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Abstract: Hypogean or enclosed monuments are important cultural heritage sites that can suffer
biodegradation. Many of the stone walls of the prestigious Domus Aurea are overwhelmed by dense
biofilms and so need intervention. Room 93 was chosen as a study site with the aim to test the efficacy
of phyto-derivatives as new biocides. Laboratory studies were performed comparing the effects of
liquorice leaf extract (Glycyrrhiza glabra L.), lavender essential oil (Lavandula angustifolia Mill.) and a
combination of both. In situ studies were also performed to test the effect of liquorice. The results were
compared with those of the commonly used synthetic biocide benzalkonium chloride. The effects on the
biofilms were assessed by microscopy along with chlorophyll fluorescence analysis. The phototrophs
in the biofilms were identified morphologically, while the heterotrophs were identified with culture
analysis and 16S gene sequencing. Results showed that the mixed solution liquorice/lavender was
the most effective in inhibiting the photosynthetic activities of biofilms in the laboratory tests; while,
in situ, the effect of liquorice was particularly encouraging as an efficient and low-invasive biocide.
The results demonstrate a high potential biocidal efficacy of the phyto-derivatives, but also highlight
the need to develop an efficient application regime.

Keywords: cultural heritage; biodeterioration; biofilms; cyanobacteria; biocides; phyto-derivative;
liquorice; lavender; PAM

1. Introduction

Conservation of stone surfaces, in hypogea or in confined monuments, is threatened by the
addition of artificial lighting that is essential for visibility; however, when it is combined with
humidity, nutrient availability and particular physical substrate characteristics, light facilitates the
colonisation by biodeteriorative biofilms [1–3]. These biofilms are formed by diverse microbial
communities of cyanobacteria, bacteria and, to a lesser extent, by algae and fungi [4,5]. Different studies
have demonstrated their deleterious effects (aesthetical, chemical and physical) on diverse substrates
(stone and painted surfaces [6,7], as well as other valuable cultural heritage materials [8–10]). While there
is the desire to rid surfaces from these deteriogenic biofilms, the general confinement of these sites
hinders the use of chemical biocides, even if they are effective, as they cause major health issues
for operators. These biocides also tend to be polluting substances that can persist in the natural
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environment [11]. While biocides regularly used in the restoration field (e.g., benzalkonium chloride,
nystatin and sodium fluoride, among others) have known bacterial, fungal and insecticidal activities [12],
their effectiveness on algae and cyanobacteria is still not fully understood.

The challenge is now to develop more safe and sustainable methods in the restoration and
conservation of lithic cultural heritage using products and practices that take environmental, social and
economic aspects into account [13–17]. This challenge will involve players from multiple disciplines,
i.e., not only restorers and art historians, but also scientific researchers, politicians, entrepreneurs and
economists. The most notably harmful products in use are being eliminated from the market and
others should follow, and the search for new bio-based and sustainable products, as replacements,
could open a new potential market in the bioeconomy chain. Substitution with safer alternatives and
greener technologies is strongly driven by regulation and contributes to the overarching EU objectives
for a non-toxic environment and a circular economy [18].

Among the alternative treatments to be investigated, plant extracts are showing promise as
biocides by having many advantages over the traditional synthetic options. They are environmentally
friendly (biodegradable) and have a functional complexity, which is thought to evade the possibility
of resistance, one of the main negative characteristics of synthetic biocides. Plant-based biocides are
generally alcohol extracts or essential oils that have been used in medical, food and pharmaceutical
industries. Their effectiveness against common human pathogens including bacteria, fungi and yeasts
is well-known, but more recently tests on their antimicrobial activity against organisms associated with
biodeterioration of archives, libraries, museums and stone monuments have been carried out [12,13,19].
In the present study, liquorice leaf extract and lavender essential oil were chosen for two reasons:
the biofilms to be treated are complex communities, and the ineffectiveness of the synthetic biocides
previously used, which required ever more frequent treatments (data not published).

