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The Tschantz and the alvin higher conditions
are equivalent in congruence distributive va-
rieties

Paolo Lipparini

Abstract. We show that, under the assumption of congruence distribu-
tivity, a condition by S. Tschantz characterizing congruence modularity
is equivalent to a variant of the classical Jónsson condition. Here equiv-
alence is intended in a strong sense, to the effect that the corresponding
sequences of terms have exactly the same length.

Mathematics Subject Classification. 08B10, 08B05.

Keywords. Tschantz terms, Higher alvin terms, Congruence distributive
variety, Congruence modular variety, Congruence identity.

1. Introduction

Characterizations of congruence modularity

Alan Day [2] showed, in equivalent form, that a variety V is congruence mod-
ular if and only if there is some natural number n such that V satisfies the
congruence inclusion

α(β ◦ αγ ◦ β) ⊆ αγ ◦ αβ ◦ n. . . (Dr)

In the above formula juxtaposition denotes intersection and αγ ◦ αβ ◦ n. . . is
a shorthand for αγ ◦ αβ ◦ αγ ◦ αβ . . . with n − 1 occurrences of ◦. As usual,
we say that a variety V satisfies some congruence inclusion if the inclusion is
satisfied in every algebra in V.
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Later H.-P. Gumm [5] found another characterization. A congruence iden-
tity equivalent to Gumm condition asserts that a variety V is congruence mod-
ular if and only if there is some natural number p ≥ 2 such that V satisfies the
congruence inclusion

α(β ◦ γ) ⊆ α(γ ◦ β) ◦ (αγ ◦ αβ ◦ p−2. . . ). (G)

While identities (Dr) and (G) are formally incomparable, usually the lat-
ter is considered to be stronger and anyway it has found many applications
that seem out of reach using (Dr) alone. S. Tschantz [11] has found a com-
mon generalization. It will be convenient for our purposes to recall the two
equivalent forms of Tschantz condition.

Theorem 1.1. [11, Lemma 4 and Theorem 5] A variety V is congruence mod-
ular if and only if there is some natural number n ≥ 2 such that V satisfies
one of the following equivalent conditions.
(1) The following congruence inclusion holds in V:

α(β ◦ γ ◦ β) ⊆ α(γ ◦ β) ◦ (αγ ◦ αβ ◦ n−2. . . ). (T)

(2) V has a sequence t0, . . . , tn of Tschantz terms, that is, 4-ary terms such
that the following equations are satisfied in all algebras in V:

x = th(x, y, z, x), for 1 < h ≤ n, (T1)

x = t0(x, y, z, w), (T2)

th(x, y, y, w) = th+1(x, y, y, w), for h even, 0 ≤ h < n, (T3)

th(x, x, w,w) = th+1(x, x, w,w), for h odd, 0 ≤ h < n, (T4)

tn(x, y, z, w) = w. (T5)

Obviously, (T) implies (G) with p = n, since α(β ◦ γ) ⊆ α(β ◦ γ ◦ β).
Moreover, (T) implies (Dr), by taking αγ in place of γ in (T) and since α(αγ ◦
β) = αγ◦αβ. In order to give a meaning to the above identities for all values of
the parameters, it is convenient to set αγ ◦αβ ◦ 1. . . = αγ and αγ ◦αβ ◦ 0. . . = 0,
the minimal congruence on the algebra under consideration.

Within a variety, identities (Dr) and (G), too, can be equivalently ex-
pressed by means of the existence of certain terms, in a way similar to Theo-
rem 1.1. We shall briefly recall the condition equivalent to (Dr) below, but we
shall not need it here.

Connections with congruence distributivity

Obviously, a congruence distributive variety is congruence modular. As already
pointed out by Day [2], it is interesting to see how this implication works at the
level of terms, equivalently, at the level of congruence identities. B. Jónsson
[6] showed that a variety is congruence distributive if and only if there is some
p such that

α(β ◦ γ) ⊆ αγ ◦ αβ ◦ p. . . (A)



The Tschantz and the alvin higher conditions... Page 3 of 12     4 

This is a slightly different formulation, equivalent to a condition appeared
in [10]. It has been called the alvin condition in [4]. (The expression ALVIN,
possibly an acronym, has been informally used to refer to the book [10] since
at least 2007.) See [8] for a full discussion and further references.

