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Abstract

Following the development of autonomous vehicles (AVs) and GPS systems,

fleets will gain prominence over private vehicles. We analyze the welfare effects of

the transition from a fully decentralized regime, in which all travelers are atomistic

and do not internalize the congestion externality, to a centralized regime, where all

travelers are supplied by a fleet of AVs controlled by a monopolist. In our model,

heterogeneous individuals differing in the disutility from congestion may travel on

one of two lanes, which may endogenously differ in the level of congestion, or they

may not travel. We show that the monopolist sorts travelers across the two lanes

differently than the decentralized regime. Moreover, depending on the severity of

congestion costs, it may also exclude some travelers. We find that centralization is

always welfare detrimental when the monopolist does not ration travel. If instead

rationing occurs, centralization may be welfare beneficial, provided that congestion

costs are sufficiently high. We then analyze how to restore first best with road

taxes. While congestion charges are optimal under decentralization, taxes differ

markedly in a centralized regime, where restoring first best may require subsidizing

the monopolist.
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1 Introduction

Technological advancement is rapidly changing the mobility industry. One of the most

prominent innovations is the development of Autonomous Vehicles (AVs), that is, vehi-

cles driven by a software that does not require human intervention. AVs open a host

of relevant technological, legal and moral issues (Awad et al., 2018). But significant,

and as of now underappreciated, impacts will come from the changes in the structure

of the mobility market. The provision of mobility services through fleets will likely gain

prominence over private vehicles, at least in urban contexts. Fleets will turn cheaper

due to savings in the drivers’ labor costs. At the same time, their utilization rate will

remain higher than that of private vehicles, contributing to a superior efficiency. This

trend is already underway, with the emergence of fleets of robotaxis, i.e., taxis operated

by ride service companies through AVs. Waymo, an Alphabet’s subsidiary and one

of the leading companies in the development of self-driving technology, has partnered

with Lyft and is currently offering robotaxi services in selected locations in the United

States.1 General Motor’s subsidiary Cruise is also expected to roll out its robotaxis

fleet soon.2 Tesla has recently announced that it will soon stop selling cars to private

owners, and use them for its own - comparatively more profitable - robotaxis fleet in-

stead.3 Consumers’ investment into private cars is thus bound to shrink (Fagnant and

Kockelman, 2015). As a result, urban transport will likely be centralized, and managed

by a handful of transport service suppliers.

Such centralization will have dramatic consequences on how congestion will be dealt

with. Congestion in the mobility industry not only derives from transport infrastructures

being inadequate relative to demand, but is also the result of a standard externality.

In the current decentralized setting, drivers do not factor in their travel decisions the

external effect in terms of congestion they impose on fellow travelers.

The paper studies how the transition to a centralized mobility market, organized

around companies that manage their own fleets, affects congestion, and, as a result,

welfare. It may seem intuitive that firms in a centralized setting internalize (at least

partly) the congestion externality inherent in the fully decentralized setting, thereby

contributing to an increase in welfare. We show that this intuition is incomplete, and

we emphasize the distortions occurring in a centralized market. We then analyze the

taxation schemes that allow to restore first best.

Understanding the impact of traffic centralization on congestion is important be-

cause congestion costs, while hidden and hard to measure because of their nature of

opportunity costs, represent a major component of the traveling costs. Congestion not

only increases the average travel time, but it also raises its variance. The yearly con-

1https://www.wsj.com/articles/lyft-to-offer-waymo-self-driving-taxis-in-suburban-phoenix-
11557259648 (last accessed January 29, 2020).

2https://www.wsj.com/articles/gm-s-driverless-car-unit-cruise-delays-robot-taxi-service-
11563971401 (last accessed January 29, 2020).

3https://www.wsj.com/articles/a-tale-of-two-teslas-elon-musk-to-tout-robot-cars-amid-sales-
slump-11555848000 (last accessed January 29, 2020).
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gestion cost has been estimated to amount to more than one hundred billion dollars in

the US, and to be steadily increasing over time (Schrank, Lomax and Eisele, 2011). In

the absence of policies or of market design interventions, congestion costs are not bound

to disappear when AVs will be deployed. On the one hand, with AVs, consumers may

spend more productively their time on vehicles, thereby reducing the disutility of con-

gestion when one holds the level of congestion constant. On the other hand, however,

the ability to use time in the car more fruitfully will increase congestion, by inducing

more travel demand (Gucwa, 2014). The overall effect on disutility of congestion will

depend on the relative strength of the two effects, something hard to predict now. It is

well possible that congestion costs will ultimately increase, reproducing an effect similar

to the positive association between new infrastructure and kilometers traveled expressed

in the fundamental law of road congestion (Downs, 1962; Duranton and Turner, 2011).

A proper analysis of congestion requires to consider travelers’ heterogeneity in the

disutility from congestion. This is substantial (see, for instance, Small, 2012) and reflects

heterogeneity in individuals’ value of time, as well as in value of reliability. Small,

Winston and Yan (2005) find that the difference in value of time between the 25th

and the 75th percentile is about $10 per hour (with the median being about $21 per

hour). Even more starkly, the difference in value of reliability between the 25th and

the 75h percentile is $13 per hour (higher than the median of $12 per hour). Also,

as intuitive, disutility from congestion is known to be tightly positively associated to

income. Estimates of the elasticity of time value to income range from about 0.5 to

1, and they are increasing at higher levels of income (Börjesson, Fosgerau and Algers,

2012). The current trends of increasing inequality in many Western countries, in the

context of a rising average income, should only exacerbate such heterogeneity.

With heterogenous travelers, the reduction in aggregate congestion costs (as well as

welfare maximization) requires to act not only on the margin of the total number of

vehicles that travel, but also on the efficient sorting of travelers. To see this, consider a

highway with two lanes. With heterogeneous disutility from congestion, efficiency may

require to differentiate the speed across the two lanes, thereby creating a faster lane

with fewer vehicles for travelers that dislike congestion a lot, and a slower lane with

more vehicles for drivers who are less bothered by congestion.

Efficient sorting of travelers is economically very relevant. The combined evidence

in Small, Winston and Yan (2005, 2006) shows that a little less than the average

hourly disutility from congestion can be mitigated through an efficient consumer sorting.

They simulate the effects of several alternative lane management schemes (through tolls

and/or high occupancy vehicles lanes), which give rise to different allocations of heteroge-

nous travelers on a California State highway. They find that the welfare-maximizing

scheme yields about $2.50 welfare gain in a 15 minute trip over the alternative with no

tolls and no lane utilization rules. This is equivalent to $10 per hour per passenger,

which is more than half of the average hourly wage in the United States, and just less

than half of the median value of time that they estimate.
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In addition, sorting vehicles across different routes will become increasingly easy for

a central decision-maker, be it a government or a company managing a fleet of vehicles.

The software that drives the AVs may itself be used to sort vehicles across different

routes, even based on other vehicles’ behavior, without the possibility of interference

by travelers. Also, GPS and mobile technologies will contribute to the diffusion of road

pricing schemes. These schemes will be increasingly sophisticated, as prices may be

conditioned on a variety of dimensions (route, time of the day, occupancy, etc.), and

cheaper, as a result of the reduction in the costs of the required infrastructure (Ostrovsky

and Schwarz, 2018).

We consider a stylized framework with individuals using AVs to travel on a road,

segmented into two separate parallel lanes, both congested. The lanes are ex-ante iden-

tical, but can ex-post differ in the amount of congestion. Individuals are assumed to be

heterogenous as to the utility they derive from the trip and to the disutility they derive

from the congestion. Consistent with evidence pointing to a positive relation between

income and value of time, we assume that individuals with a larger utility from the

trip suffer from a larger cost of congestion. We look at the equilibrium assignment of

individuals to one of the two lanes or to not traveling.