While the antimicrobial activity (against bacteria and fungi) of liquorice (Glycyrrhiza glabra L.) root
extracts has been well established [20–22], less is known about the full biocidal potential of liquorice
leaf extracts. Two antimicrobial flavonones were isolated from the leaves of G. glabra: Pinocembrina
and lycoflavanone [23]. A comparative study on the antimicrobial effects of leaf and root ethanolic
extracts carried out on human pathogenic microorganisms demonstrated that there was overlapping
activity and that the leaf extract was more effective against some strains [24,25]. Leaf extract has also
been used as a fungicide for agricultural purposes [26]. The biocidal effect of the leaf extract was shown
to be effective against 20 bacterial strains and 10 fungal strains isolated from hypogean environments
(held in the ENEA collection), frescoes, wall and canvas paintings [27]. Furthermore, the use of an
agri-food waste, such as liquorice leaves, fully meets the circular economy criterium. The use of a
mixture of essential oils, Lavandula angustifolia Mill. (10%) and Thymus vulgaris L. (1%) (1:1 v:v mixture)
has also been used on hypogean biofilms with positive biocidal effect on photosynthetic biofilms [13].

The aim of the present study is to determine the biocidal activity of liquorice leaf extract and
lavender essential oils on biofilms growing on enclosed illuminated stone surfaces. The site chosen
for the study is the Domus Aurea, which is a highly valuable Roman cultural heritage site, originally
commissioned by Emperor Nero as a new residence after the devastating fire of 64 AD. The palace,
famous for its sumptuous decoration, consisted of a series of buildings separated by gardens, woods,
vineyards and an artificial lake (Figure 1). After Nero’s death, successive emperors decided to erase all
traces of Nero and his palace and the luxurious chambers were deprived of any valuables and filled
up with soil to be used as foundations for other buildings and they remained undiscovered until the
Renaissance (15th and 16th centuries). Unbeknownst to Nero’s successors, the infilling of the Domus
Aurea’s rooms resulted in their conservation throughout the centuries.
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Figure 1. (a) Map of the remains of the Domus Aurea which consists of a series of buildings separated 
by gardens, woods and vineyards; (b) a detail of the area where the study site, Room 93, is located. 

The Domus Aurea was opened to the public in 1999, but six years later was closed due to 
detachments and security problems, to open again in 2007 with restricted visits. However, due to 
artificial lighting, high humidity levels and residual soil heaps, many illuminated surfaces have been 
heavily infested by both phototrophic and heterotrophic biofilms. In the present study, phyto-
derivatives were initially tested for their biocidal activity in a set of well plate experiments on the 
biofilms collected from surfaces in the Domus Aurea. Tests were then carried out on the natural 
biofilms occurring on a selected wall of Room 93 to show the efficacy of the treatment in situ. It was 
expected that the biocidal activity of the phytoextracts would be significant, and the tests should help 
develop safe, yet effective, protocols for the control of biofilm growth in enclosed, lithic 
environments.  

2. Materials and Methods  
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Figure 1. (a) Map of the remains of the Domus Aurea which consists of a series of buildings separated
by gardens, woods and vineyards; (b) a detail of the area where the study site, Room 93, is located.

The Domus Aurea was opened to the public in 1999, but six years later was closed due to
detachments and security problems, to open again in 2007 with restricted visits. However, due to artificial
lighting, high humidity levels and residual soil heaps, many illuminated surfaces have been heavily
infested by both phototrophic and heterotrophic biofilms. In the present study, phyto-derivatives were
initially tested for their biocidal activity in a set of well plate experiments on the biofilms collected
from surfaces in the Domus Aurea. Tests were then carried out on the natural biofilms occurring on a
selected wall of Room 93 to show the efficacy of the treatment in situ. It was expected that the biocidal
activity of the phytoextracts would be significant, and the tests should help develop safe, yet effective,
protocols for the control of biofilm growth in enclosed, lithic environments.

2. Materials and Methods

2.1. Sampling Site

The biofilms used for the tests reported in this article were collected at the Domus Aurea in
the Palatine Hill, Rome, Italy (Figure 1). A wall in Room 93 was selected for the sampling due
to the evident biodeterioration of the surface (white, green and blue-green patinas). The wall in
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opus latericium is covered with soil which was not completely removed during the excavations.
The biofilm was consistently and evenly distributed (Figure 2). Room 93 is adjacent to the Criptoportico
and, although not part of the tourist route, it is illuminated by fluorescent lamps. In 2012, the wall was
treated with Preventol® RI80, which is a solution of quaternary ammonium salts with a broad spectrum
of activity (fungi, bacteria and algae). Previous intervention by the restorers consisted in spraying
the biocidal product (diluted to 3% with de-ionised water) on the surface and this was effective only
after multiple applications with prolonged laying time. However, the recolonization was very fast
(data not published).
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2.2. Sampling of Biofilms and Microscopy Observations 

Ten samples of biofilm were collected using the method of adhesive tape strips (MAT; Fungitape 
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sides and were observed with a Zeiss AxioScope light microscope with a 40× objective; images were 
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0.5-μm intervals along the z-axis using IMARIS 6.2.0 software (Bitplane AG Zurich, Switzerland). 
The identification of the cyanobacteria present in the samples was made according to the recent 
taxonomy of cyanobacteria [29,30]. 

