz

)
Jq(z) +

λ2

2z2
, (55)

and hence, recalling that Jq(z) = J(z) + qz−1,

T (λ,q)(z) =
1

2
: J(z)2 : +

q

z
J(z) − iλ

(
1

z
+

d

dz

)
J(z) +

λ2 + q2

2z2
. (56)

For f ∈ C∞(S1) the smeared field operator

T (λ,q)(f) =

∮

S1

dz

2πi
T (λ,q)(z)f(z) (57)

is well defined on the domain C∞(L0) and leave it globally invariant. More-
over we see from Eq. (56) that the field T (λ,q)(z) is local with respect to
J(z) in the sense that if f, u ∈ C∞(S1) have disjoint supports the opera-
tors T (λ,q)(f) and J(u) commute on C∞(L0) and that T (λ,q)(f) is hermitian
if f is a real function. Finally, it follows from [5, Sect. 2] (cf. also [24])
that T (λ,q)(f) is essentially self-adjoint for each real valued smooth function

f and that in this case eiT (λ,q)(f) commutes with W (u) if the support of the
real function u is disjoint from the one of f .

We now define an isotonous net B
(λ,q) on HU(1) by

B
(λ,q)(I) = {eiT (λ,q)(f) : f ∈ C∞(S1), real, supp f ⊂ I}′′, (58)

for I ∈ I. As a consequence of the above discussion and of Haag duality for
AU(1) we obtain the following proposition.

Proposition 4.1. For every I ∈ I we have

B
(λ,q)(I) ⊂ AU(1)(I). (59)

The net B
(λ,q) so defined it is not in general a conformal subsystem

of AU(1). And in fact it can be shown that B(λ,q) transforms covariantly
with respect to the representation U making AU(1) Möbius covariant only for
(λ, q) = (0, 0), B(0,0) being the (c = 1) Virasoro subnet of AU(1). However,

the equality L
(λ,q)
0 = L0 + (λ2 + q2)/2 implies rotation covariance for every

(λ, q) ∈ R2, namely

U(r(ϑ))B(λ,q)(I)U(r(−ϑ)) = B
(λ,q)(r(ϑ)I) ϑ ∈ R, I ∈ I. (60)

We shall need the following two lemmata.
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Lemma 4.2. For every pair (λ, q) ∈ R2 and every I ∈ I the following holds:

B
(λ,q)(I) = γqI

(B(λ,0)(I)). (61)

Proof. Let ϕ, f ∈ C∞(S1) be real functions such that −iϕ′(z) = z−1q for
z ∈ I and suppf ⊂ I. For ξ, ψ ∈ H

fin

U(1) a straightforward calculation shows
that

(ξ,W (−ϕ)T (λ,0)(f)ψ) = (T (λ,q)(f)ξ,W (−ϕ)ψ).

Since H
fin is a common core for T (λ,0)(f) and T (λ,q)(f) it follows that

W (−ϕ)eiT (λ,0)(f)W (ϕ) = eiT (λ,q)(f)

and hence, recalling Eq. (51)

γqI
(eiT (λ,0)(f)) = eiT (λ,q)(f),

cf. [5, p. 123] and [4, p. 361]. The conclusion then follows from the definition
of B(λ,q)(I) given in Eq. (58).

Lemma 4.3. The representation R(λ, q) is irreducible for every λ 6= 0 and
q ∈ R.

Proof. The character χ(λ,q)(t), t ∈ (0, 1) of the representation R(λ, q) is given
by

χ(λ,q)(t) = Tr(tL
(λ,q)
0 ) = t

λ2+q2

2 p(t),

where p(t) =
∏∞

n=1(1 − tn)−1 = Tr(tL0) and hence the conclusion follows
since, by [30, Eq. (3.15) and Prop. 8.2], it coincides with the character of
the irreducible representation L(c, h) of Vir with central charge c = 1+ 12λ2

and lowest weight h = (λ2 + q2)/2.

Corollary 4.4. Let A(Vir,c) be the Virasoro net with central charge c = 1 +
12λ2, λ 6= 0 and let πc

h be the (irreducible) representation of A(Vir,c) with
lowest weight h = (λ2 + q2)/2 as defined in Subsect. 2.4. Then there is a
representation π(λ,q) of A(Vir,c) on HU(1), unitarily equivalent to πc

h, such that
for every I ∈ I the following holds:

π(λ,q)I
(A(Vir,c)(I)) = B(λ,q)(I). (62)

We shall need the following proposition in the next section.
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Proposition 4.5. Let A(Vir,c) be a Virasoro net with c > 1. Then, if h ≥
(c − 1)/24 we have d(πc

h) = d(c), where d(c) ∈ [1,∞] does not depend on h
and satisfies d(c) > 1.

