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Via della Ricerca Scientifica - 00133 Roma, Italy

scoppola@mat.uniroma2.it

3 Dipartimento di Matematica e Fisica, Università Roma Tre
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Abstract

We present a simple one-dimensional Ising-type spin system on which we define a

completely asymmetric Markovian single spin-flip dynamics. We study the system at

a very low, yet non-zero, temperature and we show that for empty boundary conditions

the Gibbs measure is stationary for such dynamics, while introducing in a single site a

+ condition the stationary measure changes drastically, with macroscopical effects. We

achieve this result defining an absolutely convergent series expansion of the stationary

measure around the zero temperature system. Interesting combinatorial identities are

involved in the proofs.
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1 Introduction

In this paper we discuss a very simple one-dimensional spin system in order to point out

the crucial effect of boundary conditions on the invariant measure of irreversible dynamics.

Irreversible dynamics turn out to be a challenging problem since they are the main ingre-

dient in the study of non-equilibrium statistical mechanics. Indeed many interesting phys-

ical systems can not be described in terms of equilibrium: for instance non-Hamiltonian

evolutions, systems with external non-conservative forces, or systems with thermostats

or reservoirs. Such systems exhibit non zero currents of matter or energy flowing in an

irreversible way. For this kind of problems it is necessary to consider non-equilibrium sta-

tistical mechanics. Actually we can say that the description of non-equilibrium systems

represents one of the “grand challenges” in statistical mechanics.

In this frame the main point is to describe Non-Equilibrium Stationary States (NESS),

“in understanding the properties of states which are in stationary nonequilibrium: thus

establishing a clear separation between properties of evolution towards stationarity (or

equilibrium) and properties of the stationary states themselves: a distinction which until

the 1970’s was rather blurred.” as mentioned in the beautiful book by Gallavotti [7].

Irreversible dynamics play in this context a crucial role. The invariant measures of irre-

versible dynamics are stationary states but they describe non zero currents of probability,

and hence they are NESS. A famous example is given by the TASEP model, in which

particles hop only to the right, entering from a left reservoir with a given rate and leaving

the system from the site L with another rate.

In the context of Markovian dynamics, given any two states i and j in some configura-

tion space X , the irreversibility is defined by transition probabilities P (i, j) violating the

detailed balance condition

π(j)P (j, i) = π(i)P (i, j) ∀i, j ∈ X

This means that there are non zero probability currents. Indeed given a pair of states

i, j ∈ X define the probability current (or flow of probability) from j to i at time t the

asymmetric function on X × X :

Kt(j, i) = P t(j)P (j, i) − P t(i)P (i, j)
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where P t(·) represents the probability of the state · at time t.

The continuity equation for P t(i), gives

P t+1(i)− P t(i) =
∑

j

P t(j)P (j, i) − P t(i)
∑

j

P (i, j) =

=
∑

j 6=i

(
P t(j)P (j, i) − P t(i)P (i, j)

)
=
∑

j 6=i

Kt(j, i) = −(divKt)(i)

Stationarity implies

0 =
∑

j 6=i

(
π(j)P (j, i) − π(i)P (i, j)

)
=
∑

j 6=i

K(j, i) ∀i (1)

being K(j, i) = π(j)P (j, i) − π(i)P (i, j), the stationary probability current (or stationary

flow of probability) from j to i, a divergence free flow. This flow K is proportional to the

antisymmetric part of the conductance associated to the chain and it is also considered

for instance in [8]. Actually the presence of currents can be used to detect irreversible

dynamics without using the invariant measure. This is done by the Kolmogorov criterion

for reversibility [9]: the Markov dynamics with transition probabilities P (i, j) is reversible

if and only if for any loop of states: io, i1, i2, ..., in, io we have

P (i0, i1)P (i1, i2)....P (in, i0) = P (i0, in)....P (i2, i1)P (i1, i0).

This means that the dynamics is irreversible if there is a loop with a stationary current. As

noted in the rich review by Chou, Mallick and Zia, [2], the presence of stationary current

loops suggests to associate magnetostatics to irreversible dynamics as electrostatics is

associated to reversible dynamics.

Beside their crucial role in the understanding of non-equilibrium statistical mechanics,

irreversible dynamics have been frequently considered in the literature in order to speed up

simulations. Indeed in some case rigorous control of mixing time of irreversible dynamics

has been obtained. See for instance [5].

Several problems arise when considering irreversible dynamics. Indeed some tools fre-

quently used in the study of convergence to equilibrium are strongly related to reversibility

as spectral representation or the potential theoretical approach. Recently some progress
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has been done to extend some of these tools to non reversible dynamics. See for instance

the extension of the Dirichlet principle to non reversible Markov chains obtained in [8].

