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Abstract

We show that if A is the Haag-Kastler net generated by the energy-
momentum tensor in a chiral quantum field theory, then every subsys-
tem B ⊂ A which is covariant under the action of SL(2,R) given on
A must coincide with A. The result is valid for all the allowed values
of the central charge and is obtained using scaling limit techniques.
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1 Introduction

Let Θ(x) be the energy-momentum tensor of a chiral quantum field theory.

The Luscher-Mack theorem (see [6]) restricts its commutation relations to

being given by

[Θ(x),Θ(y)] = iδ′(x− y){Θ(x) + Θ(y)} − i c

24π
δ′′′(x− y), (1)

where the central charge c is a positive constant whose allowed values are

c ≥ 1 and c = 1 − 6
(m+2)(m+3)

for m = 1, 2, ... Moreover using the Cayley

transformation one can extend Θ(x) to a field on the circle whose Fourier

coefficients Ln satisfy the following commutation rules

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m (2)

which define the famous Virasoro algebra. If we consider only Wightman

functions involving Θ(x) then the Hilbert spaceH obtained by the Wightman

reconstruction theorem (see [16]) carries an irreducible representation (of

lowest weight 0) of the Virasoro algebra (see [6]).

For every bounded open interval I ⊂ R one can define the local von

Neumann algebra

A(I) = {Θ(f)| f ∈ C∞(R) real, suppf ⊂ I}′′. (3)

We now denote by K the family of all bounded open intervals of the real

line. It has been proved in [2] that the family A = {A(I)| I ∈ K}, that we

assume is represented in the vacuum Hilbert space H defined above, satisfies

standard assumptions for a chiral Haag-Kastler net (see for example [1], [5]

and [7]). In particular there is a strongly continuous representation U of

SL(2,R) leaving the vacuum vector Ω invariant and such that

U(−1) = 1 (4)
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U(α)A(I)U(α)−1 = A(αI) for I, αI ∈ K, (5)

where

SL(2,R) 3 α =

(
a b
c d

)
acts on R by

x→ αx =
ax+ b

cx+ d
. (6)

The representation U is obtained by integrating the selfadjoint part of the

complex Lie algebra spanned by the Fourier coefficients L−1, L0, and L+1

and is a positive energy representation since the conformal Hamiltonian L0

must be positive.

We now define a conformal subsystem of A to be a family of (non trivial)

von Neumann algebras B = {B(I)| I ∈ K} such that for every I ∈ K,

B(I) ⊂ A(I) and

U(α)B(I)U(α)−1 = B(αI) for I, αI ∈ K. (7)

Moreover the family B is assumed to satisfy isotony i.e.

B(I) ⊂ B(J) if I ⊂ J. (8)

We will prove in this Letter that each conformal subsystem ofAmust coincide

with A for all the allowed values of the central charge. In the proof we will

use scaling limit procedures and arguments very similar to those developed

in [3] with a different motivation and inspired by the work of Fredenhagen

and Jörß [5].

Other results limiting the number of the possible subsystems of a given

model have been obtained in previous works by Langerholc and Schroer [10],
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[11], Davidson [4] and by Rehren [13]. They however do not cover the above

situation.

In the approach to chiral field theory based on Wightman fields (see [6] for

an introduction to the subject) it is generally assumed that to every model

there is associated an energy-momentum tensor with the properties discussed

above. This assumption is crucial for many aspects; it is for example one

of the starting points for classification. However in the formulation of chiral

field theory in therms of Haag-Kasteler nets the energy-momentum tensor is

no more assumed to exists. In this contest in fact one starts from local von

Neumann algebras covariant under the action of SL(2, R). Actually there

exists chiral Haag-Kastler nets without an enegy-momentum tensor (see [8]).

Thus from this point of view a proper conformal subsystem B of the algebraA
should be considered as an admissible model. The fact that such subsystems

does not exists is in agreement with the idea that the energy-momentum is

a fundamental object.

2 The Result

We consider the local algebras A(I) generated by the energy-momentum

tensor in the vacuum representation. The field Θ(x) is covariant under the

action of SL(2,R) with conformal dimension equal to two, i.e.

U(α)Θ(x)U(α)−1 = (
dαx

dx
)2Θ(αx) for α ∈ SL(2,R). (9)

Thus the closed subspace HΘ generated by the vectors of the form Θ(f)Ω

for f ∈ C∞(R) with compact support, is U -invariant. Actually it is U -

irreducible. In fact the two point function of the energy-momentum tensor
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is given by (see [6])

(Ω, Θ(x)Θ(y)Ω) =
c

8π2(x− y − i0)4
(10)

and thus

(Θ(f)Ω, Θ(g)Ω) =
c

24π

∫ ∞
0

¯̂
f(p)ĝ(p)p3dp. (11)

The last equation implies that we can define an unitary operator V from HΘ

to L2(R+, p
3dp) such that

(VΘ(f)Ω)(p) = (
c

24π
)
1
2 f̂(p) (12)

and intertwining the restriction of U to HΘ with the irreducible represen-

tation of SL(2,R) in L2(R+, p
3dp) described in [5]. Moreover we recall

that if P is the (positive) selfadjoint generator of the group of translations

T (a) = U

(
1 a
0 1

)
then we have

P =
∫

Θ(x)dx (13)

so that, if for a given I ∈ K, h ∈ C∞(R) is a positive function with compact

support such that h(x) = 1 if x ∈ I, we have (cf. [2])

T (a)AT (a)−1 = eiaΘ(h)Ae−iaΘ(h) for A, T (a)AT (a)−1 ∈ A(I). (14)

The first step in the proof of our main result is the following lemma.