Proof. The assumption on the range of c and h implies that we can find
λ 6= 0 and q ∈ R such that c = 1+12λ2 and h = (λ2 + q2)/2. Then it follows
from Corollary 4.4 that d(πc

h) = d(π(λ,q)) and we have to show that the latter
does not depend on q.

By Eq. (16) and Corollary 4.4 we find

d(π(λ,q))
2 = [B(λ,q)(I

c)′ : B(λ,q)(I)], I ∈ I.

From Proposition 4.1 and Haag duality for AU(1) it follows that

B(λ,q)(I) ⊂ AU(1)(I) = AU(1)(I
c)′ ⊂ B(λ,q)(I

c)′

and hence, using the multiplicativity of the minimal index [42] (cf. the proof
of [8, Prop. 3.1]), that

d(π(λ,q))
2 = [AU(1)(I) : B(λ,q)(I)] · [AU(1)(I

c) : B(λ,q)(
c)].

Now, using Lemma 4.2 and Eq. (52) we find, for an arbitrary J ∈ I,

[AU(1)(J) : B(λ,q)(J)] = [γqJ
(AU(1)(J)) : γqJ

(B(λ,0)(J))]

= [AU(1)(J) : B(λ,0)(J)],

and hence

d(π(λ,q))
2 = [AU(1)(I) : B(λ,0)(I)] · [AU(1)(I

c) : B(λ,0)(I
c)]

does not depend on q.
Finally if d(c) = 1 then, for every I ∈ I, π(λ,q)(A(Vir,c)(I)) = AU(1)(I)

which is impossible since AU(1) is strongly additive (see [5, 26]) while A(Vir,c)

it is not.

5 Sectors with infinite dimension and maxi-

mally non-compact local extensions.

Let D ⊂ [1
2
, 1) be the set of allowed values of the central charge in the

discrete series representations of Vir as defined in Subsect. 2.4 and let c ∈
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(D + 1) ∪ [2,∞). Then c − 1 is an allowed value of the central charge and
the tensor product net A(Vir,c−1)⊗ASU(2)1

is a local extension of A(Vir,c). The
representation of A(Vir,1) on HASU(2)1

contains the irreducible lowest weight

representation π1
j2 , j ∈ N0 with multiplicity 2j + 1 (see Eq. (41)) and hence

the multiplicity m(c, j) of πc
j2 in the representation of A(Vir,c) on HA(Vir,c−1)

⊗
HASU(2)1

satisfies m(c, j) ≥ 2j + 1 for every j ∈ N0. We are now ready to

prove the following theorem, cf. [8, Theorem 4.4] and the guess in [49, Sect.
2].

Theorem 5.1. If c ∈ (D + 1) ∪ [2,∞) and h ≥ (c− 1)/24 then d(πc
h) = ∞.

Proof. Let π be the representation of A(Vir,c) in HA(Vir,c−1)
⊗ HASU(2)1

as de-
scribed above. Then, as explained in Sect. 2, π is unitarily equivalent to
a representation θ on HA(Vir,c)

localized in an interval I0 ∈ I and for every
I ∈ I with I0 ⊂ I θI is a dual canonical endomorphism for the inclusion
A(Vir,c)(I) ⊂ A(Vir,c−1)(I) ⊗ ASU(2)1

(I), which is irreducible because of Prop.
3.7. Now let ρc

j2 be a representation of A(Vir,c) on HA(Vir,c)
, unitarily equiva-

lent to πc
j2 and localized in I0 and let I ∈ I be an interval containing I0. As

shown just before the statement of this theorem the multiplicity m(c, j) of
the representation ρc

j2 in θ satisfies m(c, j) ≥ 2j+1. Hence (by Haag duality)
the endomorphism ρc

j2
I

is contained in θI with multiplicity n(c, j) ≥ 2j + 1

for each j ∈ N0. Now, it follows from Prop. 4.5 that d(ρc
j2) = d(c), for each

j ≥
√

(c− 1)/24, where d(c) does not depend on j. Let us assume that
d(c) <∞. Then by [25, Corollary 2.10] ρc

j2
I

is an irreducible endomorphism

of A(Vir,c)(I) for every j ≥
√

(c− 1)/24 and by [28, p. 39] we conclude that

2j + 1 ≤ n(c, j) ≤ d(c)2 for every j ≥
√

(c− 1)/24, in contradiction with
the assumption d(c) < ∞. Hence d(c) = ∞ and the conclusion follows from
Prop. 4.5.