Comparing (G) and (A), we immediately see that congruence distributiv-
ity implies congruence modularity also from this point of view. In this way we
can also appreciate the strength of Gumm’s condition: congruence modularity
falls short of being equivalent to congruence distributivity just for a factor of
the form α(γ ◦ β) which cannot be factored out as αγ ◦ αβ. As a side remark,
for the reader who knows the characterizations by means of terms, we mention
that the terms arising from Gumm condition can be seen in two ways. First,
as the combination of a term witnessing congruence permutability with a se-
quence of Jónsson terms. Second, as a “defective” version of (a longer sequence
of) alvin terms. In the latter sense, the fact that α(β ◦ γ) cannot be turned
into αβ ◦ αγ corresponds to one missing equation. See [8], in particular, the
comments at the beginning of Section 7 and references there for more details.

In [9] we proved the quite unexpected result that if some congruence
distributive variety V satisfies (G), for some given p, then V satisfies (A) for
the very same p. In more detail, we proved the following theorem.

Theorem 1.2. If V is a nontrivial congruence distributive variety, then the
minimal p such that V satisfies (G) is equal to the minimal p such that V
satisfies (A).

Of course, the assumption that V is congruence distributive is necessary
in Theorem 1.2, since there is a congruence modular variety W which is not
congruence distributive. In particular, such a W satisfies (G), for some p, but
W fails to satisfy (A), no matter the value of p. However, it follows from [9]
that if V has terms witnessing (G), for some given p, and V is congruence
distributive, hence V has a (possibly much longer than p) sequence of terms
witnessing (A), then all the above terms can be combined in order to obtain a
sequence witnessing (A) for the given p. From the point of view of congruence
identities, under the assumption of congruence distributivity, we can factor out
α(γ ◦ β) in (G) to αγ ◦ αβ. Obviously, congruence distributivity implies that
α(γ ◦ β) ⊆ αγ ◦ αβ ◦ αγ . . . The point is that, under the above assumptions,
we need not enlarge the number of factors on the right-hand side of (A). More
suggestively, we can partially work as if we were in an arithmetical variety.

A “higher” alvin condition

In this note we prove a result parallel to Theorem 1.2, but dealing with the
identity (T). In order to state the result, we need to mention a condition
equivalent to congruence distributivity and which is stronger than (T). Of
course, every congruence distributive variety satisfies

α(β ◦ γ ◦ β) ⊆ αγ + αβ, (1)

since α(β ◦ γ ◦ β) ⊆ α(β + γ). It is standard to see that if some variety V
satisfies (1), then there is some n depending on V such that V satisfies

α(β ◦ γ ◦ β) ⊆ αγ ◦ αβ ◦ n. . . (H)
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On the other hand, if V satisfies (H), then V satisfies (A) with p = n, hence
V is congruence distributive, by Jónsson’s Theorem. Classical arguments then
give a proof of the following proposition. See, e. g., [7] for full details and for
more general notions and arguments.

Proposition 1.3. A variety V is congruence distributive if and only if there is
some natural number n ≥ 2 such that V satisfies one of the following equivalent
conditions.
(1) The following congruence inclusion holds in V:

α(β ◦ γ ◦ β) ⊆ αγ ◦ αβ ◦ n. . .. (H)

(2) V has a sequence t0, . . . , tn of higher alvin terms, that is, 4-ary terms
satisfying conditions (T2)–(T5) from Theorem 1.1(2), as well as

x = th(x, y, z, x), for 1 ≤ h ≤ n (H1)

(the difference in comparison with (T1) is that in (H1) we ask for the
equation to be valid also in the case h = 1.)

The smallest n given by Proposition 1.3 for a congruence distributive
variety V is J�

V (2) + 1 in the notation from [7].

Statement of the main result

Recall the definition of Tschantz terms from clause (2) in the statement of
Theorem 1.1. The definition of higher alvin terms appears in clause (2) in the
above Proposition 1.3.

We can now state our main result.

Theorem 1.4. Suppose that V is a congruence distributive variety. Then, for
every natural number n ≥ 2, V has a sequence t0, . . . , tn of Tschantz terms if
and only if V has a sequence t′0, . . . , t

′
n of higher alvin terms.