We first show that welfare maximization requires to differentiate the congestion level

in the two lanes, reflecting the heterogeneity in individuals’ value of time. Individuals

with low disutility of congestion will travel in a slow lane, while those with a high

disutility of congestion will travel in a fast lane. Furthermore, an individual travels as

long as her benefit from traveling exceeds the increase in aggregate congestion costs she

imposes on fellow travelers. Thus, if the congestion cost is sufficiently large, efficiency

requires to prevent some low-value individuals from traveling.

We then study the welfare effects of moving from a fully decentralized to a fully

centralized regime. In a fully decentralized regime, all individuals are atomistic and

do not factor in their travel decisions the external congestion effect they impose on

fellow travelers. In a fully centralized regime, all the mobility services are provided

by a monopolist through its fleet. During the transition period, we look at a partially

centralized regime, where individuals are exogenously assigned to being atomistic or to

being supplied by the monopolist. This reflects the fact that the transition towards

an economy fully organized around fleets will likely be gradual. We first focus on how

travelers are sorted across the two lanes, holding their total number fixed. We then let

the aggregate amount of travelers vary and allow for rationing.

When the total number of travelers is fixed, the two lanes have exactly the same

number of travelers under full decentralization. When the market is fully centralized

there is too much differentiation in congestion across lanes with respect to the social

optimum. From the welfare standpoint, this excess differentiation turns out to be worse

than the no differentiation prevailing in the decentralized setting. An additional welfare-

reducing inefficiency emerges under the partially centralized regime, in that all atomistic

travelers, including those with a relative low value of traveling and disutility from con-

4



gestion, travel in the fast lane. Overall, we find that welfare monotonically decreases in

moving from fully decentralized to fully centralized travel.

Instead, when the total number of travelers is allowed to vary, a monopolist may have

an incentive to exclude some low-value individuals from traveling, in order to increase

prices on, and extract more value from, travelers. By contrast, all individuals travel

in the decentralized setting. If congestion costs are sufficiently severe that the social

planner would efficiently exclude some low-value agents from traveling, the quantity

reduction operated by the firm with respect to decentralized travel may be efficient.

If, to the contrary, congestion costs are not so large in the first place, and the planner

would dispatch all the travelers, the monopolist’s screening is welfare-reducing over

decentralized travel.

Part of our results parallel those obtained in the airline economics literature, under

monopolistic air carriers, in terms of the congestion levels: see, for instance, Brueckner

(2002) and Basso (2008), and the empirical counterparts estimating the relation between

airport concentration and congestion (Mayer and Sinai, 2003; Rupp, 2009; Daniel and

Harback, 2008; and Molnar, 2013). However, we crucially add travelers’ heterogeneity in

the disutility from congestion to the picture, and, as a result, we analyze how consumers

sorting across lanes can be used to mitigate the negative effects of congestion on welfare.

Our findings also relate to Czerny and Zhang (2015), who study third degree price

discrimination in the presence of congestion externalities.

We then analyze the case of a tax authority able to impose taxes that restore social

optimality. In a fully decentralized regime, a traditional congestion charge, i.e., a Pigou-

vian tax, equal to the marginal (external) cost imposed on the other vehicles, restores

optimality. This mirrors the finding obtained in the bottleneck model (see Vickrey,

1969; and Arnott, de Palma and Lindsey, 1990). Instead, under full centralization, the

tax that restores social optimum is very different. Since the monopolist considers in

its pricing policy the effects of the congestion costs on all the vehicles it dispatches,

there is no scope for a congestion charge. This result aligns with those obtained in the

literature on airports when carries have market power (Daniel, 1995; Brueckner, 2002;

Pels and Verhoef, 2004; Brueckner 2005; Basso and Zhang, 2007; and Silva and Verhoef,

2013). We then characterize a simple tax/subsidy scheme that restores the incentives

to optimality both in the degree of differentiation across lanes and in the aggregate

number of travelers. We show that, when the congestion problem is particularly severe,

this scheme involves a net subsidy for the monopolist. This may prove politically chal-

lenging, even more than traditional congestion pricing schemes, and may require some

countermeasures by the tax authority that improve its political feasibility. An example

of them could be the collection of license fees from the monopolist, so as to balance the

tax budget within the AV market.

To the best of our knowledge, there are only a few papers that consider congestion

with reference to AVs. Lamotte, De Palma and Geroliminis (2016) develop a bottle-

neck model to investigate the commuters’ choice between conventional and autonomous
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vehicles, while van den Berg and Verhoef (2016) focus on the impact of AVs on road

capacity, studying the deployment of infrastructures resulting from the transition to

AVs.4 Finally, our paper is close to Ostrovsky and Schwarz (2018), who investigate the

interplay between autonomous transportation, carpooling, and road pricing to achieve

socially efficient outcomes.

The rest of the paper is organized as follows. Section 2 describes the model. Section

3 illustrates the first best. Section 4 and Section 5 characterize the equilibrium when the

total number of travelers is fixed and is allowed to vary, respectively. Section 6 analyzes

taxation to restore social optimality. Section 7 concludes. Derivations and proofs of all

Propositions and Lemmata are relegated to an appendix.

2 The model

Lanes and travelers’ utility. There is a unit mass of individuals, each with unit

demand for a trip from a common origin to a common destination. Trips have zero

production costs and occur along a single road connecting the origin and the destination.

The road is divided into two ex-ante identical lanes that are congested at any positive

mass of travelers. The lanes may, however, differ ex-post because of a different mass

of travelers, leading to different levels of congestion. We refer to the (weakly) more

congested lane as the slow lane (sometimes shortened as S) and denote its mass of

traveler by s. Similarly, the (weakly) less congested lane is referred to as fast (sometimes

shortened as F ) and its mass of traveler is denoted by f .

Individuals are heterogeneous. Their type θ is assumed to be uniformly distributed

in the [0, 1] interval. A type-θ individual has the following utility function:

U(θ) =











0 when not traveling;

B (θ)− θgs when traveling in lane S;

B (θ)− θgf when traveling in lane F .

(1)

The term B (θ) is the gross benefit from traveling, which depends only on the type θ.

We let B (θ) be increasing and weakly concave in θ, so that B′ (θ) > 0 and B′′ (θ) ≤ 0.

The terms θgs and θgf denote the disutility from congestion. They depend on: i) the

mass of travelers in the same lane, either s or f ; ii) a type-independent parameter g > 0

representing the common (across travelers) component of congestion disutility; iii) the

type θ representing the idiosyncratic component of congestion disutility. Note that θ

determines the travelers’ value of travel and, at the same time, affects their cost of

congestion. The assumption that both increase with θ is consistent with evidence that

points at a positive relation between wage and value of time (see, for instance, Small,

2012).

4Two other papers analyze equilibria when drivers are non-atomistic (Silva et al. 2016, Lindsey, de
Palma and Silva, 2019), while Simoni et al. (2019) use agent-based simulations to evaluate the impact
of different congestion pricing and tolling strategies in the presence of AVs.
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We assume that the common component of congestion disutility, g, is sufficiently

low so that the net utility of travelers is increasing in θ for any s and f , i.e., ∂U(θ)
∂θ

> 0

when U (θ) > 0. This low value of g may be consistent with the likely reduction in

the disutility from congestion entailed by the use of AVs. A necessary and sufficient

condition for this to occur is as follows:

Assumption 1. g < B′ (1).

To avoid the uninteresting case of some low θ-types never wanting to travel, we posit

that the type-0 individual’s utility from traveling is nonnegative:

Assumption 2. U (0) = B (0) ≥ 0.

Assumptions 1 and 2 together imply that all individuals get nonnegative utility from

traveling.

Individuals’ identity. We assume that the mass of individuals is potentially com-

posed of two different groups:

• atomistic individuals : when they travel, they drive AVs that do not belong to a

fleet, and do not factor in their travel decisions the external congestion effect they

impose on fellow travelers;

• corporate individuals : when they travel, they use the services of a fleet of AVs that

belong to a monopolist.