Figure 2. Two different views of the sampling site in Room 93 with the evident phototrophic biofilms
causing discolouration of the walls. (a) front view of the corridor present in Room 93; (b) detailed
image of the wall object of the investigation with the evident presence of the green biofilm; scale bar =

2 m.

Environmental parameters in Room 93 were measured on each sampling trip and during each
visit during the in-situ experimental period (about 75 days). Temperature (T ◦C) and relative humidity
(RH%) were measured using a digital humidity and temperature meter (CEM, model DT-625).
Surface temperatures were made using a DT-8833 infrared thermometer (Thermosense, UK) and
cross-checked using a Type K thermocouple resistor (Thermosense, model HK-400). Irradiance was
measured using a radiometer (model LI-185B; LI-COR Inc., Lincoln, NE, USA) equipped with a
quantum sensor (LI-190SB) to give PPFD in µmol photons m−2 s−1.

2.2. Sampling of Biofilms and Microscopy Observations

Ten samples of biofilm were collected using the method of adhesive tape strips (MAT; Fungitape
Did, Milan, Italy) as a non-destructive sampling method [28]. Fresh samples were mounted on glass
sides and were observed with a Zeiss AxioScope light microscope with a 40× objective; images were
acquired with a digital camera (Canon EOS 600D—Canon S.P.A., Milan, Italy). The adhesive tape
samples were also observed using a Confocal Laser Scanning Microscope (CLSM) FV1000 (Olympus
Corp., Tokyo, Japan), with a 60× objective using the autofluorescence channels for chlorophyll a and
phycobiliproteins (excitation 488, 543, 635 nm, emission 520, 572 and 688 nm). Three-dimensional
images were constructed from a series of 2D cross-sectional images (x-y plane) that were captured
at 0.5-µm intervals along the z-axis using IMARIS 6.2.0 software (Bitplane AG Zurich, Switzerland).
The identification of the cyanobacteria present in the samples was made according to the recent
taxonomy of cyanobacteria [29,30].
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2.3. Heterotrophic Microorganisms

The biofilm was fully characterised by culture-dependent and independent techniques.
The cultivable portion of the heterotrophic community was first studied, to isolate the microorganisms
and use them for subsequent in vitro investigation for individual sensitivity to the tested biocides.
To characterise the cultivable portion of the heterotrophic community inhabiting the biofilm, 20 g of
biomass was sampled from random points in a selected area of 2 × 2 m by gently scraping off the
biofilm with sterile scalpels; 5 g of the mixed sampled biofilms were then suspended in a 50 mL solution
of sodium pyrophosphate and Tween 80 (0.05% and 0.001% v/v respectively). The suspension was then
kept in an orbital shaking incubator (New Brunswick™ Innova 4430—New Brunswick Scientific Co Inc,
Edison, NJ, USA) at 28 ◦C and 150 rpm for 1 h. The number of cultivable heterotrophic microorganisms
was obtained by plating 100 µL of suspension and following serial dilutions in three different agar
media: Tryptic Soy Agar (TSA, Conda, Spain) and Mineral Medium (MM, Schmidt and Schlegel, 1989)
added with 0.5% (w/v) sodium gluconate and 1.5% agar (Agar, Conda, Spain) for bacteria and Potato
Dextrose Agar (PDA, Conda, Spain) for fungi. The plates were then incubated at room temperature
until the complete growth of colonies (up to one month).

The isolation of bacterial and fungal strains was based on colony morphologies. Colonies were
streaked three times on the same agarized medium from which they were isolated, in order to obtain
pure cultures. The plates were then incubated at room temperature until there was complete colony
development (24–72 h). Bacterial strains were identified by 16S r-DNA sequencing. Genomic DNA
was extracted by resuspending two fresh colonies of each isolate in 20 µL of lysis buffer (NaOH 0.5 M
and SDS 0.5% w/v), heating at 95 ◦C for 15 min and then transferring to an ice bath for 15 min. The 16S
r-DNA complete gene was PCR amplified by using 9 bfm as a forward and 1512 uR as a reverse
primer [31]. The reaction mixture contained 1× PCR Master Mix (Thermo Scientific, Waltham, MA,
USA), 2 µL of template DNA and 20 pmol of each primer in the total reaction volume of 25 µL. The PCR
products were sequenced by a commercial facility. Sequence identities were analysed using the National
Center for Biotechnology Information (NCBI) BLAST program (https://blast.ncbi.nlm.nih.gov/Blast.cgi)
and the GenBank database. Each isolate was compared against known taxa present in the database.
A preliminary identification of the fungal isolates was done according to typical colonial and conidial
morphology using a stereo microscope.

