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Abstract

We study the problem of recovering Wightman conserved currents
from the canonical local implementations of symmetries which can be
constructed in the algebraic framework of quantum field theory, in
the limit in which the region of localization shrinks to a point. We
show that, in a class of models of conformal quantum field theory
in space-time dimension 1+1, which includes the free massless scalar
field and the SU(N) chiral current algebras, the energy-momentum
tensor can be recovered. Moreover we show that the scaling limit
of the canonical local implementation of SO(2) in the free complex
scalar field is zero, a manifestation of the fact that, in this last case,
the associated Wightman current does not exist.
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1 Introduction

In classical relativistic field theory Noether’s theorem associates a conserved

current to every one-parameter group of symmetries of the Lagrangian. More-

over the zero component of this current is a density for the infinitesimal

generator of this one-parameter group. Although the presence of conserved

currents related to symmetries is a general feature of models of quantum field

theory, the understanding of this relation in this context is less satisfactory

that in the classical case. In the Lagrangian approach to quantum field the-

ory, for example, a classical symmetry can disappear at the quantum level

because of the renormalization procedure. Moreover the classical expression

of the currents does not give a well defined quantum field because it involves

multiplications of the basic fields at the same point, so that, to give a precise

definition of the current, one need a further renormalization (for a discus-

sion see [14]). On the other hand, if one starts from general assumptions as

the Wightman axioms [16], the existence of such conserved currents must be

postulated.

In the algebraic formulation of quantum field theory (“local quantum

physics” [10]) a new approach towards a quantum Noether’s theorem has

been conceived by Doplicher in [5] and developed by Doplicher, Longo and

Buchholz in [8] and [2]. In these works it has been proved that, in a the-

ory where the field net satisfies the split property (see [10] and the refer-

ences quoted there for the meaning and the relevance of the split property in

quantum field theory), the global symmetries, including discrete symmetries,

space-time symmetries and supersymmetries, can be locally implemented by

unitary operators which are canonically constructed from the theory in ques-

tion. If a part of the symmetries considered forms a connected Lie group,
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then the generators of the corresponding local implementations can be con-

sidered as the analogue of the zero component of Wightman conserved cur-

rents, smeared with appropriate test functions with support in the region of

localization.

It has been suggested by Doplicher in [5] (see also [6] and [7]) that the

canonical local generators constructed using the split property could be used

to construct Wightman current by an appropriate scaling limit in which the

region of localization shrinks to a point. The success of this program would

give us a complete quantum Noether’s theorem and a general prescription

to construct Wightman fields with a definite physical meaning, directly from

the algebra of observables.

In this paper we study this problem in some models of chiral field theo-

ries, which are a special class of conformal field theories in 1+1 space time

dimensions (see [12] and[4]) that live in the real line, hoping that this will

give some enlightenment on the study of a more general situation. The choice

of chiral field theories is motivated by their simplicity and by the fact that

dilation invariance permits to treat scaling limits in an intrinsic way.

We show that, in a class of models of chiral theories, which includes the

free massless scalar field and models arising from representation theory of

certain loop groups, the energy-momentum tensor can be recovered in the

scaling limit of the canonical local generator of translations constructed by

the prescriptions given in [2]. Moreover we show that in the case of the

free massless complex field, if we consider the canonical local generator of

the SO(2) symmetry, the scaling limit is zero. We interpret this result as a

consequence of the fact that the conserved current associated to the phase

transformation is not a well defined Wightman field, because of the typical

infrared problems of the two-dimensional case.
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One of the key ingredients of this work is the analysis given in [11] for

the construction of pointlike localized fields from conformally invariant Haag

-Kastler nets.

The present paper is organized in the following way: in section 2 we give

assumptions without referring to particular models and show that they are

sufficient to recover the energy-momentum tensor (a priori supposed to ex-

ist) in the scaling limit of appropriate bounded functions of the canonical

local generators. Some of these assumptions are standard but others can be

justified only because they work in a non empty class of models, providing

us some non trivial examples in which the general program can be realized.

Their abstraction from the models is then motivated only by the hope of

simplifying the exposition and giving a clear idea of the limits of a possible

generalization to models not considered in this paper. In section 3 we show

that assumptions of section 2 are satisfied in the models cited above, com-

pleting our discussion about the energy-momentum tensor. In section 4 we

consider the case of the complex scalar field and finally in section 5 we make

some concluding remarks.