We assume that the mass of corporate individuals is equal to µ, with µ ∈ [0, 1]. The

remaining mass 1−µ is composed of atomistic individuals. The proportion µ of corporate

travelers is then a measure of the degree of centralization. We let the composition of

the mass of individuals be exogenous. This is because belonging to either group may

depend on individual preferences or on long-run decisions, such as, for instance, the

choice to drive an owned car or not, which are not modeled here. Moreover, we let the

distribution of the two groups of individuals be independent of the type θ. That is, in

any subinterval [θ, θ + ǫ] of the unit line, with ǫ > 0,there is a fraction µ of corporate

individuals and a fraction 1− µ of atomistic individuals.

Depending on the value of µ, we will analyze three possible compositions of the mass

of individuals, meant to illustrate the stages of the transition from full decentralization

to full centralization:

• atomistic individuals only: µ = 0. This is the fully decentralized regime;5

5This scenario resembles the current traffic organization with traditional vehicles. The diffusion
of navigation systems using real time information provides individuals with an easy solution to the
informational and computation problem of choosing the individually optimal route.
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• atomistic and corporate individuals: µ ∈ (0, 1). A mass 1 − µ of individuals is

atomistic and the remaining mass µ of individuals use the fleet of AVs managed

by the monopolist. This is the partially decentralized regime. The larger is µ, the

more advanced this process of centralization is;

• corporate individuals only: µ = 1. All individuals use the fleet of AVs managed

by the monopolist. This is the final stage of the process of centralization.

The game. We initially look at a two stage game. In the first stage, the monopolist

chooses the fares to charge to corporate individuals; in the second stage, all individuals,

both corporate and atomistic, simultaneously make their travel decisions. All players

have full information on the entire game and the equilibrium concept we use is subgame

perfect Nash equilibrium. When all individuals are atomistic, the first stage is irrelevant

and we ignore it. On the other hand, in case of a strictly positive mass of corporate indi-

viduals, we assume that the monopolist cannot set different fares only on the lane used,

but not on the individual’s type θ, possibly because of a privacy protection regulation

(Montes, Sand-Zantman and Valletti, 2018).

In Section 6, we add an initial stage to this game, in which a tax authority chooses

a tax scheme. After this initial stage, the rest of the game unfolds as described before.

In this game, we restrict our tax authority to charge unit (per travel) taxes, possibly

different by lane but not by individual’s identity.

Individuals’ incentives. Both atomistic and corporate individuals choose whether or

not to travel, and in which lane to do so, based on individual incentives. For a type θ,

the decision depends on her utility U (θ) and on the fares and/or taxes (if any) she pays

when traveling in the slow or the fast lane, denoted as σ ≥ 0 and φ ≥ 0, respectively.

A type-θ individual travels in the slow lane if and only her individual rationality (IR)

constraint holds, that is

B (θ)− θgs− σ ≥ 0, (2)

and if and only if her incentive compatibility (IC) constraint holds, that is

B (θ)− θgs− σ ≥ B (θ)− θgf − φ. (3)

Similarly, she travels in the fast lane if and only if

B (θ)− θgf − φ ≥ 0, (4)

B (θ)− θgf − φ ≥ B (θ)− θgs− σ. (5)

When at least one of the IR constraints holds for all individuals, they all travel so the

market is fully covered (i.e., s + f = 1). Instead, if for some individuals neither IR

constraints hold, such individuals prefer not to travel so the market is only partially

covered (i.e., s+ f < 1).
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3 First best

We consider an utilitarian welfare maximizing social planner, who is perfectly informed

and can decide which individuals travel and directly allocate those traveling to the two

lanes. Social welfare is given by6

W ≡
∫ 1

0

U(θ)dθ. (6)

Welfare maximization requires to partition travelers in (at most) three groups. Some

very low θ-types may not travel, while all the other θ’s are partitioned into the two lanes,

with the higher θ’s traveling in the fast lane. Then, (6) may be rewritten as:

W ′ ≡
∫ 1−f

1−s−f

(B(θ)− θgs) dθ +

∫ 1

1−f

(B(θ)− θgf) dθ (7)

where the first integral gives the aggregate utility of types traveling in the slow lane,

and the second integral gives the aggregate utility of types traveling in the fast lane.7

The planner’s problem may be written as follows:

max
s≥0,
f≥0

W ′ (8)

s.t. s+ f ≤ 1.

An interior solution satisfies the following first order conditions:

B (1− sFB − fFB)− 2gsFB

(

1− fFB − 3

4
sFB

)

= 0, (9)

B (1− sFB − fFB) + g

(

s2FB +
3

2
f 2
FB − 2fFB

)

= 0, (10)

where the subscript FB is a mnemonic for equilibrium variables referred to F irst Best.

The solution to the planner’s problem is characterized in the following Proposition.

Proposition 1. Let sFB and fFB denote the solutions to problem (8) when the market

is partially covered, i.e., sFB + fFB < 1. Also, let s̄FB and f̄FB denote the solutions to

problem (8) when the market is fully covered, i.e., s̄FB + f̄FB = 1. Finally, let

gFB ≡ 36B(0)

4 +
√
7
∼= 5.4179× B(0). (11)

6Note that fares, as well as taxes, do not appear in the social welfare function even when travelers
and/or the monopolist pay them, because they are simply transfers from travelers to the monopolist
(in the case of fares) or from the monopolist to the (benevolent) tax authority (in the case of taxes).

7See the proof of Proposition 1.
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Then, in equilibrium

• when g > gFB, the market is partially covered, and travelers with θ ∈ [1 − sFB −
fFB, 1 − fFB] are allocated to the slow lane and those with θ ∈ [1 − fFB, 1] are

allocated to the fast lane, where sFB and fFB satisfy

fFB(sFB) =
1

3

(

2 (1 + sFB)−
√

7s2FB − 4sFB + 4

)

; (12)

• when g ≤ gFB, the market is fully covered, and travelers with θ ∈ [0, s̄FB] are

allocated to the slow lane and those with θ ∈ [s̄FB, 1] are allocated to the fast lane,

where s̄FB and f̄FB are equal to

s̄FB =
1

2
+

√
7− 2

6
∼= 0.6076 and f̄FB =

1

2
−

√
7− 2

6
∼= 0.3924. (13)

This Proposition characterizes the socially optimal allocation of individuals. The

planner may exclude the individuals with the lowest benefit from traveling, so that the

market is not fully covered. This occurs when the utility from traveling in the slow lane

enjoyed by the type-0 agent, B(0), is lower than the increase in the aggregate congestion

costs this individual imposes on all fellow travelers in the slow lane.8 All the remaining

travelers are sorted in the two lanes. A mass of travelers equal to fFB (or f̄FB, in the

case of full coverage) is allocated to the fast lane and a mass of travelers equal to sFB

(or s̄FB, in the case of full coverage) to the slow lane. Intuitively, travelers allocated to

the fast lane are those with the highest θ.

In the case of partial coverage, we do not fully characterize the solution to the

planner’s problem, but only provide the optimal choice of fFB as a function of sFB, given

in equation (12). This relationship is illustrated in Figure 1 by the green increasing line,

and allows us to discuss the main features of the partial coverage solution. First, the

planner finds it optimal to differentiate across lanes. Travelers with relatively high θ,

who suffer the most from congestion, are assigned to the fast, less congested, lane. As

a result, the green line in the Figure always lies below the 45◦ line. Second, by implicit

differentiation of the FOCs in (9) and (10), we find that ∂sFB

∂g
< 0 and ∂fFB

∂g
< 0. This

reflects the intuition that a larger common component of the disutility from congestion,

g, is associated to a lower mass of travelers in each lane, and, therefore, to a lower market

coverage. Full market coverage is illustrated in Figure 1 by the green solid circle located

at the intersection between the green line illustrating equation (12) and the constraint

s+ f = 1.