Lemma. Let PΘ be the orthogonal projection on HΘ and let B be a

conformal subsystem of A. There exists an interval I ∈ K and a selfadjoint

operator B ∈ B(I) such that PΘBΩ 6= 0.

Proof. Let J ∈ K be an arbitrary open interval. We can find a non-zero

selfadjoint operator C ∈ B(J) such that (Ω, CΩ) = 0. If PΘCΩ 6= 0 we take
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B = C and I = J . If PΘCΩ = 0 we consider the operator

CxC = T (x)CT (x)−1C (15)

which, because of locality, is selfadjoint for |x| > diamJ . For every x with

|x| > diamJ we can find a real function fx ∈ C∞(R) such that, for ε small

enough

Cx+εC = eiεΘ(fx)CxCe
−iεΘ(fx). (16)

We now suppose that |x| > diamJ implies

PΘCxCΩ = 0. (17)

Then |x| > diamJ also implies

d

dx
(Ω, CxCΩ) = i(Θ(fx)Ω, CxCΩ)− i(Ω, CxCΘ(fx)Ω)

= 0. (18)

The last equation together with the conformal cluster theorem [5] implies

that the function x→ (Ω, CT (−x)CΩ) has compact support and therefore,

because of the positivity of P , it must be identically zero. In particular

(Ω, C2Ω) = 0, so the Reeh-Schlieder property implies C = 0 which is a

contradiction. Now let x0 ∈ R such that |x0| > diamJ and PΘCx0CΩ 6= 0;

we can then take B = Cx0C and I to a bounded open interval containing J

and J + x0. q.e.d.

The next step crucially depends on the properties of the representation

U and on the analysis of the scaling behaviour of the local operators given in

[5]. Because of the positivity of L0 the representation U splits in to a direct

sum of irreducible representations τ acting on closed subspaces Hτ ⊂ H (see

[9] and [5]). The spectrum of the restriction of L0 to each Hτ , which consists
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only of natural numbers, is simple and its minimum n(τ) (the conformal

dimension) completely determine the equivalence class of τ . The case n(τ) =

0 corresponds to the trivial representation. In this caseHτ is one dimensional.

If n(τ) > 0 then the spectrum of the restriction of L0 to Hτ coincides with

the set {n ∈ N| n ≥ n(τ)}.
In our case the spectrum of L0 in H can be completely determined and

therefore one can give a description of the decomposition of U . In fact one

finds that the eigenspace of L0 corresponding to the eigenvalue n is spanned

by vectors of the form

L−n1L−n2 ...L−nk
Ω, (19)

with n1 ≥ n2... ≥ nk ≥ 2 and n1 + n2...+ nk = n (see [6]). These vectors are

not necessarily linearly independent but one can find by direct computations

an orthogonal base for each eigenspace. In particular one finds that CΩ is

the only eigenspace corresponding to the eigenvalue 0, that 1 is not in the

spectrum of L0 and that the eigenspace corresponding to the eigenvalue 2

is one dimensional and is spanned by L−2Ω. Thus in the decomposition of

U , CΩ is the only irreducible subspace with conformal dimension equal to 0,

there are no irreducible subspaces with conformal dimension equal to 1 and

there is only one subspace with conformal dimension equal to 2. Actually

this last subspace is HΘ (cf. [5]).

For every bounded linear operator A ∈ B(H) and every ϕ ∈ C∞(R) with

compact support we define

A(ϕ) =
∫
ϕ(x)T (x)AT (x)−1dx. (20)

The next proposition is the main step in the proof of the claimed result.

Proposition. For every conformal subsystem B ⊂ A there is a sequence
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Bn of bounded selfadjoint operators which is eventually in B(I) for every

I ∈ K containing the origin and such that, for every ϕ ∈ C∞(R) with support

contained in some interval J ∈ K

lim
n→∞

Bn(ϕ)ψ = Θ(ϕ)ψ (21)

for every ψ ∈ A(J)′Ω, in the weak topology of H.

Proof. If for every I ∈ K containing the origin Bn is eventually in B(I)

then if suppϕ ⊂ J, J ∈ K Bn(ϕ) is eventually in B(J). Because of locality

it is thus enough to prove the proposition in the particular case in which

ψ = Ω.