In this paper we want to stress the main difficulty related to irreversibility: while detailed

balance is a crucial tool to control the invariant measure of reversible dynamics, in the

irreversible case the control of the invariant measure can be quite complicated, and in

particular it is difficult to study its sensitivity to boundary conditions. Very recent results

have been obtained in this direction in [6] where irreversible dynamics are constructed with

a given Gibbsian stationary measure by exploiting cyclic decomposition of divergence free

flows.

In some case it is possible to verify that the equation for the invariant measure (1) is

satisfied by a suitable Gibbs measure, as proved below in the (easy) case of empty boundary

conditions. This is also the case of 2-dimensional Ising model with asymmetric interaction

discussed in [11] with periodic boundary condition. In general, due to the presence of

probability currents, the verification of equation (1) typically involves non local argument

and so the invariant measure strongly depends on boundary conditions.

We consider a one dimensional spin system on the discrete interval [1, L] ≡ {1, 2, ..., L}
with a single-spin-flip Markovian dynamics {Xt}t∈N, defined on X := {−1, 1}L by the

following transition probabilities

P (σ, σ(i)) =
1

L
e−2J(σiσi−1+1) (2)

where σ(i) is the configuration obtained from σ flipping the spin in the site i ∈ {1, 2, ..., L}.
This means that at each time a site i is chosen uniformly at random in {1, 2, ..., L} and the

spin is flipped in this site with probability one if it is opposite to its left neighbour, σi−1,

or with probability e−4J if it is parallel to σi−1. We will consider two different boundary

conditions:

- the empty boundary condition corresponding to σ0 = 0;

- the + boundary condition corresponding to σ0 = +1.

The chain is irreducible and aperiodic so that in both cases there exists a unique invariant

measure. Our goal is to compare the invariant measures of the Markov chains correspond-

ing to these two different boundary conditions in a very low temperature regime, i.e., when

the parameter J is sufficiently large w.r.t. L.
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We shall prove that while in the case of empty boundary conditions the stationary distri-

bution is the Gibbs measure, in the case of + boundary condition the stationary measure

changes drastically. Due to the particular low-temperature regime we are able to write the

stationary distribution as an absolutely convergent expansion in e−4J . This expansion is

easily controlled in this case, but it could be a general tool in order to control the invariant

measure at a very low temperature in more general contexts. We control completely the

first order of such expansion, and we show that it has several interesting features. In par-

ticular, the presence of probability currents implies that the boundary conditions do not

have the effect of a conditioning, as in the case of the Gibbs measure. The boundary con-

ditions actually modify the stationary distribution and the effect of their presence decay

very slowly in the distance i from the boundary, namely as 1√
i
. Moreover, the presence of

boundary conditions makes the probabilities of interval of minus spins dependent on their

length, producing macroscopical effects on the magnetization.

The paper is organized as follows: in section 2 we define the models, comparing them

with the usual reversible Glauber Dynamics for the 1d Ising Model, and we state the

main results of the paper. Section 3 is devoted to the control of the expansion of the

invariant measure in terms of the quantity e−4J . Section 4 contains the proof related to

the characterization of the first order term of the invariant measure. Some conclusion

remarks and future perspectives are discussed in section 5.

2 Models and results

As mentioned in the introduction, our model is defined via an irreversible markovian

dynamics on a one dimensional discrete spin chain with states σ ∈ X = {−1,+1}{1,2,...,L}.
We consider two different boundary conditions, namely the free boundary conditions,

having σ0 = σL+1 = 0, and the + boundary condition σ0 = σL+1 = +1. The dynamics is

defined by the following transition matrix

P I(σ, τ) =





1
Le

−2J(σiσi−1+1) if τ = σ(i)

1− 1
L

∑
i e

−2J(σiσi−1+1) if τ = σ

0 otherwise

(3)

where σ(i) is the configuration obtained from σ by flipping the spin in the site i. This

dynamics is irreversible, but in the case of free boundary condition it is easy to find its
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stationary measure. Indeed, consider the Gibbs measure

πG(σ) =
e−H(σ)

ZG
, ZG =

∑

σ∈X
e−H(σ) (4)

where H(σ) is the usual Ising Hamiltonian with free boundary conditions.

H(σ) = −J
L∑

i=2

σiσi−1 (5)

Let us show that πG(σ) is the unique stationary measure of dynamics (3). The dynamics is

clearly irreducible and aperiodic, and hence the stationary measure exists and it is unique.