Corollary 5.2. If c ∈ (D+1)∪ [2,∞) and B is a local extension of compact
type of A(Vir,c) then the index [B : A(Vir,c)] is finite.

Proof. Let π the representation of A(Vir,c) on HB defined by the local exten-
sion B. Only representations with integer lowest weigh can appear in the
decomposition of π. But there are only a finite number of positive integers
m satisfying m < (c− 1)/24 and hence, by Theorem 5.1, only a finite num-
ber of irreducible DHR sectors can appear in the decomposition of π. Now,
recalling that the inclusion A(Vir,c)(I) ⊂ B(I), I ∈ I, is irreducible, the
conclusion follows from (the proof of) [33, Prop. 2.3].
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Now let G be a simply connected compact Lie group with simple Lie alge-
bra Lie(G) and let k be a positive integer. We denote by AGk

the conformal
net associated to the vacuum representation of the corresponding Loop group
(or affine Lie algebra) at level k (see [22, 49, 52, 54]). As it is well known,
the Sugawara formula (see e.g. [14, Sect. 15.2] and [30, Sect.10.1]), implies
that the net AGk

is a local extension of the Virasoro net A(Vir,c) with central
charge

c ≡ c(Gk) =
dim(G)k

k + h∨
, (63)

where h∨ is the dual Coxeter number of Lie(G), cf. [22, Sect. III.7] and [49,
Sect.1]. The central charge c(Gk) is bounded by

r ≤ c(Gk) ≤ dim(G), (64)

where r is the rank of Lie(G) and the lower bound is saturated only for a
simply laced Lie algebras at level k = 1. Note that c(Gk) < 2 implies that
r = 1 and thus that G = SU(2). In the latter case we have c(SU(2)k) =
3k/(k + 2). If k ≥ 4 we have c(SU(2)k) ≥ 2. The remaining possibilities are
c(SU(2)1) = 1, c(SU(2)2) = 1+1/2 and c(SU(2)3) = 1+4/5. We summarize
the above discussion in the following lemma.

Lemma 5.3. If Gk 6= SU(2)1 then c(Gk) ∈ (D + 1) ∪ [2,∞).

Recall that there is a strongly continuous representation of G in the (uni-
tary) group of internal symmetries of AGk

leaving the vacuum invariant. This
representation is not in general faithful and its kernel coincides with the (fi-
nite) center Z(G) of G. It is known that the fixed point net AG

Gk
satisfies

A(Vir,c) ⊂ A
G
Gk

⊂ AGk
, c = c(Gk), (65)

see [49]. In particular, being G/Z(G) infinite, the index [AGk
: A(Vir,c)] is

infinite.

Corollary 5.4. If Gk 6= SU(2)1 then the local extension AGk
of A(Vir,c),

c = c(Gk), is not of compact type.

Proof. Due to Lemma 5.3 we can apply Corollary 5.2 and the conclusion
follows from

[AGk
: A(Vir,c)] = ∞.
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The following consequence of Corollary 5.4 has been pointed out by K.-
H. Rehren in [49] with a different argument based on the comparison of
characters.

It can also be proved using [55, Theorem 2.4] and the fact that A(Vir,c) is
not strongly additive when c > 1.

Corollary 5.5. If Gk 6= SU(2)1, then the inclusion A(Vir,c) ⊂ A
G
Gk

is proper.

The next result shows that maximally non-compact local extensions nat-
urally appear for the Virasoro nets c > 1.

Proposition 5.6. If Gk 6= SU(2)1 and c = c(Gk) ≤ 25 then AGk
is a

maximally non-compact local extension of A(Vir,c).

Proof. The representation π of A(Vir,c) in HAGk
can only have irreducible

subrepresentations with a nonnegative integer lowest weight. Since by as-
sumption (c− 1)/24 ≤ 1, it follows from Theorem 5.1 that the only subrep-
resentation π with finite dimension is the vacuum representation. Hence the
extension is maximally non-compact.