2 General Assumptions, Results and Proofs

Let K denote the set of non empty open bounded intervals of the real line

R. We consider a family F = (F(I))I∈K of von Neumann algebras (the field

algebra), acting on a separable Hilbert space H and we assume that this

family satisfies the following properties.

(i) Isotony:

F(I1) ⊂ F(I2) for I1 ⊂ I2, I1, I2 ∈ K. (1)
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(ii) Locality:

F(I1) ⊂ F(I2)′ for I1 ∩ I2 = ∅, I1, I2 ∈ K. (2)

(iii) There exists a strongly continuous unitary representation U of SL(2, R)

in H such that

U(−1) = 1 (3)

and

U(α)F(I)U(α)−1 = F(αI) for I, αI ∈ K, (4)

where

SL(2, R) 3 α =

(
a b
c d

)
acts on R

⋃{∞} by

x→ αx =
ax+ b

cx+ d
(5)

(note that for every I ∈ K we have αI ∈ K if α is close enough to 1).

(iv) The conformal Hamiltonian L0, which generates the restriction of U

to the one-parameter group

t→
(

cos t
2
−2 sin t

2
1
2

sin t
2

cos t
2

)
,

has non-negative spectrum.

(v) There is a unique (up to a phase) U -invariant unit vector Ω∈H (the

vacuum vector).

(vi) H is the smallest closed subspace containing Ω which is invariant for

U and F(I) for every I∈K.

(vii) Split property:

Let I, Ĩ ∈ K such that the closure of I is contained in Ĩ (we write I ⊂⊂ Ĩ).

Then there exists a factor of type I N such that:

5



F(I) ⊂ N ⊂ F(Ĩ). (6)

(viii) There exists a strongly continuous unitary representation V of a

compact group G leaving the vacuum invariant, commuting with U and such

that

V (g)F(I)V (g)−1 = F(I) for g ∈ G and I ∈ K. (7)

(ix) Let T (a) = U

(
1 a
0 1

)
be the group of translations. There exists a

Wightman field Θ (the energy-momentum tensor) given on an invariant dense

domain DΘ containing the vacuum, such that: Θ(f) is essentially self-adjoint

for every function f ∈ SR (SR is the space of real Schwartz test functions);

if A(I) := {F ∈ F(I) : V (g)F = FV (g)} for I ∈ K (the observable algebra)

then

eiΘ(f) ∈ A(I), (8)

for f ∈ SR with support contained in I;

U(α)Θ(x)U(α)−1 =

(
dαx

dx

)2

Θ(αx) for α ∈ SL(2, R); (9)

and if f ∈ SR is such that f(x) = 1 for x ∈ I then

eiaΘ(f)Fe−iaΘ(f) = T (a)FT (−a) if F, T (a)FT (−a) ∈ F(I). (10)

(x) Let H0 be the V -invariant subspace of H. Because of the positivity of

L0 the representation U splits into a direct sum of irreducible representations

τ acting on a subspaceHτ (see [15] and cf. [11]). The equivalence class of each

τ is determined by a non-negative integer n(τ) which is the lower bound of

the spectrum (which is discrete and simple) of the restriction of L0 toHτ . We
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then assume that, in the decomposition of the restriction of U to H0 (which

is U -invariant because U commute with V ), there appear no representations

τ with n(τ) = 1 and only one representation τ with n(τ) = 2.

Note that only here we have a significant restriction for the group G that

until now could be taken to be the trivial group.

From the first six assumptions several results can be proved. For example

PCT theorem, Haag duality, additivity, the Reeh-Schlieder property (see [11],

[13] and [1]). In particular it has been proved in [11] that these assumptions

imply the existence of pointlike localized fields naturally associated to F and

the existence of local operator product expansions.