Moreover it is immediate to verify the following equalities:

πG(σ(i)) = πG(σ)e−2J(σiσi−1+σiσi+1) (6)

P I(σ(i), σ) =
1

L
e2J(σiσi−1−1). (7)

To prove that πG is the invariant measure of the process satisfying

∑

τ∈X
πG(τ)P I(τ, σ) = πG(σ) (8)

it is sufficient to verify the following condition, obtained by (8) by canceling the diagonal

terms in both sides of the equality, which is equivalent to equation (1):

L∑

i=1

πG(σ(i))P I(σ(i), σ) = πG(σ)

L∑

i=1

P I(σ, σ(i)) (9)

Equation (9) immediately follows from (6) and (7) since, by the empty b.c we have

L∑

i=1

e−2J(σiσi+1) =

L−1∑

i=1

e−2J(σiσi+1) =

L∑

i=2

e−2J(σiσi−1).

It is a standard task to define a reversible markovian dynamics having the same station-

ary measure, i.e. the well known Glauber dynamics, given by the following transition
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probability matrix

PR(σ, τ) =





1
Le

−[H(σ(i))−H(σ)]+ if τ = σ(i)

1−∑i
1
Le

−[H(σ(i))−H(σ)]+ if τ = σ

0 otherwise

(10)

where [·]+ means the positive part.

For both dynamics the one-dimensional stationary measure πG(σ) is well known. We have

πG(σ) =
e−2Jℓ(σ)

2
(
1 + e−2J

)L−1

where ℓ(σ) is the number of pair {i, i + 1} such that σiσi+1 = −1 (i.e. ℓ(σ) is the total

length of the Peierls contours).

We conclude this short discussion of the empty boundary conditions by checking the

irreversibility of this dynamics, i.e., the presence of non zero probability currents. Indeed,

for example, for i > 1 and m > 1 such that i +m < L, let us consider the configuration

σ with σj = −1 for j = i, i + 1, . . . , i + m − 1 and σj = +1 elsewhere and observe that

πG(σ) = πG(σ(i)) while P (σ, σ(i)) = 1
L and P (σ(i), σ) = e−4J

L . Therefore

πG(σ)P (σ, σ(i))− πG(σ(i))P (σ(i), σ) =
1− e−4J

L
πG(σ) > 0

In order to control the invariant measure in the case of plus boundary conditions, we

introduce a particular regime, defined as follows.

Definition.

We say that the one-dimensional discrete spin chain on [1, L] with states σ∈{−1,+1}{1,...,L}

subjected to the irreversible dynamics (3) or to the Glauber dynamics (10) is in the chilled

regime of parameter c > 0 if

J = c logL

Note that the Gibbs measure πG for c large enough is concentrated on the configurations

σ = ⊞ (σi = 1 ∀i) and σ = ⊟ (σi = −1 ∀i), while for the other configurations σ we get

πG(σ) ∼ 1

2
e−2Jℓ(σ)
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The chilled condition defined above mimics a phase transition, in the sense that the vol-

ume dependent low temperature (high J) defined by e−2JL ≪ 1 forces the system in a

non zero (in particular, very close to ±1) magnetization. It is very easy, yet quite inter-

esting, to study the mixing time of the two dynamics defined above, which is proportional

to the expected value of the tunneling time, namely, the time needed to pass from the

configuration ⊞ to the configuration ⊟.

It is not difficult to identify in the reversible case the typical path of the tunneling. By

chilled condition e−2JL ≪ 1, a spin flip on the boundary occurs after a time of the order

of Le2Jand a spin flip inside a region of spins having all the same sign occurs after a

time of the order of e4J . Both times are much longer than L. On the other side the

interface between two regions with opposite spins may move in a time of order L, with

equal probability on the right and on the left. Hence the typical path of the tunneling

is a spin flip on one of the two boundaries followed by a random walk of the boundary

between the + and the − regions which eventually reaches the other boundary. The latter

event happens with probability 1/L2, giving in the end a tunneling time of the order of

L3e2J . In the irreversible dynamics the spin in the site 1 is flipped after a time of the

order Le2J . The boundary between the + and the − regions, then, typically moves only

on the right, and this ensures that the tunneling time is of the order of Le2J , and hence

shorter, polynomially in L, than the reversible case.

In what follows we will consider the case of +boundary conditions, namely σ0 = σL+1 = 1.

With the reversible Glauber dynamics (10) the invariant measure with plus boundary

conditions is just Gibbs measure πG conditioned to σ0 = σL+1 = 1. If we consider now the

irreversible dynamics (3) we will see ahead that its invariant measure changes dramatically

with respect to the free boundary conditions case.

For notational simplicity in the computation we will also use the notation Pστ ≡ P (σ, τ)

and πσ ≡ π(σ).