8Condition g > gFB can be rearranged as B(0) < g
(s̄FB)2

2 , where the RHS is indeed the aggregate
marginal congestion cost for those traveling in the slow lane.
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Figure 1: Equilibrium outcomes.
The equilibrium solutions with full decentralization (blue dot,

{

s̄A, f̄A
}

); the full coverage solu-

tions in the first best (green dot,
{

s̄FB, f̄FB

}

), with full centralization (red dot,
{

s̄C , f̄C
}

) and

with partial centralization (brown dot,
{

s̄cAC , f̄
c
AC

}

); and the relationships between optimal s

and f in the first best (green line, fFB (sFB)), and between scAC and f c
AC with full centraliza-

tion (red line, fC (sC)) and with partial centralization (brown line, f c
AC (scAC)); f

c
AC (scAC) is

defined for values of scAC above a threshold, since when scAC is too low the equilibrium involves

no differentiation (mass of atomistic travelers equal to µ = 0.85).

4 Full coverage: equilibrium analysis

In our framework, the optimal management of congestion may require both to optimally

ration travel and to optimally sort travelers across lanes. As discussed in the introduc-

tion, given the heterogeneity in individuals’ disutility from congestion, efficient sorting

may have a very significant impact on reducing the aggregate congestion costs. In ad-

dition, AVs, along with other recent developments in urban transport, are bound to

dramatically reduce the cost of the sorting technology, thereby making sorting a viable

and increasingly important tool to manage congestion.

We thus start by focusing on the allocative problem of sorting travelers between the

fast and the slow lane - and on the resulting differentiation in the level of congestion

across lanes -, when there is no rationing. To this aim, we introduce an assumption that

gives a sufficient condition for full coverage to occur in the first best and in equilibrium

for all degrees of centralization.9

9See the appendix for the derivation of this result.
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Assumption 3.
B′(0)
B(0)

≤ 1.

Assumption 3 states that at θ = 0 the semielasticity of the gross benefit function

B (θ) is weakly lower than 1. In other words, the gross benefit from traveling for type-0

individual is large relative to its increase as θ rises.

4.1 Full decentralization

We study a fully decentralized regime populated by atomistic individuals only. Each

individual uses an AV that does not belong to a fleet, does not pay a fee, and chooses the

lane giving her the highest utility, ignoring the effect of this choice on other individuals.

Since the monopolist has no role in this regime, the stage of the game in which it sets

its fares is muted.

The next Proposition shows that in any equilibrium of this game travelers split

equally across the two lanes, so that, differently than the social optimum, there is no

differentiation across lanes. Here and in the rest of the paper, equilibrium variables

referred to the case of a market with atomistic individuals only have the subscript A, a

mnemonic for Atomistic.

Proposition 2. Assume Assumption 3 holds and all individuals are atomistic. Let s̄A
and f̄A be the equilibrium masses of travelers in the two lanes in full coverage. Then,

any allocation of travelers such that

s̄A = f̄A =
1

2
(14)

is an equilibrium.

This Proposition illustrates that atomistic travelers split equally across the two lanes,

which therefore feature the same level of congestion. There are infinite payoff equivalent

allocations of travelers that satisfy the condition (14), and they all are equilibria of the

game.

To get the intuition behind the equal level of congestion across lanes, argue by

contradiction and suppose that, for instance, sA > fA. This cannot be an equilibrium

outcome because any traveler in the more congested lane, irrespective of her type θ,

would prefer to switch to the less congested lane where she would enjoy a higher net

utility.

4.2 Partial centralization

We now analyze the case of partial centralization, where a mass µ of individuals are

corporate and use the fleet of AVs managed by the monopolist, and the remaining mass

1−µ are atomistic. Corporate travelers have to pay a lane-specific fare to the monopolist

in exchange for the service. The monopolist sets uniform fares within lanes: a fare p
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for the slow lane and a fare P for the fast lane. Fares are used by the monopolist as

the only instrument to direct corporate individuals to the two lanes. Here and in the

rest of the paper, equilibrium variables referred to this market have a subscript AC, a

mnemonic for Atomistic and Corporate.

We first establish some conditions on the equilibrium allocations of travelers. In

particular, we derive conditions under which the no differentiation equilibrium in the

case of full decentralization may extend to the situation of partial centralization. Denote

with sc and f c the mass of corporate travelers in the slow and fast lane, respectively.

Similarly, denote with sa and fa the mass of atomistic travelers in the slow and fast lane,

respectively. Thus, the total mass of travelers in the two lanes is given by s = sa + sc

and f = fa + f c.

Lemma 1. Under any degree of market centralization µ > 0, for any equilibrium can-

didate pair of masses of corporate travelers sc and f c, with sc ≥ f c, in equilibrium:

• if 1− µ ≥ sc − f c, there cannot be differentiation across lanes, and

s = f =
sc + f c + sa + fa

2
; (15)

• if 1−µ < sc−f c, there must be differentiation across lanes, all atomistic individuals

must travel in the fast lane, and

s = sc,

f = f c + fa = f c + (1− µ) .
(16)

When 1 − µ ≥ sc − f c, the mass of atomistic individuals is large relative to the

difference in the allocation of corporate travelers across the two lanes. Given the alloca-

tion of corporate travelers, if all atomistic travelers chose the same lane, its congestion

level would exceed that of the other lane. This clearly cannot be an equilibrium since

any atomistic traveler in the more congested lane would then benefit from switching to

the less congested one. As a result, in an equilibrium, atomistic travelers must split

between the two lanes so as to equalize the total mass of travelers in each lane, s = f .

When, instead, 1 − µ ≤ sc − f c, the mass of atomistic individuals is small relative to

the difference in the masses of corporate travelers allocated to the two lanes. Given the

allocation of corporate travelers, when all atomistic travelers choose the fast lane, then

congestion is still less than in the slow lane. Hence, in any equilibrium, there must be

differentiation across lanes, and f = f c + (1− µ) < s.

We now characterize the equilibrium, starting from the case where µ is relatively low.

The equilibrium allocation of travelers must satisfy (15). Since s = f , the monopolist

must charge the same fares for the two lanes, i.e., p = P . The IR constraints (2) and

(4) collapse to a single one, which, because of full coverage, can be written as

p ≤ B (0) . (17)
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Since all corporate travelers are charged the same fare p, the monopolist profits

are affected by their total mass, and not by their allocation across lanes. Hence, the

monopolist problem may be written as

max
sc≥0,
fc≥0

B (0) (sc + f c) , (18)

s.t. sc + f c = µ,

where we take constraint (17) to be binding, as it must be in equilibrium.

Next, focus on the case where µ is relatively large, so that the equilibrium allocation

of travelers must satisfy (16). In setting the fares to allocate corporate individuals -

p for the slow lane and P for the fast lane - the monopolist faces constraints from (2)

to (5). By a standard argument, only the IR constraint (2) for the marginal corporate

traveler in the slow lane (type-0, given our focus on full coverage), and the IC constraint

(5) for the corporate traveler indifferent between the slow and the fast lane (with type

θ equal to θ = 1− fc

µ
) are binding. These constraints may be written as follows,

p = B (0) ,

P = p+ g

(

1− f c

µ

)

(s− f) .

The fare p is set to make the corporate individual with type-0 just willing to travel in

the slow lane. Instead, P clearly illustrates the trade-off the monopolist faces in choosing

the profit maximizing degree of differentiation between lanes. On the one hand, a large

difference in the mass of travelers across the two lanes, s − f , entails a large extra-fee

paid by travelers in the fast lane, hence a high mark-up. On the other hand, a large

differentiation implies that the mass of travelers in the fast lane is small.

Incorporating the two constraints in the problem faced by the monopolist, this is

given by

max
sc≥0,
fc≥0

B (0) (sc + f c) + g

(

1− f c

µ

)

(s− f) f c, (19)

s.t. sc + f c = µ.

The next Proposition characterizes the subgame perfect Nash equilibrium of the

game.