The split property, together with the Reeh-Schlieder property and lo-

cality, implies that, if for I, Ĩ ∈ K we have I ⊂⊂ Ĩ, then the triple

Λ = (F(I), F(Ĩ), Ω) is a standard and split inclusion of von Neumann

algebras (see [9]). By the results in [2] there exists a local canonical imple-

mentation of the translations TΛ(a) = eiaPΛ in the sense that:

TΛ(a)FTΛ(−a) = T (a)FT (−a) for F, T (a)FT (−a) ∈ F(I) (11)

and

TΛ(a) ∈ F(Ĩ). (12)

Using the transformation properties for the canonical implementations of

symmetries (see [2]) we also have

TΛ(a) ∈ A(Ĩ) (13)

T (x)TΛ(a)T (−x) = TΛ+x(a) (14)

D(λ)TΛ(a)D(λ)−1 = TλΛ(λa) (15)
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where D(λ) = U

(
λ

1
2 0

0 λ−
1
2

)
is the group of dilations and Λ + x, λΛ are

the triples associated to the pairs I + x, Ĩ + x and λI, λĨ respectively.

Heuristically one may think of PΛ as an analogue of Θ(fΛ), where fΛ is

a real function with the support in Ĩ and equal to 1 in I (cf. [6], [7] and

[8]). In fact they differ by a perturbation in F(I)′
⋂F(Ĩ). Then one has the

(heuristic) estimate∫
ϕ(x)PλΛ+xdx∼λ→0λ

∫
fΛ(x)dxΘ(ϕ) for ϕ ∈ S (16)

(S is the complex space of Schwartz test functions).

To avoid problems with the domain of PΛ (we don’t know if it contains the

vacuum) we prefer to consider i
λ
[TλΛ(λa)−(Ω, TλΛ(λa)Ω)] instead of PλΛ (the

vacuum mean value subtraction is a necessary renormalization prescription).

Then the previous estimate suggests

lim
λ→0

λ−2
∫
ϕ(x)T (x)D(λ)[TΛ(a)− (Ω, TΛ(a)Ω)]D(λ)−1T (x)−1 = ηΘ(ϕ) (17)

where η is a constant independent of ϕ.

Actually a further regularization is needed to avoid possible singularities

of the limit, corresponding to the non integrability of fΛ (cf. [11]). Let µ

be the Haar measure on SL(2, R) and h ∈ C∞ (SL(2, R)) have a compact

support and integral equal to 1. For every bounded operator B on H we

consider Bh =
∫
h(α)U(α)BU(α)−1dµ(α). We can now state the following

theorem.

Theorem. For every h as described above with support sufficiently close

to the identity there is a constant η such that for, every ϕ ∈ S with support

contained in an open interval J ∈ K we have

lim
λ→0

λ−2
∫
ϕ(x)T (x)D(λ)[TΛ(a)− (Ω, TΛ(a)Ω)]hD(λ)−1T (x)−1dxψ =
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= ηΘ(ϕ)ψ (18)

for every ψ ∈ F(J)′Ω, in the weak topology of H.

Proof. If the support of h is sufficiently close to the identity then

[TΛ(a)− (Ω, TΛ(a)Ω)]h ∈ A(Î)

for some Î ∈ K so that∫
ϕ(x)T (x)D(λ)[TΛ(a)− (Ω, TΛ(a)Ω)]hD(λ)−1T (x)−1dx ∈ A(J)

for λ sufficiently small. It is then clear that it is enough to prove our assertion

when ψ = Ω.

Let HΘ be the closure of the subspace {Θ(f)Ω : f ∈ S}. Then, by the

covariance of Θ with respect to SL(2, R), we see that the restriction of U

to HΘ is irreducible (see [11]). Let PΘ be the orthogonal projection onto

HΘ. Following the arguments given in [11] in the construction of pointlike

localized fields, and using the fact that Θ can be identified with (a multiple

of) the field ϕΘ associated to HΘ which has been constructed in [11] we find

that

lim
λ→0

λ−2PΘ

∫
ϕ(x)T (x)D(λ)[TΛ(a)− (Ω, TΛ(a)Ω)]hD(λ)−1T (x)−1dxΩ =

= ηΘ(ϕ)Ω (19)

for every ϕ ∈ S and an appropriate constant η. Since, by assumption (x), HΘ

is the only (closed) subspace of H0 which is irreducible for U with conformal

dimension equal to one or equal to two, for every orthogonal projection Pτ

onto a U -irreducible subspace Hτ orthogonal to HΘ we have, following again

the arguments given in [11],

lim
λ→0

λ−2Pτ

∫
ϕ(x)T (x)D(λ)[TΛ(a)− (Ω, TΛ(a)Ω)]hD(λ)−1T (x)−1dxΩ =
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= 0 (20)

for every ϕ ∈ S. Then if ψ is in the linear span of finitely many U - irreducible

subspaces of H we have

lim
λ→0

λ−2(ψ,
∫
ϕ(x)T (x)D(λ)[TΛ(a)− (Ω, TΛ(a)Ω)]hD(λ)−1T (x)−1dxΩ) =

= (ψ, ηΘ(ϕ)Ω) . (21)