2.1 Results

Before stating our results concerning this particular regime we need to introduce the main

technical tool which consists in writing the invariant measure of the irreversible dynamics

with +boundary conditions in the chilled regime in terms of a series in e−4J . We will omit

for simplicity hereafter the suffix I, standing for irreversibility.

8



Denoting with ℓ(σ) the number of antiparallel pairs of spins for each configuration σ and

recalling that σ0 = 1, we can write the transition probability matrix in the following form

P (σ, τ) =





1
L if τ = σ(i) and σiσi−1 = −1

e−4J

L if τ = σ(i) and σiσi−1 = 1

1− ℓ(σ)
L −

(
1− ℓ(σ)

L

)
e−4J if τ = σ

0 otherwise

(11)

We can define the dynamics above for zero temperature (J → ∞)

P (0)(σ, τ) =





1
L if τ = σ(i) and σiσi−1 = −1

1− ℓ(σ)
L if τ = σ

0 otherwise

obtaining

P (σ, τ) = P (0)(σ, τ) + e−4J∆P (σ, τ) (12)

where

∆P (σ, τ) =





1
L if τ = σ(i) and σiσi−1 = 1

−1 + ℓ(σ)
L if τ = σ

0 otherwise

(13)

The state σ corresponding to ℓ(σ) = 0, i.e., σ = ⊞ (σi = +1 ∀ i), is clearly absorbent for

the zero temperature dynamics. Hence

π(0)(σ) =

{
1 if σ = ⊞

0 otherwise

We can use now the following formula for the perturbations on Markov chains:

π(σ) =

∞∑

k=0

e−4Jkπ(k)(σ) (14)

where

π(k)(σ) =
∑

τ

π(0)(τ)Dk(τ, σ) D =

∞∑

j=0

∆P (P (0))j (15)

Again for notational simplicity we will write P (0)j ≡ (P (0))j . Note that by its definition

π(k)(σ) = 0 ∀ σ : ℓ(σ) > 2k (16)

Formulas (14) and (15) may be easily proved in general. Indeed, let π
(0)
i the stationary
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measure of an ergodic Markov chain P
(0)
ij . Consider the chain Pij = P

(0)
ij + ε∆Pij . Denote

with πi the stationary measure of the chain Pij . By ergodic theorem we have

πi = lim
N→∞

∑

j

π
(0)
j (Pij)

N = lim
N→∞

∑

j

π
(0)
j (P

(0)
ij + ε∆Pij)

N

Then defining

Dij =
∑

l≥0

∑

k

∆Pik(P
(0)l)kj

we have that

πi =
∑

k

π
(k)
i εk

with

π
(k)
i =

∑

l

π
(0)
l (Dk)li

A similar expansion is used for instance in [3] for the blockage problem.

We define the expansion of the stationary measure up to the first order as

π(≤1) = π(0) + e−4Jπ(1) (17)

Note that π(≤1) is a probability measure.

We can now state our main results. The first is an immediate consequence of the conver-

gence of the perturbative expansion (14). Let

dTV (π, π
(≤1)) =

∑

σ

∣∣∣π(σ)− π(≤1)(σ)
∣∣∣

be the total variation distance between the measure π and its first order approximation

π(≤1). Then the following theorem holds.

Theorem 2.1 In chilled regime of parameter c = 1
2 + γ, with γ > 0, we have that

dTV (π, π
(≤1)) ≤ const

L8γ
(18)

Theorem 2.1 shows that it is meaningful, in the chilled regime with γ > 1/2, to compute

the first order in e−4J of the stationary measure, since it will be the leading one.
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As it is clear from the perturbative approach, by (16), up to first order the only configura-

tions admitted are the ones with at most one connected interval of sites having σi = −1,

while all the rest of the configuration has σi = +1.

Let i ∈ 1, . . . , L− 1 and m ∈ 1, . . . , L− i and let us denote (i;m) the state having

σk =





+1 for 1 ≤ k < i

−1 for i ≤ k < i+m

+1 for i+m ≤ k ≤ L

In other words σiσi−1 = −1, σi+mσi+m−1 = −1, σkσk−1 = 1 ∀k 6= i, i +m. That is, the

state (i;m) is a single interval of m spins equal to -1 starting at i,

Let us denote (i) the state having

σk =

{
+1 for 1 ≤ k < i

−1 for i ≤ k ≤ L

In other words (i) = (i;L + 1− i), i.e., σiσi−1 = −1, σkσk−1 = 1 ∀k 6= i.