Proposition 3. Assume Assumption 3 holds and partial centralization. Let s̄cAC and

f̄ c
AC denote the equilibrium mass of corporate travelers in full coverage. Similarly, let

s̄aAC and f̄a
AC denote the equilibrium mass of atomistic travelers in full coverage. Then,
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• when µ ∈
(

0, 1
2

]

, an equilibrium is any allocation of travelers such that

s̄cAC + s̄aAC = f̄ c
AC + f̄a

AC = 1
2
,

s̄cAC + f̄ c
AC = µ,

s̄aAC + f̄a
AC = 1− µ;

(20)

• when µ ∈
(

1
2
, 1

)

, the equilibrium is such that all 1 − µ atomistic travelers to-

gether with corporate travelers with θ ∈
[

s̄cAC

µ
, 1

]

are allocated to the fast lane, and

corporate travelers with θ ∈
[

0,
s̄cAC

µ

]

are allocated to the slow lane, so that

s̄cAC = 1
2
+

√
4µ2−2µ+1−2(1−µ)

6
,

f̄ c
AC = 1

2
−

√
4µ2−2µ+1+4(1−µ)

6
,

s̄aAC = 0,

f̄a
AC = 1− µ.

(21)

When the mass of corporate individuals is small enough, multiple equilibrium allo-

cations exist. In all of these, the two lanes are equally congested. No matter how the

monopolist sorts corporate individuals, atomistic travelers allocate themselves across

the two lanes, so as to make them equally congested. This induces the monopolist to

charge the same fare across lanes. The equilibrium price is uniquely determined given

by the IR of the lowest θ, i.e. p = B(0), because of full coverage.

When instead the mass µ of corporate individuals is sufficiently large, the equilibrium

allocation of travelers is unique. The mass of atomistic travelers is not sufficiently

large to bridge the congestion gap across lanes as determined by the prices set by

the monopolist to sort corporate travelers. This means that the monopolist can price

discriminate across lanes. Taking into account that all atomistic individuals will use

the fast lane, the monopolist allocates a large enough mass of corporate travelers to the

slow lane and a relatively small mass to the fast lane. This solution is illustrated by the

brown dot in Figure 1.

In conclusion, notice that the threshold level of µ that distinguishes between the two

types of equilibria, with and without lane differentiation, is equal to 1
2
.10 Whenever the

mass of corporate individuals is below this threshold, there are no differential allocations

of corporate travelers in the two lanes that atomistic travelers cannot undo. When

instead µ is above 1
2
, not only it is feasible for the monopolist to differentiate, but is also

strictly preferable. Indeed, when there is no differentiation across lanes, the monopolist

charges all corporate travelers the same price p = B (0). If, instead, differentiation

arises, the price for corporate travelers in the slow lane remains unaffected, while the

price for corporate travelers in the fast lane is higher.

10To see this, we plug s̄c
AC

and f̄ c
AC

as in (21) into conditions 1 − µ > (<) sc − f c and solve by µ;
this yields µ < (>) 1

2 .
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4.3 Full centralization

We now consider a fully centralized market, with µ = 1, where all AVs are part of a

fleet managed by the monopolist. As in the previous case, in setting the two fares, p

for the slow lane and P for the fast lane, the monopolist faces constraints from (2) to

(5). By a standard argument, only the IR constraint (2) for the marginal traveler in the

slow lane and the IC constraint (5) for the traveler indifferent between the slow and the

fast lane are binding. Under full coverage, these constraints read as

p = B (0) , (22)

P = p+ g (1− f) (s− f) . (23)

The monopolist problem can therefore be written as

max
s≥0,
f≥0

B(0) (s+ f) + [g (1− f) (s− f)] f, (24)

s.t. s+ f = 1.

In the next Proposition, we show how the monopolist allocates travelers when it fully

covers the market. Here and in the rest of the paper, equilibrium variables referred to

this market have a subscript C, a mnemonic for Corporate.

Proposition 4. Assume Assumption 3 holds and full centralization. Let s̄C and f̄C

denote the solutions to the monopolist problem (24) under full coverage. Then, the

equilibrium is such that corporate travelers with θ ∈ [0, s̄C ] are allocated to the slow lane

and those with θ ∈ [s̄C , 1] are allocated to the fast lane, where

s̄C = 1
2
+

√
3
6

∼= 0.7887,

f̄C = 1
2
−

√
3
6

∼= 0.2113.
(25)

The Proposition characterizes the profit maximizing allocation of travelers. High-θ

travelers, in a mass equal to fC , are sorted into the fast lane and low-θ travelers, in a mass

equal to s̄C , into the slow lane. This solution is illustrated in Figure 1 by the red solid

circle. The figure shows that the outcome of a centralized market is overdifferentiation

across lanes. Too few travelers travel in the fast lane as compared to the socially optimal

level, f̄C < f̄FB, and too many in the slow lane, s̄C > s̄FB. This result, due to the IC

constraint (23) that allows to charge an increasingly high fare in the fast lane the larger

the congestion differential across lanes, is reminiscent of Mussa and Rosen (1978).
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4.4 Welfare analysis

In this section, we investigate the welfare effects of the transition from a decentralized

to a centralized regime. At full coverage, where s = 1− f , social welfare as in (6) may

be rewritten as

W̄ =

∫ 1

0

B(θ)dθ − µ

[

∫ 1− fc

µ

0

θg (sc + sa) dθ +

∫ 1

1− fc

µ

θg (f c + fa) dθ

]

+ (26)

− (1− µ)

[

∫ 1− fa

1−µ

0

θg (sa + sc) dθ +

∫ 1

1− fa

1−µ

θg (fa + f c) dθ

]

where we use the “bar” notation as in the rest of this section to denote full coverage.

The first term illustrates the aggregate benefit from traveling, enjoyed by all travelers

thanks to full coverage. The expressions in square brackets for each group of travelers

(corporate and atomistic) are the sum of the congestion disutility suffered by those

traveling in the slow (first term) and fast (second term) lane.

We evaluate (26) at the equilibrium for different degrees of centralization. It may

seem intuitive that, as µ increases, welfare is positively affected by the increasing ability

of the monopolist to internalize the congestion externality. We will show that this

intuition is incomplete, as it ignores two welfare-reducing distortions that emerge with

centralization. Our results are summarized in the following Proposition.

Proposition 5. Assume Assumption 3 holds. Then, in equilibrium,

• W̄ does not vary with µ when µ ∈
[

0, 1
2

]

and is strictly decreasing in µ when

µ ∈
(

1
2
, 1

]

;

• W̄ is strictly below first best for all values of µ.

The Proposition, also illustrated in Figure 2, shows that welfare always lies below

the welfare level achieved by the social planner (which does not depend on µ). It also

illustrates that the increasing ability of the monopolist to internalize the congestion

externality when the level of market centralization µ increases does not reflect into a

welfare improvement. To the contrary, welfare is decreasing in µ (strictly decreasing for

µ above 1
2
).

The negative welfare effect of centralization derives from two distortions that emerge

as the share of corporate individuals increases above 1
2
. The first distortion involves the

level of differentiation across lanes. Under full decentralization, the two lanes have

exactly the same number of travelers, leading to suboptimal differentiation vis-à-vis the

socially optimal level. Instead, under full decentralization, there is, to the contrary,

excess differentiation in congestion across lanes with respect to social optimum. The

excess differentiation in monopoly turns out to reduce welfare more than the suboptimal

differentiation under full decentralization for two reasons. It involves more travelers (i.e.,

s̄C−s̄FB > s̄FB−s̄A) and travelers with higher θ’s, who are more bothered by congestion.
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Figure 2: Equilibrium welfare.
Equilibrium welfare under full coverage in the first best (W̄FB, green line), with full de-

centralization (W̄A, blue dot), with partial centralization (W̄AC , brown line) and with full

centralization (W̄C , red dot); g = 1
2 and

∫ 1
0 B(θ)dθ = 1

4 .