Since the set of such vectors ψ is dense in H, to prove the weak convergence

it is enough to show that the norm of

λ−2
∫
ϕ(x)T (x)D(λ)[TΛ(a)− (Ω, TΛ(a)Ω)]hD(λ)−1T (x)−1dxΩ

is bounded with respect to λ.

We have

‖λ−2
∫
ϕ(x)T (x)D(λ)[TΛ(a)− (Ω, TΛ(a)Ω)]hD(λ)−1T (x)−1dxΩ‖2 =

= λ−4
∫ ∫

ϕ̄(y)ϕ(x)

(Ω, [TΛ(a)− (Ω, TΛ(a)Ω)]∗hT (
x− y
λ

)[TΛ(a)− (Ω, TΛ(a)Ω)]hΩ)dydx. (22)

By the conformal cluster theorem [11] the Fourier transform of

(Ω, [TΛ(a)− (Ω, TΛ(a)Ω)]∗hT (x)[TΛ(a)− (Ω, TΛ(a)Ω)]hΩ)

can be written as ϑ(p)p3F (p), where ϑ(p) is the Heaviside step function and

F (p) is an analytic function of rapid decrease (see [11]) so that we have

‖λ−2
∫
ϕ(x)T (x)D(λ)[TΛ(a)− (Ω, TΛ(a)Ω)]hD(λ)−1T (x)−1dxΩ‖2 =

=
∫ ∞

0
|ϕ̂(p)|2F (λp)p3dp ≤ maxF

∫ ∞
0
|ϕ̂(p)|2p3dp (23)
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Q.E.D.

We observe now that this theorem gives a positive answer to our problem

if we can show that the constant η is not zero. From the non-vanishing

argument given in [11] it follows that if

PΘTΛ(a)Ω 6= 0 (24)

an accidental vanishing of η for a given function h can be avoided by an

arbitrarily small translation of h on SL(2, R). Unfortunately we are not able

to prove the above condition. However we avoid this problem with the aid

of the following proposition.

Proposition. There exist values of x and a, for arbitrarily large |x|, such

that

PΘTΛ(a)TΛ+x(a)Ω 6= 0. (25)

Proof. Let’s suppose the contrary, i.e.

PΘTΛ(a)TΛ+x(a)Ω = 0 (26)

for every a and x such that |x| > L. Without loss of generality we can assume

L greater than the diameter of the interval Ĩ where TΛ is localized. For every

x such that |x| > L, we can choose a function fx ∈ SR such that, for ε small

enough

eiεΘ(fx)TΛ(a)TΛ+x(a)e−iεΘ(fx) = TΛ(a)TΛ+ε+x(a). (27)

It follows that
d

dx
(Ω, TΛ(a)T (x)TΛ(a)Ω) =

= i(Θ(fx)Ω, TΛ(a)TΛ+x(a)Ω)− i(Ω, TΛ(a)TΛ+x(a)Θ(fx)Ω) =
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= 0 (28)

for |x| > L and then (using the conformal cluster theorem) that the function

x→ (Ω, TΛ(a)T (x)TΛ(a)Ω)− (Ω, TΛ(a)Ω)2

has compact support. Then, using the positivity of the generator of T (pos-

itivity of the energy) we have

(Ω, TΛ(a)T (x)TΛ(a)Ω) = (Ω, TΛ(a)Ω)2 (29)

for every a, x ∈ R. In particular we have

(Ω, TΛ(2a)Ω) = (Ω, TΛ(a)Ω)2. (30)

Let E0 be the orthogonal projection onto the subspace of H spanned by Ω.