Theorem 2.2 For any fixed m > 0 and i large we have

π
(≤1)
(i;m) = e−4J

(
1− Cm√

i
+ o
( 1√

i

))
(19)

where Cm is a constant depending on m. For every i,m we have

π
(≤1)
(i;m) ≤ 4 e−4J e

− (m)2

2(i+m) m (20)

Moreover for every i

π
(≤1)
(i) =

i∑

l=1

π
(≤1)
(l;L−l) (21)

Remark. Note that by (19) we get π
(≤1)
(i;m) → e−4J as i → ∞, so that very far from the

boundary condition the stationary distribution at the first order in e−4J is equal to the

Gibbs one, giving the same weight to every interval of minus spins independently of its

length and its position. This convergence to the Gibbs measure, however, it is very slow,

and it does not occur on a well defined scale. Moreover the exponential decay with the

length m of the interval of − spins given by (20) produces macroscopic effects, as the

following theorem shows.
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Theorem 2.3 The average value of m(σ) :=
∑L

i=1 11{{σi=−1}} with respect to the Gibbs

measure, πG, and with respect to the irreversible measure up to the first order, π(≤1), are

such that

lim
L→∞

π(≤1)(m)

πG(m)
≤ 1

4
(22)

3 Proof of Theorem 2.1

By (15) we have

dTV (π, π
(≤1)) =

∑

σ

∣∣∣∣∣

∞∑

k=2

e−4Jkπ(k)
σ

∣∣∣∣∣ ≤
∞∑

k=2

e−4Jk
∑

σ

∣∣∣π(k)
σ

∣∣∣

For J = c logL the condition c = 1
2 + γ implies e−4Jk = L−(2+4γ)k and then it is enough

to prove that
∑

σ

∣∣∣π(k)
σ

∣∣∣ ≤ (CL2)k (23)

Since
∑

σ

∣∣∣π(k)
σ

∣∣∣ =
∑

σ

∣∣∣∣∣∣

∞∑

m=0

∑

τ,σ′

π(k−1)
τ ∆Pτσ′

(
P (0)m

)
σ′σ

∣∣∣∣∣∣

we have that (23) is recursively proved if we are able to prove that

sup
τ

∑

σ

∣∣∣∣∣

∞∑

m=0

∑

σ′

∆Pτσ′

(
P (0)m

)
σ′σ

∣∣∣∣∣ ≤ CL2 (24)

Note first that
∑

σ′

∆Pτσ′ = 0 (25)

for all τ . Then define the matrix Π(0), having all the rows equal to the stationary measure

π(0), and hence having on the column related to the configuration σ = ⊞, say on the first

column, all the entries equal to 1, while all the other entries are zero. Observe that, due

to (25), we have
∑

σ′

∆Pτσ′Π
(0)
σ′,τ = 0 (26)

for all σ and τ . Finally define

Rm = P (0)m −Π(0) (27)
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Due to (26) we have that

∑

σ′

∆Pτσ′

(
P (0)m

)
σ′σ

=
∑

σ′

∆Pτσ′ (Rm)σ′σ (28)

Now using (28) we split the sum over m in two:

∑

σ

∣∣∣∣∣

∞∑

m=0

∑

σ′

∆Pτσ′

(
P (0)m

)
σ′σ

∣∣∣∣∣ ≤

≤
∑

σ

∣∣∣∣∣∣

∑

σ′

∆Pτσ′




2L2∑

m=0

P (0)m




σ′σ

∣∣∣∣∣∣
+
∑

σ

∣∣∣∣∣∣

∑

σ′

∆Pτσ′




∞∑

m=2L2+1

Rm




σ′σ

∣∣∣∣∣∣
(29)

The first term is estimated as follows

∑

σ

∣∣∣∣∣∣

∑

σ′

∆Pτσ′




2L2∑

m=0

P (0)m




σ′σ

∣∣∣∣∣∣
≤
∑

σ,σ′

∣∣∣∣∣∣
∆Pτσ′




2L2∑

m=0

P (0)m




σ′σ

∣∣∣∣∣∣
≤

≤
∑

σ′

|∆Pτσ′ |
2L2∑

m=0

∑

σ

(
P (0)m

)
σ′σ

The sum on σ is 1 for each addend of the sum on m, and then

∑

σ

∣∣∣∣∣∣

∑

σ′

∆Pτσ′




2L2∑

m=0

P (0)m




σ′σ

∣∣∣∣∣∣
≤
∑

σ′

|∆Pτσ′ | 2L2

Since, due to the definition of ∆Pτσ′ , we have

∑

σ′

|∆Pτσ′ | = 2(1− ℓ(τ)

L
) ≤ 2 (30)

we obtain the following estimate

∑

σ

∣∣∣∣∣∣

∑

σ′

∆Pτσ′




2L2∑

m=0

P (0)m




σ′σ

∣∣∣∣∣∣
≤ 4L2 (31)

Now we are left with the estimate of the second term in (29):