2.4. Laboratory Treatments with Phyto-Derivatives

Two phyto-derivatives were tested for their biocide activity: liquorice alcoholic leaf extract
(Glycyrrhiza glabra L.) (LIQ) and lavender essential oil (Lavandula angustifolia Mill.) (LAV). The liquorice
alcoholic leaf extract at 50% (w/v) was provided by Trifolio-M GmbH (Lahnau, Germany), while the
lavender essential oil was supplied by Sarandrea Marco & CO. S.r.l. (Collepardo, Italy).

In the first set of experiments the collected biofilms (5 g) were homogenised prior to inoculation
on to agarized BG11 growth medium. Once extensive growth of the biofilm was observed, they were
treated with LAV (5% v/v), LIQ (10 and 30% v/v) and sterile saline solution (NaCl 0.9% w/v) as control
(CTRL). Each treatment was tested in triplicate. The extracts were prepared by diluting with distilled
water to the desired concentration. In the preparation of the LAV 5%, the solution was emulsified using
1% TWEEN 20. Two applications of 100 µL of each treatment were performed at time 0 and 5 days.

Photosynthesis, the most fundamental and intricate physiological process in phototrophic
organisms, is highly sensitive to the majority of stresses (biotic or abiotic) [32]. Therefore, a measure
of chlorophyll fluorescence could be considered as a good indicator of the effect of plant extracts on
the vitality of the biofilm phototrophic component. A mini-PAM portable fluorometer was used to
measure the maximum quantum yield immediately before each treatment (days 1 and 5) and then at 5,
30 and 90 min, 1 and 5 days after each treatment (10 days in total).

The second test involved the remaining 15 g of biofilm sampled from the selected area on the wall,
which was then homogenized and transferred into 24 well plates. In each well, 250 mg of biofilm was
placed on a sterile nitrocellulose filter and treated with either LIQ (10%), LAV (5%) or a mixture of

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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LIQ10% and LAV5% (LIQLAV). As a positive control the chemical biocide benzalkonium chloride 50%
(Antichità Belsito, Rome, Italy) was applied at 0.6% (v/v) (BENZ). As negative control, the biofilm was
treated with sterile saline solution (CTRL). All the tests were done in triplicate. Measures of maximum
quantum yield were conducted immediately before the application of each treatment (100 µL) and
then after 5 days. In order to avoid the cross contamination of treatments, one well plate was used for
each substance.

To evaluate the biocide effect on the heterotrophic microorganisms, the nitrocellulose filters
supporting the biofilm were weighed and suspended 1:10 w/v in a solution of sodium pyrophosphate
(0.05%) and Tween 80 (0.001%). The suspensions were incubated in an orbital shaker at 28 ◦C and
150 rpm for 1 h. The number of cultivable heterotrophic microorganisms was obtained by plating
100 µL of suspension and following decimal dilutions in TSA, MM and PDA agar media. The plates
were then incubated at room temperature until the complete growth of colonies. Counts of viable
microorganisms were referred to as colony forming units per gram of wet biofilm (CFU/g wet biofilm).

2.5. In Situ Application of Phyto-Derivatives

Following the well plate experiments, the phyto-derivatives were tested in situ. Unfortunately,
according to the safety limitation for the application of substances in the Domus Aurea’s archaeological
restoration site, it was not possible to test in situ the lavender essential oil.

Three areas of Room 93 (15 × 6 cm, each one) were selected that had a homogenous biofilm
covering. Each area was treated by spraying separate treatments directly onto the surface using a
stencil protector to restrict the application to the treatment area only; LIQ (10%), BENZ (0.6% v/v) and
CTRL (sterile saline solution) were employed. Two applications were performed, at time 0 and after
14 days. Effective quantum yield was measured immediately before each treatment application and
then 5 min afterwards; follow-up measurements were made on days 7, 14, 35 and 76. Coinciding with
the yield measurements, in situ micrographs (200×max) were taken before and after treatments on
biofilms using a Handheld Digital Microscope (USB) Dino-Lite Premier 1.3MP (AnMo Electronics
Corporation, New Taipei City, Taiwan). Observations of biofilm samples collected using adhesive tape
strips were also conducted at the light microscope (40×) and at the stereo microscope (1.6×) Zeiss,
Stemi 508 (Carl Zeiss Microscopy GmbH, Jena, Germany) equipped with a digital camera Axiocam
ERc 55 (Carl Zeiss Microscopy GmbH, Jena, Germany).