For SU(N) h∨ = N and hence c(SU(N)k) = k(N2 − 1)/(N + k) and
we see that Prop. 5.6 gives an infinite series of maximally non-compact
extensions of the c > 1 Virasoro nets. Examples are: SU(2)k, k > 1;
SU(3)k, SU(4)k, SU(5)k, k arbitrary; SU(N)1, 2 ≤ N ≤ 26. Actually the
same proof of Prop. 5.6, together with Prop. 2.1, gives the following stronger
result.

Theorem 5.7. If c ∈ (1 + D) ∪ [2, 25] then every local extension of the
Virasoro net A(Vir,c) is maximally non-compact. In particular A(Vir,c) has no
local extensions of compact type.

A Appendix

In this appendix we give a differentiability result for the representations of
Diff+(S1) which is used in the proof of Prop. 2.1. This result as been
essentially obtained by T. Loke [40] (cf. also [54] for analogous results for
loop groups) and here we consider the necessary modifications we need in
this paper. We shall closely follow the discussion in [40, Chap. I].

An element of the group Mob of Möbius transformations of S1 is given
by a map z 7→ αz+β

βz+α
, where α, β are complex numbers satisfying |α|2 −
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|β|2 = 1. Mob is a Lie subgroup of Diff+(S1) isomorphic to PSL(2,R). The
corresponding Lie subalgebra of Vect(S1) is spanned by the vector fields

x := − sin ϑ
d

dϑ
, y := − cosϑ

d

dϑ
, h :=

d

dϑ
, (66)

whose brackets are given by

[h, x] = −y, [h, y] = x, [x, y] = h. (67)

More generally, for each n ∈ N, the vector fields

xn := −
1

n
sin nϑ

d

dϑ
, yn := −

1

n
cosnϑ

d

dϑ
, hn :=

1

n

d

dϑ
, (68)

span isomorphic Lie subalgebras of Vect(S1) each associated to a Lie sub-
group Mobn of Diff+(S1). Clearly Mob1 = Mob and it is not hard to
see that, for each n > 1, Mobn is isomorphic to an n-fold covering of
PSL(2,R) ' Mob and that the corresponding covering map transforms the
one-parameter group exp(thn) into the one-parameter subgroup r(t) of rota-
tions of PSL(2,R).

Now let V be a strongly continuous projective unitary representation of
Diff+(S1) on a separable Hilbert space. For every n ∈ N, the restriction of V

to Mobn lifts to a strongly continuous unitary representation Un of ˜PSL(2,R).
Note that exp(2πhn)n = 1 and hence Un(r̃(2π))n = Un(exp(2πhn))

n = χn1
for a suitable complex number χn of modulus one. In particular U(r̃(2π))
has finite spectrum for each n ∈ N.

Now let 1
n
Xn, 1

n
Yn and i

n
(L0+cn), cn ∈ R, c1 = 0, be the skew-adjoint gen-

erators of the one-parameter groups of unitaries Un(exp(txn)), Un(exp(tyn)),
and Un(exp(thn)), respectively. On the dense subspace Dn ⊂ H of C∞ vec-
tors for the representation Un the above operators define a representation of
the Lie algebra (67) and hence we have on Dn

[iL0, Xn] = −nYn, [iL0, Yn] = nXn, [Xn, Yn] = in(L0 + cn), n ∈ N. (69)

If V is a positive energy representation, since the unitary operator ei2πL0

acts as multiplication by a complex number, the spectrum of L0 is pure point
and every eigenvalue is of the form h+n, where h ≥ 0 is the lowest eigenvalue
of L0 and n is a nonnegative integer.
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Now let Hfin be the linear span of the eigenvectors of L0. Loke as shown
in [40, Sect. I.1] that if a positive energy representation V is such that the
eigenspaces of L0 are all finite-dimensional, then

H
fin ⊂

⋂

n∈N

Dn. (70)

Moreover he proved that the operators L0, Ln := iYn − Xn and L−n :=
iYn +Xn, n ∈ N define a unitary representation of Vir on Hfin and that the
corresponding energy-momentum tensor

T (z) =
∑

n∈Z

Lnz
−n−2 (71)

extends to an operator valued distribution on the subspace of smooth L0

vectors such that T (f) is essentially self-adjoint on H
fin for each f ∈ Vect(S1)

and satisfies
p(eiT (f)) = V (exp(f)). (72)