The second distortion relates to the identity of individuals traveling in each lane,

rather than to their mass. When µ ∈
(

1
2
, 1

)

, Proposition 7 states that all the atomistic

individuals travel in the fast lane, including those with a relative low value of traveling

and disutility from congestion. By contrast, only high-θ corporate individuals travel in

the fast lane. It follows that there are corporate travelers with a relatively high θ, say θ′′,

traveling in the slow lane, while some atomistic travelers a relatively low θ, say θ′ < θ′′,

travel in the fast lane. In particular, there exists a level of µ (i.e., µ = 2
√
7+1
9

∼= 0.6991),

such that the mass of travelers in the slow and in the fast lane exactly replicate the

mass of travelers in the two lanes chosen by the social planner under full coverage. That

notwithstanding, welfare under µ = 2
√
7+1
9

is below that achieved by the social planner,

because of the misallocation of travelers described above. This distortion emphasizes

that, given travelers’ heterogeneity, welfare is maximized not only by generating the

appropriate level of congestion in the two lanes, but also by making sure that each

traveler is correctly allocated.

We conclude this discussion with some remarks on the distributional effects in terms

of individuals’ utility net of prices across different regimes. As compared to the social

optimum, a fully decentralized regime makes travelers with relatively low θ (i.e., θ ∈
[0, s̄FB]) better off and travelers with relatively high θ (i.e., θ ∈ [s̄FB, 1]) worse off. On

the one hand, travelers with low θ’s, who would travel in the slow lane under a central
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planner, travel in a less congested lane under full decentralization. On the other hand,

travelers with high θ’s, who would travel in the fast lane under a central planner, end

up traveling in a more congested lane under full decentralization.

It is also possible to assess the distributional effects (net of prices) of an increase in

the degree of centralization. When µ ≤ 1
2
, equilibrium allocation does not change and

therefore there is no distributional effects. When µ ≥ 1
2
, an increase in µ increases the

level of differentiation across lanes. Therefore, a larger µ makes all atomistic travelers

and corporate travelers traveling in the fast lane better off. To the contrary, corporate

travelers traveling in the slow lane are worse off.

5 Partial coverage: equilibrium analysis

In Section 4, we focused on sorting. We showed the welfare effects of moving from cen-

tralization to decentralization when the aggregate amount of travelers does not change,

but their allocation across lanes does, with an effect on aggregate congestion costs, and,

as a result, on welfare. In this section, we abandon Assumption 3 and allow the aggre-

gate amount of travelers to vary. As a result, we can also consider the perhaps more

intuitive strategy to deal with congestion, which consists in restricting aggregate output.

5.1 Full decentralization

Full coverage in the fully decentralized regime is implied by Assumptions 1 and 2 only

and does not depend on Assumption 3 being met. Hence, the analysis contained in

Section 4.1 applies here too. All atomistic individuals travel and the split equally across

the two lanes, so that sA = fA = s̄A = f̄A = 1
2
, where sA and fA denote the equilibrium

mass of atomistic travelers when Assumption 3 is not met.

5.2 Partial centralization

We now look at the case of partial centralization. We start our analysis by noting that

Lemma 1 does not depend on Assumption 3. Therefore, this Lemma applies also here,

when Assumption 3 is relaxed.

Assume first that µ is small enough, so that the equilibrium allocation of travelers

must satisfy (15), with no differentiation across lanes. This implies that the monopolist

charges the same price across lanes, so that p = P . Using the same argument as in

Section 4.2, the only constraint faced by the monopolist is the IR constraint for the

lowest corporate θ-type traveling in either lane. When binding, this may be written as

p = B

(

1− sc + f c

µ

)

−
(

1− sc + f c

µ

)

g
sc + f c + sa + fa

2
, (27)

where θ = 1 − sc+fc

µ
is the type of the corporate traveler that is indifferent between
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not traveling and traveling, and sc+fc+sa+fa

2
is the mass of (atomistic and corporate)

travelers traveling in either lanes.

Since the monopolist charges the same fare to all corporate travelers, its profit is

affected by their total mass only. This implies that π = p× (sc + f c). Denote by c the

total mass of traveling corporate individuals, so that c ≡ sc + f c. Using (27), for any sc

and f c such that 1− µ < sc − f c, the monopolist problem can then be written as

max
c≥0

[

B

(

1− c

µ

)

−
(

1− c

µ

)

g
c+ sa + fa

2

]

c, (28)

s.t. c ≤ µ.

We denote by cAC the solution to (28). When it is interior, this solution is implicitly

defined by the following FOC:

3g (cAC)
2

2µ
+ cAC

g (1− 2µ)− B′
(

1− cAC

µ

)

µ
+

2B
(

1− cAC

µ

)

− g (1− µ)

2
= 0. (29)

We now turn to the analysis of the case of sufficiently large µ, so that the equilibrium

allocation of travelers must satisfy (16), with differentiation across lanes. Using the same

argument as in Section 4.2, for any sc and f c such that 1− µ < sc − f c, the constraints

faced by the monopolist may be written as

p = B

(

1− sc + f c

µ

)

−
(

1− sc + f c

µ

)

g (sc + sa) , (30)

P = p+ g

(

1− f c

µ

)

[sc + sa − (f c + fa)] , (31)

where θ = 1− fc

µ
is the type of the corporate traveler that is indifferent between traveling

in the fast and the slow lane, sc + sa is the mass of (atomistic and corporate) travelers

traveling in the slow lane, and f c + fa that in the fast lane. The monopolist problem

may then be written as

max
sc≥0,
fc≥0

[

B

(

1− sc + f c

µ

)

−
(

1− sc + f c

µ

)

g (sc + sa)

]

(sc + f c)+

+ g

(

1− f c

µ

)

[sc + sa − (f c + fa)] f c, (32)

s.t. sc + f c ≤ µ.

Denote by scAC and f c
AC the solutions to this problem when they are interior. Ex-
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ploiting sa = 0 and fa = 1− µ, they are implicitly defined by the following FOCs:

B

(

1− scAC + f c
AC

µ

)

−
B′

(

1− scAC+fc
AC

µ

)

× (scAC + f c
AC)

µ
+ (33)

+
gscAC [3scAC + 4f c

AC − 2µ]

µ
= 0,

B

(

1− scAC + f c
AC

µ

)

−
B′

(

1− scAC+fc
AC

µ

)

× (scAC + f c
AC)

µ
+ (34)

+
g
[

2 (scAC)
2 + f c

AC (4 (1− µ) + 3f c
AC − 2)− (1− µ)µ

]

µ
= 0.

Before characterizing the equilibrium, we provide the following Lemma:

Lemma 2. Assume partial centralization. Let scAC and f c
AC denote the equilibrium

mass of corporate travelers under partial coverage. Let µ′ be the value of µ such that

1− µ = scAC − f c
AC. Then, there is differentiation across lanes if and only if µ ∈ (µ′, 1],

where µ′ ∈
(

1
2
, 1

)

.

This Lemma characterizes the threshold level µ′, such that for any µ > µ′, lanes are

differentiated in equilibrium. This value is defined in terms of the equilibrium mass of

corporate travelers in the slow and in the fast lane when differentiation arises, scAC and

f c
AC . While the threshold level is 1

2
under full coverage, it is strictly above 1

2
in case of

partial coverage. The intuition is pretty straightforward. When the monopolist prefers

to dispatch only a portion of its customers rather than all of them, it takes a smaller

mass of atomistic travelers to equalize the total mass of travelers in each lane, s = f .

We are now in the position to illustrate the subgame perfect Nash equilibrium.