2.6. Photosynthetic Parameters

To evaluate the biocidal effects of the applied phyto-derivative products, photosynthetic parameters
(chlorophyll fluorescence) of the biofilms were measured using the pulse amplitude modulated
fluorometer Mini-PAM of Heinz Walz (Effeltrich, Germany) both on-site and in the laboratory. In situ
measurements were made using a holder that maintained the fibre-optic probe at 60◦ to the surface
(to not block the natural light levels), and 6 mm from the biofilm to allow comparisons to be made
among sites (in the laboratory, the probe was held perpendicular to the samples). In the laboratory,
the maximum potential quantum yields (Fv/Fm) were assured by performing the measurements made in
quasi-darkness (<1 µmol photons m−2 s−1), whilst the effective quantum yield (Fv’/Fm’) was measured
in situ [33]. Correlations, T-tests, ANOVA and post hoc tests were carried out using SPSS (v. 23 IBM).

3. Results and Discussions

3.1. Macro and Micro-Environmental Conditions

As expected, the environmental conditions were relatively stable in Room 93 with temperatures
of 17.0 ± 0.5 ◦C, humidity 88 ± 2% and light irradiance of 1.0 ± 0.2 µmol photons m−2 s−1.
Surface temperature, where the MAT method was employed for biofilm collection, was around
8.0 ◦C. These environmental conditions are typical of hypogean and confined environments [3,5] and
remained stable due to the lower number of visitors in this area of the site.



Appl. Sci. 2020, 10, 6584 7 of 15

3.2. Biofilm Characterization

Observations using light and confocal microscopy (Figure 3) showed that the biofilm was
mainly composed of filamentous cyanobacteria typical of low light environments [4,34]. In particular,
the cyanobacterium Scytonema julianum was shown to be the dominant species in the biofilm growing
in Room 93 of the Domus Aurea, along with Leptolyngbya sp. and Symphyonemopsis sp. As previously
observed [13], growth of these heterocytous-nitrogen fixing species is normally favoured in these
nutrient poor environments. The dominance by S. julianum was particularly worrisome as it is considered
highly biodeteriogenic in that it causes extensive calcium carbonate precipitates by dissolution of
minerals from the substrata [11,13].
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Figure 3. Biofilm sample taken from the wall of Room 93 and observed at the Confocal Laser Scanning
Microscope (CLSM); the biofilm is dominated by S. julianum (thick filaments) and Leptolyngbya sp.
(thin filaments). Scale bar = 40 µm.

3.3. Associated Heterotrophic Microorganisms

The microbial load composed of heterotrophic bacteria in the collected biofilm was 5.55 ± 0.6
(×107 CFU/g of wet biofilm), 5.4 ± 0.8 (107 CFU/g of wet biofilm) and 3.6 ± 0.3 (105 CFU/g of wet biofilm)
on TSA, MM and PDA mediums, respectively. Based on colony morphologies, ten bacterial strains
were isolated and identified (Table 1), belonging to three main phyla: Proteobacteria (class Alpha and
Gamma), Actinobacteria and Bacteroidetes.

Table 1. Phylogenetic affiliation by 16S r-DNA sequencing of the bacterial strains co-occurring
in the sampled biofilm. The strains have been named with the abbreviation DA followed by a
progressive number.

Strain Name Phylum Species ID %

DA1 Bacteroidetes Chriseobacterium plytrichastri 98
DA2 Proteobacteria Ensifer adhaerens 98
DA3 Proteobacteria Inquilinus ginsengisoli 96
DA4 Proteobacteria Pseudomonas asplenii 97
DA5 Proteobacteria Pseudomonas glareae 97
DA6 Proteobacteria Pseudomonas helmanticensis 99
DA7 Proteobacteria Pseudomonas vancouverensis 99
DA8 Actinobacteria Rhodococcus jostii 98
DA9 Actinobacteria Rhodocossus koreensis 98

DA10 Actinobacteria Streptomyces spororaveus 99

Only a few colonies of fungal strains were grown on PDA plates, but not yet identified.
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The presence of both heterotrophic and phototrophic microorganisms within the biofilm suggests
that they may be acting in synergy and could actually be causing the enhancement of hypogean
biodeterioration processes. Bacteria and fungi can proliferate using the organic matter released by
phototrophs and in turn secreting acidic organic compounds that can solubilize the minerals of the
substratum, which are in turn utilised by the algal component [35]. The strain Ensifer adhaerens DA2
participate as a nitrogen-fixing agent.