In order to prove Theorem 1.4 we need some auxiliary results of inde-
pendent interest. For the most part, the results do not need the assumption of
congruence distributivity, the existence of Tschantz terms, namely, congruence
modularity, is enough.

Day terms

Day terms correspond to identity (Dr) when β and γ are exchanged on the
right. Reversed Day terms, as we call them, correspond to (Dr) as it stands.
We shall not use Day terms in this note; however, Lemmata 2.1 and 2.3 below
hold for Day terms, too, and this fact might be of interest and find subsequent
applications. In detail, reversed Day terms are terms satisfying equations (T2)–
(T5) from Theorem 1.1, as well as

x = th(x, y, y, x), for 1 ≤ h ≤ n. (D1)

In comparison with (T1) the equations (D1) depend only on two variables.
Day terms are defined in a similar way, except that even and odd are exchanged
in (T3) and (T4). See [8] for further details.
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2. Proofs

Lemma 2.1. Suppose that t0, . . . , tn is a sequence of Tschantz (higher alvin,
Day, reversed Day) terms. For h = 0, . . . , n, define

t∗h(x, y, z, w) = th(x, th(x, y, y, y), th(x, y, z, z), th(x, y, z, w)). (*)

Then t∗0, . . . , t
∗
n is a sequence of Tschantz (higher alvin, Day, reversed

Day) terms.

The terms t∗0 and t∗n satisfy (T2) and (T5) since t0 and tn satisfy these
equations. Then compute:

t∗h(x, y, z, x) = th(x, th(x, y, y, y), th(x, y, z, z), th(x, y, z, x))

=(T1) th(x, th(x, y, y, y), th(x, y, z, z), x) =(T1) x,

t∗h(x, y, y, w) = th(x, th(x, y, y, y), th(x, y, y, y), th(x, y, y, w))

=(T3) th+1(x, th+1(x, y, y, y), th+1(x, y, y, y), th+1(x, y, y, w))

= t∗h+1(x, y, y, w) (h even),

t∗h(x, x, w,w) = th(x, th(x, x, x, x), th(x, x, w,w), th(x, x, w,w))

=(I) th(x, x, th(x, x, w,w), th(x, x, w,w))

=(T4) th+1(x, x, th+1(x, x, w,w), th+1(x, x, w,w))

=(I) th+1(x, th+1(x, x, x, x), th+1(x, x, w,w), th+1(x, x, w,w))

= t∗h+1(x, x, w,w) (h odd),

where superscripts indicate the equations we have used and (I) indicates that
we have used idempotence. The above computations take care of both Tschantz
and higher alvin terms.

To deal with the case of Day and reversed Day terms, exchange even and
odd above when appropriate and perform the following additional computa-
tion:

t∗h(x, y, y, x) = th(x, th(x, y, y, y), th(x, y, y, y), th(x, y, y, x))

=(D1) th(x, th(x, y, y, y), th(x, y, y, y), x) =(D1) x. �

In passing, for possible further applications, we notice that Lemma 2.1
holds in a much more general context, namely, for identities involving “modular
quadruplets”. In [8] we defined a modular quadruplet as one of the following
quadruplets of variables

(x, x, w,w) (x, y, y, w) (x, x, x, w) (x,w,w,w).

Compare also [3, Corollary 3.5]. By slightly modifying the position (*), we do
not even need idempotence. The next proposition shall not be used in what
follows.
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Proposition 2.2. Suppose that V is a variety and s, t are 4-ary terms. Suppose
that (x1, x2, x3, x4), (y1, y2, y3, y4) are (possibly distinct) modular quadruplets
and the equation

s(x1, x2, x3, x4) = t(y1, y2, y3, y4) (Q)

holds in V. Define

s∗(x, y, z, w) = s(s(x, x, x, x), s(x, y, y, y), s(x, y, z, z), s(x, y, z, w)) (**)

and define t∗ correspondingly. Then

s∗(x1, x2, x3, x4) = t∗(y1, y2, y3, y4)

holds in V, as well.

Proof. For example, if (Q) is s(x, x, w,w) = t(x, x, x, w), then

s∗(x, x, w,w) = s(s(x, x, x, x), s(x, x, x, x), s(x, x, w,w), s(x, x, w,w))

= s(t(x, x, x, x), t(x, x, x, x), t(x, x, x, w), t(x, x, x, w))

= t(t(x, x, x, x), t(x, x, x, x), t(x, x, x, x), t(x, x, x, w))

= t∗(x, x, x, w).