Proposition 6. Assume partial centralization. Let saAC and fa
AC denote the equilibrium

mass of atomistic travelers under partial coverage. Then,

• full coverage occurs when

g ≥ gAC ≡ K (µ) [B′ (0)− B (0)] , (35)

where

K (µ) ≡
{

2 when µ ∈ (0, µ′) ,
18µ

8µ2+5µ−1+(4µ−1)
√

4µ2−2µ+1
when µ ∈ [µ′, 1); (36)

• when µ ∈ (0, µ′] and g < gAC, an equilibrium is any allocation of travelers such

that
scAC + saAC = f c

AC + fa
AC = cAC+1−µ

2
,

scAC + f c
AC = cAC ,

saAC + fa
AC = 1− µ,

(37)

where cAC < µ is implicitly defined in (29);
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• when µ ∈ (µ′, 1) and g < gAC, the equilibrium is such that corporate individuals

with θ ∈
[

0, 1− scAC+fc
AC

µ

]

do not travel, corporate individuals with θ ∈
[

1− scAC+fc
AC

µ
,

1− fc
AC

µ

]

are allocated in the slow lane, and all atomistic individuals together with

corporate individuals with θ ∈
[

1− fc
AC

µ
, 1

]

are allocated to the fast lane, where

saAC = 0,

fa
AC = 1− µ,

(38)

and f c
AC and scAC are such that f c

AC + scAC < µ and satisfy

f c
AC(s

c
AC) =

1

3

(

2µ− 1 + 2scAC −
√

7 (scAC)
2 − 2scAC(2− µ) + 1− µ+ µ2

)

. (39)

The Proposition first illustrates the condition under which full/partial coverage oc-

curs. Equation (35) shows a stark contrast with the first best full coverage condition

in (11). Differently than a social planner, the monopolist dispatches all travelers when

the congestion cost g is sufficiently high. To get the intuition for this perhaps coun-

terintuitive result, consider that, as g gets larger, the travelers’ utility function U(θ)

gets flatter in θ, because the higher willingness to pay of higher θ types is increasingly

compensated by their congestion disutility. This affects the traditional price/quantity

tradeoff by providing the monopolist with a greater incentive to increase market cov-

erage. The monopolist’s full coverage condition depends also on B′ (0), with the same

logic as above; when B′ (0) is small, U(θ) gets flatter in θ, which makes quantity more

sensitive to price.

The Proposition also characterizes the equilibrium allocation of travelers, which de-

pends on the relative masses of atomistic and corporate travelers. These allocations

mirror closely those in the case of full coverage. When the mass of corporate travelers is

relatively small, there are multiple equilibria. Corporate travelers are indifferent between

the two lanes, because they are charged the same price due to the fact that atomistic

travelers distribute between the two lanes to equalize the total mass of travelers in each

lane. Any allocation of the two types of travelers which results in identical lanes is an

equilibrium and is also payoff-equivalent. When instead the mass of corporate travelers

is relatively large, the monopolist allocates travelers in the two lanes with masses suf-

ficiently far apart so that atomistic travelers cannot equalize them. Atomistic travelers

then all travel in the less congested lane. At this equilibrium with no differentiation,

the relationship between f c
AC and scAC in (39) is depicted by the brown line in Figure 1.

5.3 Full centralization

We now consider a fully centralized regime. In setting the two fares, p for the slow lane

and P for the fast lane, the monopolist, as in Section 4.3, faces the IR constraint for the
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lowest type traveling and the IC constraint for the type indifferent between traveling in

the slow or fast lane. When binding, these constraints now read as

p = B (1− s− f)− (1− s− f) gs, (40)

P = p+ g (1− f) (s− f) . (41)

The monopolist problem can therefore be written as

max
s≥0,
f≥0

(B (1− s− f)− (1− s− f) gs) (s+ f) + [g (1− f) (s− f)] f, (42)

s.t. s+ f ≤ 1.

Let sC and fC be the solutions to this problem when they are interior. These are

implicitly defined by the following FOCs

B (1− sC − fC)− B′ (1− sC − fC) (sC + fC)+ (43)

− gsC (2− 4fC − 3sC) = 0,

B (1− sC − fC)− B′ (1− sC − fC) (sC + fC)+ (44)

g
[

3 (fC)
2 − 2fC + 2 (sC)

2] = 0.

The subgame perfect Nash equilibrium is illustrated in the following Proposition.

Proposition 7. Assume full centralization. Let sC and fC denote the solutions to the

monopolist problem (42) under partial coverage. Then,

• full coverage occurs when

g ≥ gC ≡ 6

4 +
√
3
[B′(0)− B(0)] ; (45)

• when g < gC, the equilibrium is such that corporate travelers with θ ∈ [0, 1− sC − fC ]

do not travel, those with θ ∈ [1− sC − fC , 1− fC ] are allocated in the slow lane

and those with θ ∈ [1− fC , 1] are allocated in the fast lane, where sC and fC satisfy

sC + fC < 1 and

fC(sC) =
1

3

(

1 + 2sC −
√

7s2C − 2sC + 1

)

; (46)

In equilibrium, the masses of travelers in the fast and slow lanes are given by the

relationship in (46). This relationship is illustrated in Figure 1 by the solid red line

curve.

An interesting feature of this equilibrium is that full coverage may occur under full

centralization but not at the social optimum. This implies that the monopolist may
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dispatch more travelers than the social planner. Intuitively, this may happen when

g is relatively large. This result is clearly at odds with the standard outcome that

a monopolist reduces total output. However, our result echoes the possibility that a

monopolist underprovides quality relatively to the social optimum (Spence, 1975). In

our model, a high level of congestion may be interpreted as a low level of quality.

5.4 Welfare analysis

In Section 4.4, we considered the welfare effects when the market is fully covered. In

that setting, welfare changed only as a result of the different sorting of travelers across

lanes. We observed that two distortions may arise as we move from decentralization to

centralization, one related to the masses of travelers and the other one to the identity of

travelers. Overall, we showed that welfare (weakly) decreases as centralization increases.

That analysis ruled out another, fundamental, potential source of distortion, namely

the size of travelers, which may depart from social optimality. While in a fully de-

centralized regime the market is always covered, we indeed proved that both a social

planner and a monopoly may want to ration travel, albeit in a different manner. In this

section, we show that the interplay between rationing and the two distortions under

sorting produces a welfare comparison that is not clear cut.

To derive our welfare results, we make use of a specific (linear) functional form for

the gross benefit function, B (θ) = b0 + bθ.11 For the specific parametric conditions

under which we are not able to obtain analytical results, we run numerical simulations

spanning the entire parameter space.

Our analysis aims at comparing the welfare under partial or full centralization with

the welfare under full decentralization. We recall that, under full decentralization, the

welfare is simply given by WA =
∫ 1

0

(

B(θ)− θg 1
2

)

dθ. To avoid duplicating the analysis

in Section 4.4, we restrict to cases in which partial coverage occurs under partial or full

centralization.

We first focus on partially centralized regimes with µ ∈ (0, µ′], so that differentiation

does not occur in equilibrium. We denote as WAC the welfare under partial coverage.

This is equal to

WAC =µ

∫ 1

1− cAC
µ

(

B(θ)− θg
cAC + 1− µ

2

)

dθ (47)

+ (1− µ)

∫ 1

0

(

B(θ)− θg
cAC + 1− µ

2

)

dθ.

The first (second) term of this expression is the aggregate net utility of corporate (atom-

istic) travelers. The level of congestion is identical across all travelers, since both lanes

11When B (θ) = b0 + bθ, Assumption 1 becomes g < b, Assumption 2 becomes b0 ≥ 0, and relaxing
Assumption 3 yields b0 < b. Also, it is easy to check the second-order conditions are fully satisfied in
all the problems we analyze.
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feature the same mass of travelers, cAC+1−µ

2
. However, while the entire mass (1− µ) of

atomistic agents travels, only a fraction cAC ∈ (0, µ) of corporate agents does so. We

denote as ∆W the difference between WAC and WA, which may be rewritten as follows

∆W ≡WAC −WA

=(1− µ)

[
∫ 1

0

(

θg
1

2
− θg

cAC + 1− µ

2

)

dθ

]

+ (48)

+ µ

[

∫ 1

1− cAC
µ

(

θg
1

2
− θg

cAC + 1− µ

2

)

dθ −
∫ 1− cAC

µ

0

(

B(θ)− θg
1

2

)

dθ

]

.

This expression clearly illustrates the welfare pros and cons of partial centralization,

when the monopoly excludes some individuals. The first line illustrates the positive

effect on the aggregate net utility of atomistic travelers. They all travel – as under full

centralization –, but they now face a lower congestion level because of the rationing

imposed by the monopolist on corporate travelers. The second line expresses the effect

on the aggregate net utility of corporate travelers. The first term is the gain for those

with θ ∈
[

1− cAC

µ
, 1

]

who are still traveling, but now face lower congestion. The other

term illustrates the loss for those with θ ∈
[

0, 1− cAC

µ

]

who are no longer traveling.