The finite dimensionality of the L0 eigenspace is used in [40] to infer that for
each n ∈ N, the representation Un is a direct sum of positive energy represen-

tations of ˜PSL(2,R) and that Dn ⊂ Hfin. However these facts hold for every
positive energy representation V , as a consequence of the proposition below
(applied to each representation Un) and hence the results of Loke described
above hold (without any essential modification in the proofs) also if the fi-
nite dimensionality of the eigenspaces of L0 is not assumed. Moreover the
representation of Vir on Hfin so obtained can be seen to be irreducible (and
hence unitarily equivalent to some L(c, h), cf. [30, Remark 3.5]) if and only
if the corresponding projective representation V of Diff+(S1) is irreducible,
cf. Lemma 2.2. in [40, Sect. I.2].

Proposition A.1. Let U be a strongly continuous unitary representation of
˜PSL(2,R) on a separable Hilbert space H and let L0 be the self-adjoint gen-

erator of the restriction of U to the lifting r̃(t) of the one-parameter rotation
subgroup of PSL(2,R). Assume that the spectrum of L0 is bounded from below
and that the one of U(r̃(2π)) is finite. Then the following hold:

(a) U is a positive energy representation (i.e. L0 has a nonnegative spec-
trum) and it is completely reducible to a direct sum of irreducible sub-
representations.

30



(b) Every eigenvector of L0 is a smooth vector for the representation U .

Proof. If U is assumed to be irreducible then the positivity of the energy
follows from the bound on the spectrum of L0 as a consequence of the clas-

sification of the irreducible representations of ˜PSL(2,R) [48] (cf. [40, Sect.
I.1.3]) and hence the positive energy condition for U follows in general by
direct integral decomposition. Then (a) follows e.g. from [36, Lemma 8]. As
a consequence there is an increasing sequence 0 = n1 < n2... of nonnegative
integers (which is possibly finite) and a decomposition

H =
⊕

k

Hk

such that the restriction of U to Hk is a (possibly infinite) multiple of an irre-
ducible representation with lowest weight h+nk. Hence if ψ is an eigenvector
of L0 corresponding to the eigenvalue λ we can write

ψ =
∑

nk≤λ−h

(ψk, ψ)ψk

where ψk ∈ Hk is a normalized eigenvector of L0.
Since every eigenvector of the generator of rotations in an irreducible

representation of ˜PSL(2,R) is smooth (see e.g. [48, Sect. I.1]), each ψk is
smooth and hence ψ is smooth vector for the representation U so that also
(b) is proved.

We can summarize the discussion in this appendix in the following theo-
rem, cf. [40, Sect. I.2.4].

Theorem A.2. Let V be a strongly continuous positive energy projective
unitary irreducible representation of Diff+(S1) on a (necessarily separable)
Hilbert space H. Then V is unitarily equivalent to the unique projective
unitary representation V(c,h) which integrates the Vir-module L(c, h) for some
c > 0, h ≥ 0. In particular the corresponding generator of rotations L0 has
finite-dimensional eigenspaces.
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[2] Böckenhauer J., Evans D.E.: Modular invariants graphs and α-induction for nets of subfactors I.
Comm. Math. Phys. 197 (1998), 361–386.

[3] Buchholz D., Mack G., Todorov I.T.: The current algebra on the circle as a germ of local field
theories. Nucl. Phys. B (Proc. Suppl.) 5B (1988), 20–56.

[4] Buchholz D., Mack G., Todorov I.T.: Localized automorphisms of the U(1)-current. In [31],

[5] Buchholz D., Schulz-Mirbach H.: Haag duality in conformal quantum field theory. Rev. Math. Phys.

2 (1990), 105–125.

[6] Buchholz D.: Introduction to conformal QFT in two dimensions. Unpublished manuscript (1990).

[7] Carpi S.: Classification of subsystems for the Haag-Kastler nets generated by c = 1 chiral current
algebras. Lett. Math. Phys. 47 (1999), 353–364.

[8] Carpi S.: The Virasoro algebra and sectors with infinite statistical dimension.
math.OA/0203027, to appear in Ann. H. Poincaré.
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[47] Müger M.: On charged fields with group symmetry and degeneracies of Verlinde’s matrix S. Ann.
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