In Roman Catacombs Actinobacteria (especially Streptomyces) and filamentous fungi (e.g., Sporotrichum,
Aspergillus, Cladosporium, Penicillium, etc.) are commonly detected together with photosynthetic microbes [36].
They are widely distributed on stone monuments because of their filamentous growth and their ability
to use a large range of nitrogen and carbon sources [37]. Moreover, in this study we have isolated some
slime-forming bacteria, belonging to the genus Pseudomonas, already described in surface samples of the
Roman Catacombs of St. Callixtus and Domitilla [37,38]. Slime-forming bacteria play an essential role
in biofilm establishment, producing extracellular complex carbohydrates which ensure adhesion of
microbial cells to surfaces, provide protection from environmental antimicrobials, serve as reservoirs for
nutrients and create distinct architectures to facilitate further microbial adherence [39,40]. Members of
Alpha Proteobacteria and Bacteroidetes were frequently found as heterotrophic components of biofilms
affecting stone monuments [41,42].

3.4. Effects of Phyto-Derivatives Treatments

Preliminary tests on biofilms grown on agarised BG11 medium were carried out to compare
the effects of lavender and liquorice extracts on the vitality of phototrophs. As shown in Figure 4,
among the yield values of the controls there were no significant differences (p > 0.05); however, those of
all the treated biofilms were significantly lower than the controls (p < 0.001).
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Figure 4. Changes over time of photosynthetic yield (Fv/Fm) of cultured biofilms treated at days 0 and
5 with diverse phyto-derivatives, (a) control (CTRL), (b) lavender essential oil (Lavandula angustifolia
Mill.) (LAV), (c) liquorice alcoholic leaf extract (Glycyrrhiza glabra L.) (LIQ) at 10% and (d) 30%. After each
treatment measurements were made immediately, then at 5, 30 and 90 min, 1 and 5 days (10 days
in total).

The immediate reduction in yield of the controls and, to some extent, in the treatments, may be
due to the partial submergence of the biofilm by addition of the treatment solution, which may have
reduced gas exchange to the cell [43]. However, even after removal of this effect from the treatment
yields (i.e., Fv/Fm treated biofilm—Fv/Fm control), there was still a 50% (LAV), 30% (LIQ10) and 60%
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(LIQ30) reduction in Fv/Fm. There was a significant reduction in yields of the lavender and both
the liquorice treated biofilms after five minutes (p < 0.001) and it remained so for the full 10 days.
Therefore, it seems yield is susceptible to the two plant extracts, although the mode of action is
not easy to determine. The minimal fluorescence (Fo) values either remained relatively unchanged
(LAV) or decreased (LIQ), actually indicating no photodamage [44], while a larger decrease in Fm was
observed that could represent enhanced nonradiative energy loss (heat dissipation) that may act in
photo-protection or -repair [45]. In all treatments, yield did recover to some extent, rapidly within
the first day, then slower until day five: Recovery from the maximum reduction was 20% for both
treatments of LAV, 10% and 6% for LIQ10, 22% and 25% for LIQ30. This recovery is not thought to be
a result of new growth; as observations of the biofilms did not indicate this, more likely, it was the
occurrence of cellular repair of the photosynthetic apparatus. Yield responded similarly to the second
treatment (day 5)—an initial decrease, followed by a slow partial recovery. This time the recovery
resulted in yield values that were not significantly different to the initial (day 5) value (p > 0.05).
However, yields did remain significantly lower than the original levels (day 0) during the experiment
(p < 0.01). In a study of the recovery of structure and function of freshwater biofilms after being treated
with short pulses of herbicide (Diuron) or bactericide (Triclosan), it was established that short biocide
pulses can efficiently cause transient effects on biofilms, while longer pulses would result in more
persistent effects with chronic ones that could be lethal to the biofilm [46]. In the scenario here using
phytoextracts, given their volatile nature, they may behave in a similar manner to the through-flow
pulse method and more frequent applications would be needed to determine if there is a chronic effect
on biofilm status. A second test has been carried out inside well plates containing a piece of biofilm
(250 mg each) evaluating the effect of two applications of LAV, LIQ and a mixed solution of both
(LIQLAV) on photosynthetic and heterotrophic microorganisms. As shown in Figure 5 there were no
significant differences between the yields before treatments and those of the control biofilms (p > 0.05).
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Control (CTRL), benzalkonium (BENZ, positive control), lavender at 5% (LAV), liquorice at 10% (LIQ)
and a mixture of lavender 5% and liquorice 10% (LIQLAV).