∑

σ

∣∣∣∣∣∣

∑

σ′

∆Pτσ′




∞∑

m=2L2+1

Rm




σ′σ

∣∣∣∣∣∣
≤
∑

σ,σ′

∣∣∣∣∣∣
∆Pτσ′




∞∑

m=2L2+1

Rm




σ′σ

∣∣∣∣∣∣

13



Let us first of all consider the entries of the matrix Rm. Calling T⊞(σ
′) the hitting time

to the state ⊞ starting from the state σ′ we have that, being ⊞ an absorbent state,

(Rm)σ′,⊞ = P
(0)m
σ′,⊞ − 1 = −P (T⊞(σ

′) > m)

For the same reason
∑

σ 6=⊞

(Rm)σ′,σ = P (T⊞(σ
′) > m)

and therefore
∑

σ

|(Rm)σ′,σ| = 2P (T⊞(σ
′) > m)

Hence

∑

σ,σ′

∣∣∣∣∣∣
∆Pτσ′




∞∑

m=2L2+1

Rm




σ′σ

∣∣∣∣∣∣
≤ 2

∑

σ′

∣∣∣∣∣∣
∆Pτσ′

∞∑

m=2L2+1

P (T⊞(σ
′) > m)

∣∣∣∣∣∣
≤

≤ 2


sup

σ′

∞∑

m=2L2+1

P (T⊞(σ
′) > m)


∑

σ′

|∆Pτσ′ | ≤ 4 sup
σ′

∞∑

m=2L2+1

P (T⊞(σ
′) > m)

where in the last line we used again (30).

We are left with an estimate uniform in σ′ of the quantity P (T⊞(σ
′) > m). Recall that

the (zero temperature) dynamics chooses u.a.r. a site and try to update it. Call ξ1 the

time needed to choose for the first time the site 1, then ξ2 the time needed, after the first

choose of the site 1, to choose for the first time the site 2, and so on so forth. Calling

ξ =
∑L

i=1 ξi we have that ξ ≥ T⊞(σ
′) for all σ′ . This is granted by the fact that after the

time ξ1 we have definitively that σ1 = +1, after the time ξ1 + ξ2 we have definitively that

σ1 = σ2 = +1 and so on. Hence we have for all σ′

P (T⊞(σ
′) > m) ≤ P (ξ > m)

Being ξi a geometrical variable of probability p = 1
L , and hence having E(ξi) = L,

V ar(ξi) = L2 for all i, we have that ξ is the sum of L independent geometric identi-

cal variables, and therefore E(ξ) = L2, V ar(ξ) = L3.

By Chebyshev inequality

P (ξ > m) = P (ξ − E(ξ) > m− E(ξ)) = P (ξ − E(ξ) > m− L2) ≤ L3

(m− L2)2

14



We have then proved that

sup
σ′

∞∑

m=2L2+1

P (T⊞(σ
′) > m) ≤

∞∑

m=2L2+1

L3

(m− L2)2
≤ L

which finally gives

∑

σ

∣∣∣∣∣∣

∑

σ′

∆Pτσ′




∞∑

m=2L2+1

Rm




σ′σ

∣∣∣∣∣∣
≤ 4L (32)

Combining (32) and (31) we get (24).

4 Proof of Theorems 2.2 and 2.3

Let us denote with λ((k; 1), (i;m)) a sequence of spin flip, allowed by the zero temperature

dynamics, that brings the configuration (k; 1) into the configuration (i;m). Since at least

one − spin has to be present in all the steps of the sequence, the latter can be described

by partial Dyck words, and the number of such sequence is given by the elements of the

so-called Catalan’s triangle (see e.g. [1], [13]).

We have

π
(1)
(i;m) = D+,(i;m) =

1

L

i∑

k=1

∞∑

s=0

P
(0)s
(k;1),(i;m) =

1

L

i∑

k=1

∞∑

s=2i+m−2k−1

P
(0)s
(k;1),(i;m) =

=
1

L

i∑

k=1

1

L2i+m−2k−1

∑

λ((k;1),(i;m))

∞∑

s′=0

(
2i+m− 2k − 1 + s′

s′

)(
1− 2

L

)s′

=

=

i∑

k=1

1

L2i+m−2k

(
L

2

)2i+m−2k

Ci+m−k−1,i−k =

i∑

k=1

(
1

2

)2i+m−2k

Ci+m−k−1,i−k (33)

where in the second line we defined s′ = s− 2i−m+ 2k + 1, and in the last line we used

the Taylor expansion, convergent for |α| < 1, of the function
(

1
1−α

)N+1

(
1

1− α

)N+1

=

∞∑

s=0

(
N + s

s

)
αs.