Using the conformal cluster theorem it is not difficult to prove that in the

limit a → ∞ T (a) converges to E0 in the weak topology of B(H) (cf. [16]).

Thus T (a)⊗ 1 converges to E0⊗ 1 in the weak topology of B(H⊗H). Since

E0⊗1 is the orthogonal projection onto the T⊗1-invariant subspace ofH⊗H
and since TΛ is unitarily equivalent to T ⊗ 1 [8], the previous equation leads

to

(Ω, EΛΩ) = (Ω, EΛΩ)2 (31)

where EΛ is the orthogonal projection onto the TΛ- invariant subspace of H.

Since Ω cannot be TΛ-invariant because of the Reeh-Schlieder property, the

previous equality implies that

(Ω, EΛΩ) = 0, (32)

so that, using the fact that EΛ is local and different from 0, we are led the

desired contradiction.
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It is now clear that if we use TΛ(a)TΛ+x(a), which implements the trans-

lations in a disconnected region (here we take x large), instead of TΛ(a), then

the result of the previous theorem can be strengthened by the fact that the

constant η is different from zero for a suitable choice of h, a and x.

Remark. We have proved that the scaling limit converges on the dense

domain F(J)′Ω when the test function ϕ has support in the open interval J .

We will show in the appendix that, for every J ∈ K, F(J)′Ω contains a core

for L0. Thus, in typical models, the energy-bounds proved in [3] imply that

F(J)′Ω is a core for Θ(ϕ).

3 The Models

In this section we consider some models satisfying the assumptions of section

2. Since these models are standard, here we sketch most of their properties

referring to the literature for the details (in particular to [12], [4] and [13]).

The Free Hermitian Scalar Field

This theory is generated by a hermitian Wightman field j on the real line

(the U(1)-current ) satisfying the canonical commutation relations

[j(x), j(y)] = iδ′(x− y). (33)

We can define the local field algebras by

F(I) = {j(f) : f ∈ SR and suppf ⊂ I}′′ for I ∈ K. (34)

By the results in [3] and [13] it follows that assumptions from (i) to (vi) of

section 2 are satisfied (see also [12] and [4]). The transformation j → −j
leaves all the Wightman functions invariant and so they can be unitarily im-

plemented (see [16]) giving a representation of Z2 which satisfies assumption
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(viii). An energy-momentum tensor satisfying assumption (ix) is given by

Θ(x) =
1

2
: j2 : (x), (35)

where the double dots indicate the Wick product. Assumption (x) can be

proved by showing that in H0 there is only one (up to a multiplicative con-

stant) eigenvector of L0 corresponding to the eigenvalue 2 and no eigenvectors

corresponding to the eigenvalue 1 (here we are using the properties of the ir-

reducible representations with positive conformal Hamiltonian stated above).

To prove the last statement we use the fact that for every positive integer

n the corresponding eigenspace is given by the linear span of vectors of the

following form

J−n1J−n2 ...J−nk
Ω, (36)

with

n1 ≥ n2... ≥ nk ≥ 1, (37)

n1 + n2...+ nk = n, (38)

where for every integer m, Jm is the m-th Fourier component of j (see [4]

). Since for every integer m the projection of JmΩ onto H0 is zero (because

V (−1)JmV (−1) = −Jm) then the only eigenvector (up to a multiplicative

constant) of L0 in H0 corresponding to the eigenvalue 2 is given by

J−1J−1Ω. (39)

Finally the split property (assumption (vii)) follows from the finiteness of

the trace of e−βL0 for positive β together with an appropriate estimate for

β → 0 [13].

Chiral current algebras of simple Lie groups

Let G a connected, simply connected, simple, simply laced and compact
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Lie group and let LG be its Lie algebra. We consider theories arising from

vacuum representations of the Kac-Moody algebra associated to G (see [12]

and [4]). They are generated by a family of hermitian Wightman currents

{ju : u ∈ LG} such that the map u→ ju is R-linear and, for every u, v ∈ LG,

[ju(x), jv(y)] = ij[u,v](x)δ(x− y) + ik < u, v > δ′(x− y), (40)

where k is a positive constant and < ·, · > is the unique (up to a normaliza-

tion) invariant scalar product on LG. With an appropriate normalization for

< ·, · >, the possible values of k (levels) are restricted to be positive integers.