The effects of the phyto-derivatives on the photosynthetic yield were comparable to the synthetic
BENZ (p > 0.05) and resulted in significant lowering of yield (p < 0.01–0.001). One interesting aspect is
the similar Fv/Fm values for all treatments; the level indicating the presence of no viable photosynthesis
was not determined. However, Fv/Fm values lower than 0.1 have been proposed for other biofilms
to indicate a total loss of photosynthetic activity [47,48], which is similar to the values found in this
study and may explain a great deal of the similarity in the response of the biofilms to the treatments.
Concerning the effect of the treatments on the heterotrophic bacteria, in Table 2 are reported the
microbial load and the number of bacterial strains found in the biofilms after the first and second
application of the different phyto-derivatives in the well plates.
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Table 2. Colony forming units (CFUs) of cultivable heterotrophic bacteria in the different treatments
after first and second application. CFU as referred to gram of wet biofilm. In the last column are
reported the number of bacterial strains isolated after the second application.

Treatments I (CFU/g Wet Biofilm) II (CFU/g Wet Biofilm) No. Bacterial Strains
after II Application

CTRL (2.50 ± 0.3) × 108 (1.00 ± 0.5) × 108 6
LIQ (1.20 ± 0.2) × 109 (8.50 ± 0.3) × 108 1
LAV (6.20 ± 0.5) × 109 (4.40 ± 0.2) × 108 5

LIQLAV (1.10 ± 0.2) × 109 (3.50 ± 0.4) × 108 3
BENZ (2.60 ± 0.3) × 108 (2.00 ± 0.5) × 108 6

Based on colony morphologies bacterial strains were isolated and identified. In Table 3 the
bacterial strains isolated from the sampled biofilms and from the different treatments after the second
application are reported. The DNA sequences have been submitted and we are awaiting the GenBank
accession number.

Table 3. Phylogenetic identification by 16S r-DNA sequencing of the bacterial strains from the sampled
biofilm (in situ) and from the different treatments after the second application. The X indicates the
occurrence of each strain in the different treatments.

Strain nr ID Sampled
Biofilm CTRL LIQ LIQLAV LAV BENZ Phylum

DA17 Brevundimonas alba X Proteobacteria
DA1 Chriseobacterium plytrichastri X Bacteroidetes
DA18 Dyadobacter sp. X Proteobacteria
DA2 Ensifer adhaerens X X X X Proteobacteria
DA15 Exiguobacterium mexicanum X Firmicutes
DA3 Inquilinus gingengisoli X Proteobacteria
DA19 Lysovacter sp. X Proteobacteria
DA11 Mesorhizobium olivaresii X Proteobacteria
DA16 Microbacterium hydrocarbonoxydans X Actinobacteria
DA20 Phyllobacterium catacumbae X Proteobacteria
DA4 Pseudomonas asplenii X X Proteobacteria
DA5 Pseudomonas glaerae X X X X X Proteobacteria
DA6 Pseudomonas helmanticensis X X Proteobacteria
DA7 Pseudomonas vancouverensis X X Proteobacteria
DA12 Pseudoxanthomonas dokdonensis X Proteobacteria
DA8 Rhodococcus jostii X Actinobacteria
DA9 Rhodococcus korensis X Actinobacteria
DA13 Sphingomonas desiccabilis X Proteobacteria
DA14 Stenotrophomonas rhizophila X X Proteobacteria
DA10 Streptomyces spororaveus X Actinobacteria