By the Lemma we can chose an interval Î ∈ K and a selfadjoint operator

B ∈ B(Î) such that (Ω, BΩ) = 0 and PΘBΩ 6= 0. Moreover we can suppose,

by possibly smearing B with a smooth function on SL(2,R) with support

sufficiently close to the identity (cf. [5] and [3]), that B ∈ C∞(SL(2,R)) with

respect to the norm topology. Now let D(λ) = U

(
λ

1
2 0

0 λ−
1
2

)
be the group

of dilations and let be Bλ = D(λ)BD(λ)−1. It has been proved in [5], in a

more general situation, that if A ∈ C∞(SL(2,R)) is a local operator and Pτ is

the orthogonal projection on Hτ , then the limit for λ→ 0 of λ−n(τ)PτAλ(ϕ)Ω

exists for every irreducible representation τ appearing in the decomposition

of U and for every infinitely differentiable function with compact support ϕ.

In our case this implies that

lim
λ→0

λ−2PτBλ(ϕ)Ω = 0 (22)

if Pτ is orthogonal to PΘ. If now g(p) = (V PΘBΩ)(p) then (V λ−2PΘBλ(ϕ)Ω)(p)

= ϕ̂(p)g(λp). Since g(p) is continuous and bounded (see [5]) it follows that

lim
λ→0

λ−2PΘBλ(ϕ)Ω = ηΘ(ϕ)Ω, (23)
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where η = ( c
24π

)−
1
2 g(0). It has been shown in [5] that an accidental vanishing

of g(0) can be avoided with an arbitrary small conformal transformation of

B so that we can assume that η is different from zero.

We can now conclude that if ψ is in the linear span of a finite set of

U -irreducible subspaces of H

lim
λ→0

(ψ, λ−2Bλ(ϕ)Ω) = η(ψ, Θ(ϕ)Ω). (24)

Since the set of such vectors ψ is dense in H to prove the weak convergence

it is enough to show that ||λ−2Bλ(ϕ)Ω|| is bounded in λ. By the conformal

cluster theorem [5] the Fourier transform of (Ω, BT (x)BΩ) can be written as

ϑ(p)p3F (p),where ϑ(p) is the Heaviside step function and F (p) is an analytic

function of rapid decrease (see [5]). A direct computation then shows that

||λ−2Bλ(ϕ)Ω||2 =
∫ ∞

0
|ϕ̂(p)|2F (λp)p3dp ≤

≤ maxF
∫ ∞

0
|ϕ̂(p)|2p3dp. (25)

By the existence of the limit it easily follows that η is a real constant and thus

the sequence Bn = n2

η
D( 1

n
)BD( 1

n
)−1 has all the claimed poperties. q.e.d.

The last step is based on the fact that if ϕ ∈ C∞(R) is a real function

with suppϕ ⊂ I ∈ K, the domain A(I)′Ω, which is dense in H because of

the Reeh-Schlieder property, is a core for Θ(ϕ). This is a consequence of the

energy bounds proved in [2] together with the fact that A(I)′Ω contains a

core for L0 (see the appendix of [3]). We now state the claimed theorem.

Theorem. For every conformal subsystem B of A one has B = A.

Proof. Let ϕ ∈ C∞(R) be a real function with suppϕ ⊂ I ∈ K and let

C ∈ B(I)′. It follows from the previous proposition that if ψ1, ψ2 ∈ A(I)′Ω
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then

(ψ1, CΘ(ϕ)ψ2) = lim
n→∞

(ψ1, CBn(ϕ)ψ2) =

lim
n→∞

(Bn(ϕ)ψ1, Cψ2) = (Θ(ϕ)ψ1, Cψ2) (26)

and thus, since A(I)′Ω is a core for Θ(ϕ) we have

(ψ1, CΘ(ϕ)ψ2) = (Θ(ϕ)ψ1, Cψ2) (27)

for every ψ1, ψ2 in the domain of Θ(ϕ). This implies that for every real

function ϕ ∈ C∞(R) with support contained in I

CΘ(ϕ) ⊂ Θ(ϕ)C (28)

and so that C ∈ A(I)′. Since C ∈ B(I)′ is arbitrary we have

B(I)′ ⊂ A(I)′ (29)

and thus

A(I) ⊂ B(I) (30)

for every I ∈ K. q.e.d.

3 Concluding Remarks

In the study of models and of general features of conformal quantum field

theory one is often led to consider the situation in which the local net A gen-

erated by the energy-momentum tensor is imbedded in a larger local netM.

This means that A is a conformal subsystem ofM or, using the terminology

commonly adopted in the literature, thatM is a local (conformal) extension

of A.

If we consider the set of conformal subsystems ofM ordered by inclusion,

the theorem of the previous section is equivalent to the assertion that A is
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a minimal element of this ordered set. In general A will not be a minimum

but it is in some cases. For example if M is the local net generated by a

chiral current j(x) (the free scalar field) and the energy momentum tensor is

given by Θ(x) = 1
2

: j2 : (x), or in the case in whichM is the gauge invariant

part of the local net generated by the chiral current algebra of a compact

simple Lie group and Θ(x) is the Sugawara energy-momentum tensor (in this

case the equality M = A is an exception [13] ), it can be shown, by similar

methods to those used in this paper (cf. [3]) that A is a minimum. So in

these last cases every conformal subsystems of M must be a local extension

of A. This fact, together with some recent works on local extensions (see

for example [12], [14] and [15]) should be useful for the classification of the

conformal subsystems of M.
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