The other cases are treated in a similar way. See also Lemma 2.1. �

Once we have given the definition (*), the remaining parts of this section
follow [9] very closely. For a binary relation Θ, we let Θm = Θ ◦ Θ ◦ m. . .

Lemma 2.3. Suppose that n ≥ 2. If V is a variety with a sequence t0, . . . , tn of
Tschantz (higher alvin, reversed Day) terms, then, for every m ≥ 1, V has a
sequence s0, . . . , sn of Tschantz (higher alvin, reversed Day) terms such that
s1 satisfies the following additional property.

(Um) For every A ∈ V and every tolerance Θ on A, if a, d ∈ A and a Θm d,
then a Θ s1(a, a, d, d).

Proof. The property (U1) is satisfied by the term t1 of the original sequence.
Indeed, if a Θ d, then a = t1(a, a, a, a) Θ t1(a, a, d, d), since Θ is reflexive and
compatible.

Suppose that m ≥ 1 and V has a sequence s0, . . . , sn of Tschantz (higher
alvin, reversed Day) terms such that s1 satisfies (Um). Define s∗

0, . . . , s
∗
n ac-

cording to equations (*) (with the sh’s in place of the th’s). We are going to
show that s∗

1 satisfies (Um+1), thus the lemma follows by induction on m, by
Lemma 2.1.

Assume that A belongs to V, Θ is a tolerance on A, a, d ∈ A and a Θm+1

d, thus there is b ∈ A such that a Θm b Θ d. Then

a = s1(a, s1(a, a, b, b), s1(a, a, b, b), s1(a, a, d, d))

Θ s1(a, a, s1(a, a, d, d), s1(a, a, d, d)) = s∗
1(a, a, d, d),

where underlined elements are those moved by Θ. In the above formula we
have used (T2)–(T3), the assumption that Θ is reflexive and compatible and
the inductive hypothesis, to the effect that a Θ s1(a, a, b, b), by (Um), hence
s1(a, a, b, b) Θ a, since Θ is symmetric. �
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Some auxiliary results

Proposition 2.4. Suppose that n ≥ 2, � ≥ 3, � is odd, k = (n − 2) �−1
2 and

q = (n−2) �+1
2 . Suppose further that A is an algebra belonging to a variety with

Tschantz terms t0, . . . , tn. If α, β, γ are congruences and Θ, Ψ are tolerances
on A, then the following inclusions hold.
(1) (β ◦ γ ◦ β)(αβ + αγ) ⊆ αγ ◦ αβ ◦ n. . .,
(2) α(β ◦ γ ◦ �. . .) ⊆ α(γ ◦ β) ◦ (αγ ◦ αβ ◦ k. . .),
(3) (β ◦ γ ◦ �. . .)(αβ + αγ) ⊆ αγ ◦ αβ ◦ 2+k. . . ,
(4) ΨΘ� ⊆ (ΨΘ)1+q.

Proof. The proof is very similar to the proof of [9, Corollary 6]. We present
explicit details for (1) and only sketch the proofs of (2)–(4). In any case, (2)–(4)
shall not be used in what follows.

As in [9], let Θ be the tolerance (αβ ◦ αγ)(αγ ◦ αβ). Notice that Θ
contains both αβ and αγ. Suppose that (a, d) ∈ (β ◦ γ ◦ β)(αβ + αγ). From
(a, d) ∈ αβ+αγ we get that there is some m (depending on a and d, in general)
such that (a, d) ∈ αβ ◦αγ ◦ m. . . ⊆ Θm. By Lemma 2.3, we have Tschantz terms
s0, . . . , sn such that s1 satisfies (Um), hence (a, s1(a, a, d, d)) ∈ Θ ⊆ αγ ◦ αβ.
If n = 2, then s1(a, a, d, d) = d and (1) follows. If n > 2, we employ the
standard argument proving the equivalence of (1) and (2) in Theorem 1.1.
Since (a, d) ∈ β ◦ γ ◦ β, there are b, c ∈ A such that a β b γ c β d, thus
s2(a, a, d, d) β s2(a, b, c, d). Moreover, since (a, d) ∈ αβ + αγ, in particular
a α d, we get

s2(a, a, d, d) α s2(a, a, a, a) = a = s2(a, b, c, a) α s2(a, b, c, d),

by (T1). Hence s2(a, a, d, d) αβ s2(a, b, c, d). From (a, s1(a, a, d, d)) ∈ αγ ◦ αβ,
s1(a, a, d, d) = s2(a, a, d, d) and s2(a, a, d, d) αβ s2(a, b, c, d), we get
(a, s2(a, b, c, d)) ∈ αγ ◦ αβ, since αβ is a transitive relation.