In equation (33) Ci+m−k−1,i−k denotes the number appearing in the position i+m− k −
1, i− k of the Catalan’s triangle, i.e.

Cn,k =
(n+ k)!(n − k + 1)

k!(n + 1)!
. (34)

15



Calling l = i− k we have

π
(1)
(i;m) =

i−1∑

l=0

(
1

2

)2l+m

Cl+m−1,l (35)

We will now prove the following lemma.

Lemma 4.1 For every positive integer m we have

∞∑

l=0

(
1

2

)2l+m

Cl+m−1,l = 1 (36)

Proof. The quantity π
(1)
(i;m) can be written in terms of a one dimensional Symmetric

Random Walk (SRW), Sn =
∑n

i=1Xi, with Xi independent Bernoulli variables Xi ∈
{−1,+1}. Indeed Cl+m−1,l is the number of paths of the random walk {Sn}n∈N such that

S1 = 1, S2l+m = m and Sn > 0 for any n = 1, ..., 2l+m. For the duality principle for ran-

dom walks, we have that (X1,X2, ...,Xn) has the same distribution of (Xn,Xn−1, ...,X1),

so that the path (0, S1, S2, ..., Sn) has the same probability of the time reversal path

(0, Sn − Sn−1, Sn − Sn−2, ..., Sn − 0). This implies that by denoting with τm the first

hitting time to m for the random walk starting at 0, we have for every positive integer m

(
1

2

)2l+m

Cl+m−1,l = P (τm = 2l +m) (37)

so that

π
(1)
(i;m) =

i−1∑

l=0

P (τm = 2l +m) = P (τm < 2i+m). (38)

Formula (36) now immediately follows from (38) since for the SRW the hitting of any state

is finite with probability one. �

Remark. The proof of (36) can also be obtained in a purely combinatorial framework.

See for instance Lemma 18 in reference [10].

We now prove (19). From (35) and Lemma 4.1 we have

π
(1)
(i;m)

= 1−
∞∑

l=i

(
1

2

)2l+m

Cl+m−1,l (39)

with (
1

2

)2l+m

Cl+m−1,l =

(
1

2

)2l+m (2l +m)!

(l +m)!l!

m

2l +m
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Using upper and lower Stirling’s bounds for the factorials [12] valid for all n ≥ 1

√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n

we have, for any l ≥ 1 and any m ≥ 1

(
1

2

)2l+m

Cl+m−1,l ≤
e

1
12

√
2π

(
1 + m

2l

)2l+m

(
1 + m

l

)l+m

m√
l(l +m)(2l +m)

≤

≤ e
1
12

√
2π

(
1 + m

2l

1 + m
l

)m
((

1 + m
2l

)2

1 + m
l

)l
m√

l(l +m)(2l +m)
≤

≤ e
1
12√
2π

(
l + m

2

l +m

)m (
1 +

m

l

) m√
l(l +m)(2l +m)

=

=
e

1
12

√
2π

(
1− m

2(l +m)

)m m

l3/2

√
l +m

2l +m

≤ 1

2
e

−m2

2(m+l)
m

l3/2

where in the last line we have used the trivial bound (1 − x) ≤ e−x valid for all x ≥ 0.

Hence for any l ≥ 1 and any m ≥ 1 we may roughly bound

(
1

2

)2l+m

Cl+m−1,l ≤
m

2

1

l3/2
(40)

A similar computation gives, for any l ≥ 1 and any m ≥ 1,

(
1

2

)2l+m

Cl+m−1,l ≥
e−

1
6√
2π

(
1 + m

2l

)2l+m

(
1 + m

l

)l+m

m√
l(l +m)(2l +m)

≥

≥ 1

3

(
1 + m

2l

1 + m
l

)m
((

1 + m
2l

)2

1 + m
l

)l
m√

l(l +m)(2l +m)
≥

≥ 1

3

(
l + m

2

l +m

)m m√
l(l +m)(2l +m)

=

Therefore we may roughly bound for any l ≥ 1 and any m ≥ 1

(
1

2

)2l+m

Cl+m−1,l ≥
2−m

3
√
6

1

l3/2
(41)
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From inequalities (40) and (41) the first statement (19) of Theorem 2.2 immediately fol-

lows.

In order to show (20) we write

π
(1)
(i;m) =

(
1

2

)m

+

i−1∑

l=1

(
1

2

)2l+m (2l +m)!