Phyto-derivative treatments, as well as benzalkonium chloride, seemed to have little to no effect
on the vitality of the heterotrophic bacteria in terms of total microbial load (Table 2), but did have an
effect on the composition (Table 3). The diversity of the heterotrophic culturable community of the
biofilms was lower in all the treatments, including the control, if compared to the sampled biofilm.
However, this may be explained somewhat by the stress induced by the change of culture conditions
when moving the biofilm from the original surface to the well plates; in particular, Actinobacteria and
Bacteroidetes strains seemed particularly susceptible while the Proteobacteria predominated. This was
especially true in the benzalkonium-treated biofilm. Proteobacteria strains, in particular Pseudomonas
spp., are metabolically active Gram-negative able to use a wide variety of macromolecules, including
the organic cell debris originating by the death of biocide-sensitive components of the microflora [11].
In spite of this, the treatment with leaf liquorice extract dramatically reduced species richness to only
one isolated strain, Pseudomonas asplenii, demonstrating the antibacterial effect already observed on
bacteria isolated in clinical trials [24] and more recently against strains isolated from different artwork
materials [18]. This effect was still evident in the combined liquorice–lavender treatment, where the
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number of isolated strains was reduced to three, all belonging to Proteobacteria. The treatment with
lavender alone, although it did not reduce biodiversity greatly, did induce a species replacement with
the appearance of strains belonging to Firmicutes and Actinobacteria.

3.5. In Situ Treatments

Following the well plate experiments, three areas of Room 93 covered by phototrophic biofilms
were treated in situ by spraying with liquorice and benzalkonium. Data obtained comparing the effects
of the two biocides are reported in Figures 6 and 7.
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Figure 6. In situ treatment of biofilms growing in Room 93 of the Domus Aurea, Rome. Three treatments
(CTRL (black), BENZ (white), LIQ (grey)); two applications, the first on day 0 and the second on day 14.
PAM fluorometer measurements of yield were made immediately before both treatment applications
(0 and 14 day), 5 min after (+5 min), then on days 7 and 14 after the first application, and then on days
35 and 76 (n = 3).
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Figure 7. In situ Digital Microscope pictures of the treated surfaces at different time intervals acquired
with Handheld Digital Microscope (USB) Dino-Lite Premier 1.3 MP (AnMo Electronics Corporation,
Taiwan). The effect of LIQ and BENZ on the discolouration of the biofilms is evident.

The photosynthetic yields (Figure 6), measured 5 min after the application of benzalkonium,
were significantly lower than the control and the liquorice treated biofilms (p < 0.05). However,
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yield recovery in the biofilms treated with the liquorice extract was almost complete by day 14,
when compared to the control (p < 0.05), but after the second treatment yield remained 57% lower
than the control by day 76. This suggests a possible chronic effect of the treatments or that a higher
concentration of the active ingredients is needed to have a lasting effect.

Images of the treated areas taken weekly until 21 days are shown in Figure 7.
The biofilms collected 14 days after the first application were transferred to the lab and observed

using light and stereo microscopes (Figure 8). As already observed with PAM measurements, both in
situ and lab images showed that BENZ had a stronger effect on the photosynthetic cells, particularly
evident in the filaments of S. julianum that turned from green to white. The liquorice extract also
had a visible biocidal effect, albeit at a lower level, where photosynthetic cells turned from green
to light yellow, although this was possibly due to the staining by the liquorice extract itself on the
carbonaceous sheath of S. julianum. While it was not possible to continuously follow the biofilms,
it would be intriguing to know if the presence of some green filaments in the liquorice-treated area
were a sign of recovery by some resilient cells that could support the PAM fluorimetry data.
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To date, there are still no in situ studies containing detailed biofilm monitoring after treatments on
a daily basis. This remains an intriguing challenge for future studies that should have a great impact
on effective protocol development for biocide application for conservation purposes.

4. Conclusions

These studies performed in the prestigious sites of the Domus Aurea, Rome, took into consideration
the majority of heterotrophic and phototrophic organisms forming subaerial biofilms, and the effects
of biocide treatments on their function and composition. Liquorice alcoholic leaf extract (Glycyrrhiza
glabra L.) was highly efficient in deterring phototrophic biofilm function and growth and when used in
combination with lavender (Lavandula angustifolia Mill.) there was a further increase in the biocidal
effect. This mixture (liquorice and lavender) also reduced the number of the cultivable heterotrophic
bacteria strains in the biofilm, highlighting the widescale effect of these phyto-derivatives and showing
the promise that these substances have when used, both alone and in combination. The application of
the liquorice extract on the walls of Room 93 revealed how important it is to perform in situ trials to
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optimize the application of biocides for developing effective protocols, including to define the number
of applications and the intervals between treatments.

Overall, the results obtained in this study showed that phyto-derivative products are promising
as new non-invasive biocides to be employed for restoration and conservation actions of valuable sites.
However, more on-site studies are needed with detailed follow-up monitoring to further understand
their mechanisms.
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