The argument showing that

s2(a, b, c, d) αγ s3(a, b, c, d) αβ s4(a, b, c, d) . . .

is entirely standard, thus we get (s2(a, b, c, d), d) ∈ αγ ◦ αβ ◦ n−2. . . , since
sn(a, b, c, d) = d. From (a, s2(a, b, c, d)) ∈ αγ ◦ αβ we finally obtain (a, d) ∈
αγ ◦ αβ ◦ n. . ..

(2) As in [9], let Ψ be the tolerance (β ◦γ)(γ ◦β). Notice that Ψ contains
both β and γ. If (a, d) ∈ α(β ◦γ ◦ �. . .), then (a, d) ∈ Ψ�, thus (a, s1(a, a, d, d)) ∈
Ψ ⊆ γ ◦ β, for the term given by Lemma 2.3. Now we get s1(a, a, d, d) =
s2(a, a, d, d) ∈ αβ ◦ αγ ◦ αβ ◦ 1+k. . . arguing as in the proof of [7, Theorem
2.1]. Here we exemplify the argument in the case � = 5. We have elements
b1, b2, b3, b4 such that a β b1 γ b2 β b3 γ b4 β d, hence

s2(a, a, d, d) β s2(a, b1, b4, d) γ s2(a, b2, b3, d) β s2(a, b2, b2, d)

= s3(a, b2, b2, d) β s3(a, b2, b3, d) γ s3(a, b1, b4, d)

β s3(a, a, d, d) = s4(a, a, d, d) β s4(a, b1, b4, d) . . .

All the elements in the above chain are α-related, by (T1) and arguing as in
(1). The last element in the above chain is either sn(a, a, d, d) or sn(a, b2, b2, d),
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according to the parity of n; in any case it is equal to d, by (T5). Finally, notice
that α(γ ◦ β) ◦ αβ = α(γ ◦ β), hence we can save one occurrence of αβ.

Clause (3) combines the arguments in (1) and (2). The proof of (4) is
similar, except that we are not allowed to use transitivity in order to get a
smaller number of factors. We can allow Ψ to be a tolerance by an argument
from [1]. Compare also the second displayed formula on [7, p. 6]. �

Proof of Theorem 1.4

A sequence of higher alvin terms is a sequence of Tschantz terms, hence one
implication is obvious.

On the other hand, suppose that V is congruence distributive and has a
sequence t0, . . . , tn of Tschantz terms. We shall show that V satisfies identity
(H), thus V has higher alvin terms t′0, . . . , t

′
n, by Proposition 1.3.

Suppose that (a, d) ∈ α(β ◦ γ ◦ β), for certain elements and congruences
of some algebra in V. Since V is congruence distributive,

α(β ◦ γ ◦ β) ⊆ α(β + γ) = αβ + αγ.

Then we get (a, d) ∈ αβ ◦ αγ ◦ n. . . by Proposition 2.4(1). We have proved that
(H) holds, thus Proposition 1.3 implies that V has higher alvin terms t′0, . . . , t

′
n.

�

3. Generalizations and problems

In this section we prove some generalizations of Theorem 1.4; in particular,
we deal with conditions weaker than Tschantz’. For simplicity, we generally
state the results in the form of a congruence identity. As in Theorem 1.1 and
Proposition 1.3, the results admit reformulations by means of sequences of
terms. Proofs, too, use terms.

Proposition 3.1. A variety V is congruence modular if and only if there is some
natural number � ≥ 1 such that V satisfies the following congruence inclusion:

α(β ◦ γ ◦ β) ⊆ (α(γ ◦ β))�. (Tvar)

If V is congruence distributive and V satisfies (Tvar), then V satisfies

α(β ◦ γ ◦ β) ⊆ αγ ◦ αβ ◦ (α(γ ◦ β))�−1 (Hvar)

for the same �.