If we define the field net by

F(I) = {ju(f) : u ∈ LG, f ∈ SR, suppf ⊂ I}′′ for I ∈ K (41)

then, by the results in [3] and [13], all the assumptions from (i) to (vii) are

satisfied and there is a representation V of G with the properties of (viii)

and such that, for every u ∈ LG, g ∈ G

V (g)juV (g)−1 = jgu (42)

(with gu we denote the adjoint representation of G on LG). An energy-

momentum tensor Θ with the properties of (ix) is obtained by the Sugawara

construction (see [12], [4] and [13]). Finally we show the validity of assump-

tion (x).

For every positive integer n the corresponding eigenspace of L0 is given

by the linear span of vectors of the following form

Ju1
−n1

Ju2
−n2

...Juk−nk
Ω, (43)

with

n1 ≥ n2... ≥ nk ≥ 1, (44)
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n1 + n2...+ nk = n, (45)

where u1, ..., uk ∈ LG and, for every integer m and u ∈ LG, Jum is the m-th

Fourier component of ju (see [4]). If P0 is the orthogonal projection onto H0

then we have, for every integer m and u ∈ LG

P0J
u
mΩ = 0. (46)

Moreover there exists a vector ψ ∈ H such that, for every u, v ∈ LG

P0J
u
−1J

v
−1Ω =< u, v > ψ. (47)

By the same argument given above, this implies that assumption (x) holds.

Before concluding this section, we shortly describe the case of the chiral

current algebras of some semisimple compact Lie groups. We consider a

group G which is the direct product of a finite number N of connected,

simply connected, simply laced, simple compact Lie groups Gi; i = 1, ..., N .

The corresponding local field algebras are given, for every I ∈ K, by

F(I) = F1(I)⊗ ...⊗FN(I), (48)

where, for i = 1, ..., N , Fi is the field net generated by the chiral current

algebra of Gi considered above. Moreover the vacuum representation of F
is the tensor product of the vacuum representations of Fi; i = 1, ..., N . The

energy-momentum tensor is given by

Θ(x) =
N∑
i=1

Θi(x), (49)

where Θi is the Sugawara energy-momentum tensor corresponding to Gi.

Besides it is not difficult to show that, for every triple Λ, the canonical local

implementation of the translations is given by

TΛ = T 1
Λ ⊗ ...⊗ TNΛ . (50)
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Thus, a similar analysis to that given in section 2, shows that, for every

infinitely differentiable function h on SL(2, R) with support close enough to

the identity and for every ϕ ∈ S such that suppϕ ∈ J (J ∈ K open), we have

lim
λ→0

λ−2
∫
ϕ(x)

T (x)D(λ)[TΛ(a)TΛ+y(a)− (Ω, TΛ(a)TΛ+y(a)Ω)]hD(λ)−1T (x)−1dxψ =

=
N∑
i=1

ηiΘi(ϕ)ψ (51)

for every ψ ∈ F(J)′Ω, in the weak topology of H. Moreover for every i an

accidental vanishing of ηi can be avoided by an appropriate choice of y and

a and by an arbitrarily small translation of h. Unfortunately we are not able

to prove in general that all the constants ηi must be equal. So, in this case

the result is less satisfactory than that given for a simple group. However, in

the particular case in which all the groups Gi are equal, the equality of the

constants ηi follows from the symmetry under the permutation group SN .

4 A “Bad” Example

In this section we consider the free complex scalar field. This model is gener-

ated by two commuting chiral currents j1 and j2. For the two point Wight-

man functions we have

(Ω, j1(x)j2(y)Ω) = (Ω, j2(x)j1(y)Ω) = 0, (52)

(Ω, j1(x)j1(y)Ω) = (Ω, j2(x)j2(y)Ω). (53)

The transformations

j1(x)→ cosϑj1(x) + sinϑj2(x),

j2(x)→ cosϑj2(x)− sinϑj1(x) (54)
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leave then all the Wightman functions invariant and so can be implemented

by a unitary representation S of SO(2) leaving the vacuum invariant. Since

this model is the tensor product of two free scalar Hermitian field models,

the split property is fulfilled. So, by the results in [8], we can consider the

canonical local implementations SΛ of S. In this case, as we are considering a

gauge symmetry (corresponding to a dimensionless charge), the correct scal-

ing factor in the scaling limit is λ−1. Let H0 be the S- invariant subspace of

H. An argument similar to those given in the previous section shows that, in

H0, there are no irreducible components of the representation U of SL(2, R)

with conformal dimension equal to one. Moreover, by the transformation

properties of SΛ [2] we have

S(ϑ)SΛ(ϑ′)S(ϑ)−1 = SΛ(ϑ′), (55)

so by using the results in [11] we get the following proposition.