(l +m)!l!

m

2l +m

Using now (40) and recalling that
∑∞

n=1
1

n3/2 = ζ(3/2) ≤ 3, we get

π
(1)
(i;m) ≤

(
1

2

)m

+
1

2

i−1∑

l=1

e
−m2

2(m+l)
m

l3/2
≤
(
1

2

)m

+
e

−m2

2(m+i)

2

∞∑

l=1

m

l3/2
≤

≤
(
1

2

)m

+ 3me
−m2

2(m+i) ≤ (1 + 3m)e
−m2

2(m+i) ≤ 4me
−m2

2(m+i) (42)

and inserting (42) inequality into (39) we get (20).

The computation of π
(1)
(i) is similar, but it is necessary to choose the time in which the spin

in the site L is flipped to σL = −1. We have

π
(1)
(i) = D+,(i) =

1

L

i∑

k=1

∞∑

m=0

P
(0)m
(k;1),(i) =

=
1

L

i∑

k=1

i∑

l=k

1

LL+l−2k−1

∑

λ((k;1),(l;L−l))

∞∑

m′=0

(
L+ l − 2k − 1 +m′

m′

)(
1− 2

L

)m′

×

× 1

L

1

Li−l

∞∑

m′′=0

(
i− l +m′′

m′′

)(
1− i

L

)m′′

=

i∑

k=1

i∑

l=k

(
1

2

)L+l−2k

CL−k−1,l−k =

=

i∑

l=1

l∑

k=1

(
1

2

)L+l−2k

CL−k−1,l−k =

i∑

l=1

π
(1)
(l;L−l)

This ends the proof of Theorem 2.2. �

To prove Theorem 2.3 we first observe that in the chilled regime the Gibbs measure πG(σ)

is such that

πG(σ) =
e−2Jℓ(σ)

1 + o(1)

where o(1) denotes any function of L such that limL→∞ o(1) = 0. So if we let

π̂G(σ) = e−2Jℓ(σ)

18



we have clearly that

lim
L→∞

π(≤1)(m)

πG(m)
= lim

L→∞
π(≤1)(m)

π̂G(m)
(43)

We start computing π̂G(m). Observe that

π̂G(m) = e−4J
L∑

i=1

L−i∑

m=1

m+

L∑

m=1

m

L/2∑

k=2

e−4kJn(k,m) (44)

where n(k,m) is the number of configurations with k disjoint intervals of minus spins with

a total number m of minus spins. Due to the rough estimate n(k,m) < L2k−1 we get

π̂G(m) ≤
[
e−4J

6

(
L3 − L

)
+ L3e−4Jo(1)

]
≤ L3e−4J

6
(1 + o(1)) (45)

We next estimate the difference π̂G(m)− π(≤1)(m). Observe that by (44)

π̂G(m) ≥ e−4J
L∑

i=1

L−i∑

m=1

m

and that by (16) and (20)

π(≤1)(m) = π
(≤1)
(i;m) = e−4Jπ

(1)
(i;m)

so we have

π̂G(m)− π(≤1)(m) ≥ e−4J
L∑

i=1

L−i∑

m=1

m(1− π
(1)
(i;m))

Then note that, due to (39) we have that 1 − π
(1)
(i;m) > 0, so we are allowed to restricted

the sums over i,m above to a subset in which i ≤ m. Recalling also bound (20) we get

π̂G(m)− π(≤1)(m) ≥ e−4J

L/2∑

i=1

L−i∑

m=i

m(1− π
(1)
(i;m)) ≥ e−4J

L/2∑

i=1

L−i∑

m=i

(
m− 4 e

− m2

2(i+m) m2

)

≥ e−4J

L/2∑

i=1

L−i∑

m=i

(
m− 4 e−

m
4 m2

)
≥ e−4JL3

8
(1 + o(1)) (46)

Hence, from inequalities (45) and (46) we get

π̂G(m)− π(≤1)(m)

π̂G(m)
≥ 3

4
(1 + o(1))
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whence

lim
L→∞

π(≤1)(m)

π̂G(m)
≤ 1

4

and from (43) Theorem 2.3 immediately follows. �

5 Conclusions

In this paper we have considered an example of a single spin flip irreversible dynamics for

a system very simple, but yet quite difficult to study in presence of boundary conditions.

With explicit estimates we have shown that, expanding in series the stationary measure

around the zero temperature, it is possible to control for very low temperature the conver-

gence of the expansion and to compute, up to the first order, the stationary probability

distribution. The latter has non trivial features: it has an explicit dependence both on

the relative distance and on the position of the changes of sign in the state. Moreover

the memory of the boundary conditions has a very slow decay, and crucial macroscopic

effects.

There are several questions opened by this result. The generalization of this computations

to PCA dynamics, like the one presented in [4] and [5], should be straightforward. It

should be possible also, with some extra effort, to understand the features of the higher

terms of the expansion, and it would be very interesting to generalize this technique to

higher dimensions. All these questions will be the subject of further investigations.
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