Proof. If V is congruence modular, then, by Theorem 1.1, V satisfies (T), for
some n, hence V satisfies the weaker identity (Tvar), taking � ≥ n

2 . Conversely,
if V satisfies (Tvar), then, by taking αγ in place of γ, we get the identity (Dr)
mentioned at the beginning of the introduction, with n = 2�. Hence V is
congruence modular by [2].

In order to prove the second statement, let n = 2�. The Maltsev condition
associated to (Tvar) involves a sequence t0, . . . , tn of 4-ary terms satisfying
equations (T2)–(T5), as well as x = th(x, y, z, x), for h even, h ≤ n. Arguing
as in Lemma 2.1, the above equations are preserved under the position (*).
Then the proof of Lemma 2.3 provides a sequence of terms s0, . . . , sn satisfying
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the same equations and such that s1 enjoys the property (Um). Finally, using
congruence distributivity, the arguments in the proof of Proposition 2.4(1) give
(a, s2(a, b, c, d)) ∈ αγ◦αβ, since the equations involving s3, s4, . . . are not used
to prove this relation. Using such additional equations, it is standard to see
that (s2(a, b, c, d), d) ∈ α(γ ◦ β)�−1. Hence (Hvar) holds. �

Notice a difference between Proposition 3.1 and Theorem 1.4 (through
the corresponding identities given by Theorem 1.1 and Proposition 1.3). The
existence of some n for which (H) holds is equivalent to congruence distribu-
tivity. On the other hand, the existence of some � for which (Hvar) holds is
equivalent to congruence modularity. The latter assertion is proved using the
same arguments we have used for (Tvar).

There is a common generalization of Theorem 1.4 and Proposition 3.1. In
both cases we have started with an identity whose right-hand side begins with
a block of the form α(γ ◦ β), followed by blocks either of the same form, or
of the forms αγ or αβ. In both cases we have proved that, within congruence
distributive varieties, the first block can be factored out as αγ ◦ αβ. We now
show that the sequence of the “blocks” after the first one can be taken to be
somewhat arbitrary. We also get a “bilateral” version.

Theorem 3.2. Suppose that r ≥ 1 and, for each i with 1 < i ≤ r, Ai has one
of the following forms:

α(γ ◦ β), αγ, α(β ◦ γ), αβ, α(γ ◦ β ◦ γ).

If V is a congruence distributive variety and V satisfies

α(β ◦ γ ◦ β) ⊆ α(γ ◦ β) ◦ A2 ◦ A3 ◦ · · · ◦ Ar−1 ◦ Ar, (Tgen)

then V satisfies

α(β ◦ γ ◦ β) ⊆ αγ ◦ αβ ◦ A2 ◦ A3 ◦ · · · ◦ Ar−1 ◦ Ar. (Hgen)

If in addition r ≥ 2 and Ar = α(β ◦ γ), then V satisfies

α(β ◦ γ ◦ β) ⊆ αγ ◦ αβ ◦ A2 ◦ A3 ◦ · · · ◦ Ar−1 ◦ αβ ◦ αγ. (Hgen+)

Proof. In order to prove (Hgen), apply the arguments in the second part of
the proof of Proposition 3.1. Simply adjust the set of those indices h such
that the equation x = th(x, y, z, x) is required, according to the specific forms
of the Ai’s. Possibly, adjust also the indices for which (T3) and (T4) are
assumed, though it seems that the most interesting cases are those in which
the two equations alternate as in clause (2) in Theorem 1.1. Notice that, due
to the form of (Tgen), the equation x = t2(x, y, z, x) always holds, hence
x = s2(x, y, z, x), a fact which is needed in the proof of Proposition 2.4.

Now we get (Hgen+) by applying the symmetrical arguments to (Hgen),
or just observing that if Ar = α(β ◦ γ), then, taking converses, (Hgen) is
equivalent to α(β ◦ γ ◦ β) ⊆ α(γ ◦ β) ◦ A�

r−1 ◦ A�
r−2 ◦ · · · ◦ A�

3 ◦ A�
2 ◦ αβ ◦ αγ,

where � denotes converse. Then apply the first statement of the theorem and
take converses again. �
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In particular, a congruence distributive variety satisfying

α(β ◦ γ ◦ β) ⊆ α(γ ◦ β) ◦ αγ ◦ α(β ◦ γ)

satisfies also

α(β ◦ γ ◦ β) ⊆ αγ ◦ αβ ◦ αγ ◦ αβ ◦ αγ.