Proposition: Let h an infinitely differentiable function on SL(2, R) with

compact support. For every ϕ ∈ S with the support contained in some open

interval J ∈ K we have

lim
λ→0

λ−1
∫
ϕ(x)T (x)D(λ) [SΛ(ϑ)− (Ω, SΛ(ϑ)Ω)]hD(λ)−1T (x)−1ψ = 0, (56)

for every ψ ∈ F(J)′Ω, in the weak topology of H.

This result cannot be avoided using the techniques explained in section 2.

Thus we cannot obtain a Wightman current corresponding to the symmetry S

in the scaling limit of the canonical local implementations. This fact however

is not surprising because in this case this Wightman current does not exist.

In fact the classical expression for this current given by the Noether’s theorem

does not define a Wightman field because of the infrared divergences typical
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of the 1+1 dimensional models (by the same reason a proper scalar Wightman

field does not exist , cf. [14]).

5 Conclusions

We have shown that in some models of conformal field theory the program of

recovering Wightman conserved currents from the local canonical implemen-

tations of symmetries has a positive issue. We can summarize the ingredients

for this success in the following two points:

(1) the existence of a local operator product expansion;

(2) the transformation properties of the canonical local implementations

of symmetries.

Although these are general features of models of quantum field theory,

we believe that they will not be sufficient, even if necessary, in the study of

a more general situation including field theories in a four dimensional space-

time. In this study the property of local implementation, which is never used

directly in the present work, should play a prominent part. A direct use of

this property should also permit to give positive results without assuming

the existence of the Wightman currents. In this way we should obtain a

prescription for their construction.
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Appendix

In this appendix we show that, for every open interval I ∈ K, the domain

F(I)Ω contains a core for L0. This fact is an easy corollary of the following

lemma.

Lemma. Let B ⊂ R be an inclusion of von Neumann algebras given on

a separable Hilbert space H and let ξ ∈ H be a cyclic vector for B. Let U be

a strongly continuous one-parameter group of unitary operators acting on H
leaving ξ invariant and let H be its self-adjoint generator. If there exists a

real number δ > 0 such that U(t)BU(t)−1 ⊂ R for |t| < δ then Rξ contains

a core for H.

Proof. If ϕ ∈ S, we denote
∫
ϕ(t)U(t)dt by U(ϕ). Then our assumptions

imply that if suppϕ ⊂ (−δ, δ) then

U(ϕ)Bξ ⊂ Rξ. (57)

We now show that the domain D := {U(ϕ)Bξ : suppϕ ⊂ (−δ, δ)} is a core

for H. If ψ ∈ H, then U(ϕ)ψ is in the domain of H and

HU(ϕ)ψ = iU(ϕ′)ψ. (58)

Since ξ is cyclic for B, for every ψ ∈ H we can find a sequence Bn ∈ B such

that limn→∞Bnξ = ψ and thus

lim
n→∞

U(ϕ)Bnξ = U(ϕ)ψ (59)

lim
n→∞

HU(ϕ)Bnξ = HU(ϕ)ψ. (60)

Finally let ϕ ∈ S be a positive function with integral equal to one and

support contained in (−δ, δ) and let ϕn be defined by ϕn(t) = nϕ(nt). Now,
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for every ψ in the domain of H we have

lim
n→∞

U(ϕn)ψ = ψ (61)

lim
n→∞

HU(ϕn)ψ = Hψ. (62)

Thus the closure of the graph of the restriction of H to D contains the graph

of H i.e. D is a core for H. Q.E.D.

We take now an open non-empty interval J ⊂⊂ I. Our previous assertion

follows from the lemma taking B = F(J), R = F(I), ξ = Ω and H = L0.
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