Theorems 1.2, 1.4, 3.2 and Proposition 3.1 imply that in a congruence
distributive variety the first occurrence of α(γ ◦ β) in certain identities can be
substituted for αγ◦αβ, and possibly symmetrical facts hold. Can we substitute
more occurrences?

Problem 3.3. (a) Is the following true? If V is a congruence distributive va-
riety and (Tvar) α(β ◦ γ ◦ β) ⊆ (α(γ ◦ β))� holds in V for �, then (H)
α(β ◦ γ ◦ β) ⊆ αγ ◦ αβ ◦ n. . . holds in V for n = 2�.

(b) Is the following true? If V is a congruence distributive variety and

α(β ◦ γ) ⊆ (α(γ ◦ β))� (Gvar)

holds in V for �, then (A) α(β ◦ γ) ⊆ αγ ◦ αβ ◦ p. . . holds in V for p = 2�.
Of course, (a) and (b) admit a reformulation dealing with sequences

of terms, as in Theorem 1.1 and Proposition 1.3. Stating problems and
results in the form of congruence identities appears simpler and intuitively
clearer.

In passing, we mention that if � ≥ 3, then identity (Gvar) does not
imply congruence modularity. See [8, Remark 10.11(a)].

The above problems might be difficult. Our present methods work
only for the terms t1 and tn−1, the terms lying at the “edges” of the
sequence. On one hand, if the answer to the above problems is positive,
one needs some significant improvements on the available methods in
order to prove it. On the other hand, the work [8] presents many examples
of congruence distributive varieties, but none of them is a counterexample
to (b). This suggests that if counterexamples do indeed exist, it might be
not obvious to find them.

(c) We do not know whether, for n ≥ 6, the congruence identity

α(β ◦ γ ◦ β) ⊆ α(γ ◦ β) ◦ (αγ ◦ β ◦ n−2. . . ) (TvarB)

implies congruence modularity within a variety. We do not claim that the
above problem is difficult.

Notice that, on the other hand, the existence of some n ≥ 2 such
that

α(β ◦ γ ◦ β) ⊆ α(γ ◦ β) ◦ (γ ◦ αβ ◦ n−2. . . ), (TvarC)

is equivalent to congruence modularity. One direction is immediate from
Theorem 1.1. In order to get congruence modularity from (TvarC), just
take αγ in place of γ.

(d) Is it true that in a congruence distributive variety each of the identities
(TvarB) and (TvarC) is equivalent to the corresponding identity in which
α(γ ◦ β) is factored out as αγ ◦ αβ?
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In this respect, the methods in the present note fail to work, since
the Maltsev conditions associated to (TvarB) and (TvarC) involve also
equations of the form th(x, y, z, x) = th+1(x, y, z, x), for the appropri-
ate indices. However, it seems that Lemma 2.1 does not apply to such
equations.

(e) If in the inclusions (G) and (Gvar) we exchange β and γ on the right-
hand side, we get trivial inclusions. In particular, the variant of Theorem
1.2 badly fails, if such an exchange is made.

However, it is an open problem whether a version of Theorem 1.4
still holds when we exchange even and odd in the definitions of Tschantz
and alvin higher terms, for n ≥ 4. This corresponds to exchanging β and
γ on the right-hand side in the inclusions (T) and (H). A similar problem
can be asked for the second statement in Proposition 3.1 if � ≥ 2, as
well as for Theorem 3.2. The above problems in (a) and (d), too, can be
modified in this way.

(f) Can we generalize the results of the present note to terms of larger arity?
In other words, which are the consequences of identities of the form

α(β ◦ γ ◦ q. . .) ⊆ α(γ ◦ β ◦ k. . .) ◦ . . . ?

Definition (*) can be extended as

t∗h(x, y, z, u, v, . . . , w) = th(x, th(x, y, y, y, y, . . . , y),
th(x, y, z, z, z, . . . , z), th(x, y, z, u, u, . . . , u), . . . , th(x, y, z, u, v, . . . , w))

and a result analogue to Lemma 2.1 holds. However, it is not clear how
to generalize Property (Um) in Lemma 2.3.
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