We state the following result:

Proposition 8. Assume g < gAC. Let

c ≡
2b+ g(2µ− 1)−

√

(2b− g)2 − 4g(4b0 − g)µ

2g
.

For any µ ∈ (0, µ′], welfare under partial centralization is larger than welfare under full

decentralization (i.e., ∆W > 0) if and only if both following conditions hold:

i) b0 <
g

4
,

ii) cAC ∈ (c, µ),

where i) and ii) are satisfied at least for µ → 0 and b0 <
g

2
− 1

3
b.

The Proposition illustrates that a partially centralized regime enhances welfare pro-

vided that two rather intuitive conditions apply. First, condition i) shows that partial

centralization under partial coverage increases welfare only when it is socially optimal

to ration travel. Indeed, the benefit of the type-0 traveler, b0, must be smaller than the

increase in the aggregate congestion costs, equal to g

4
, this individual would impose on

all fellow travelers in the same lane if she traveled. Second, condition ii) shows that

not too many corporate individuals have to be excluded. Recall indeed that corporate

individuals may, on aggregate, lose from partial centralization, since, as a result, some

of them are excluded (see the second line in (48)). Hence, condition ii.) requires this

rationing to be limited.
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We extend our analysis to partially centralized regimes with relatively high µ ∈ (µ′, 1]

so that differentiation occurs in equilibrium. We resort to numerical methods, due to

the difficulty in characterizing the analytical solutions to the monopolist problem. A

graphical illustration of our results is given in Figure 3. In each panel of this Figure,

we illustrate, for a given value of µ, the sign of the difference between the welfare under

partial or full centralization and the welfare under full decentralization for a grid of

admissible values of the parameters b0 and g, having normalized b to 1. Figure 3 shows

that the results in Proposition 8 extend nicely also to the case of a larger µ. We include

in the Figure the results of numerical simulations for small values of µ, for which we

have full analytical results, to emphasize that our analytical results carry through to

larger values of µ.

A further interesting feature that can be observed from comparing the results in the

different panels of Figure 3 is that the set of parameters under which partial centraliza-

tion has a positive welfare effect shrinks as µ increase. An intuition behind this result

is that, as the mass of corporate individuals rises, there is more room for the negative

excessive rationing effect clearly identified in Proposition 8 in the case of a small µ.

On top of this, as µ increases, the two distortions due to sorting gains prominence, as

proved in Section 4.4.

6 Equilibrium analysis with taxes

Up to now, we have analyzed an economy under the different degrees of centralization

excluding government intervention. This laissez-faire approach is often implemented

in practice. While economists advocate road pricing and congestion taxes as tools

to improve upon market outcomes, these are rarely implemented in practice (notable

exceptions include London, Stockholm and Singapore), likely for political economy rea-

sons (Oberholzer-Gee and Weck-Hannemann, 2002). This section characterizes the

tax/subsidy schemes that restore optimality under the two polar cases of a fully de-

centralized and of a fully centralized regime. We show that the structure of the optimal

scheme under full centralization differs sharply from that under decentralization. We

then discuss the political feasibility and distributional effects of the first-best restoring

tax/subsidy schemes in the two regimes.

To this end, we move to a three-stage game in which the tax authority sets the taxes

in the first stage, while the two subsequent stages are identical to those analyzed in

the previous sections. We restrict to per-traveler unit taxes, differentiated by lane but

not by the identity of the traveler. We denote by t and T the unit tax levied on AVs

traveling in the slow and fast lane, respectively.
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Figure 3: Welfare comparisons across different market equilibria when b = 1.
From left to right and top to bottom, µ varies from 0.1 to 1 by 0.1 increases. Blue dots

illustrate combinations of parameters such a fully decentralized regime delivers higher welfare

(i.e., WAC < WA, or WC < WA when µ = 1), red dots illustrate combinations of parameters

such that a centralized regime delivers higher welfare (i.e., WA < WAC , or WA < WC when

µ = 1); black dots illustrate combinations of parameters such that welfare is identical in

the two regimes (i.e., WA = WAC). Full (empty) dots denote full (partial) coverage under

centralization.

27



6.1 Full decentralization

In an economy with atomistic individuals and externalities, it is well known that optimal-

ity is restored by Pigouvian taxes, which impose on each individual the non internalized

social cost. In our framework, optimal road taxes have two goals: i) they need to induce

to travel those and only those individuals whose private benefit from a trip is larger than

the social cost they impose on fellow travelers; ii) they need to restore the appropriate

allocation of travelers across lanes, to minimize the aggregate cost of congestion.

Let tA and TA denote the unit taxes levied on atomistic individuals traveling in the

slow and fast lane, respectively, that restore social optimum. These are described in the

following:

Proposition 9. Assume full decentralization. The pairs of taxes that replicate the social

optimum are as follows

• when g ≤ gFB
∼= 5.4179× B(0), then

tA ≤ B (0) ,

TA = tA + g 5−
√
7

18
;

(49)

• when g > gFB
∼= 5.4179× B(0), then

tA = g sFB

(

1− fFB − sFB

2

)

,

TA = tA + g (1− fFB) (sFB − fFB) .
(50)

Taxes modify the after-tax net utility atomistic individuals from traveling, thereby

modifying their choices as to whether or not to travel and in which lane. In particular,

when g is small relatively to B(0), misallocation of travelers across lanes is the only

distortion to be solved, since full coverage would occur not only with atomistic travelers

(as always) both also in the first best. Hence, the optimal pair of taxes - as in (50)

- should not restrict market coverage. A multiplicity of low enough t, including tA =

0, delivers this. On the other hand, optimal differentiation across lanes is obtained

through an appropriate difference TA−tA, which ensures that the location of the traveler

indifferent across the two lanes is identical to that of the social planner. Notice that the

indeterminacy of tA provides a flexible set of alternatives to the tax authority, ranging

from solutions that minimize tax burden (when only those who travel in the fast lanes

are taxed), to others associated to a larger tax burden, paid by travelers in both lanes.

When instead g is large relatively to B(0), a social planner would exclude individuals

with a low value for the travel, while these travelers would travel when atomistic. Hence,

both the total number of travelers and their allocation across lanes have to be corrected.

The tax in the slow lane, tA, in (49) is then uniquely determined and ensures that the

market coverage replicates the first best. On the other hand, the tax in the fast lane,

TA, induces an optimal degree of differentiation across lanes.
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Taxes as in (49) and (50) are congestion charges, based on the external cost imposed

by the marginal travelers on fellow riders. They align the incentives of the marginal

travelers to social optimality. The distributional consequences, hence the political feasi-

bility, of such congestion charges depend on how the revenue from them is used (Small,

1992). Since congestion charges are welfare-improving, an appropriate redistribution

scheme that fully compensates losers could be Pareto-improving. However, probably as

a result of imperfect or unclear compensations, congestion charges are typically unpop-

ular, and therefore rarely implemented (Oberholzer-Gee and Weck-Hannemann, 2002).

Net of the tax payment, without compensation low θ atomistic individuals stand to

lose from the tax scheme. If the market remains fully covered after the tax scheme is

implemented, all θ’s traveling in the slow lane face more congestion, thus enjoying a

lower level of utility. If, instead, the tax scheme excludes the lower portion of θ’s, those

excluded are worse-off.

6.2 Full centralization

We now look at the welfare maximizing tax/subsidy scheme to be imposed to the mo-

nopolist managing the entire AVs fleet.12 We show that it is remarkably different than

the tax scheme to be applied to atomistic travelers. Indeed, a monopolist already per-

fectly internalizes the congestion externality, so congestion charges are not appropriate.

The tax/subsidy scheme has instead to correct the alternative distortions in terms of

sorting and rationing, illustrated in the previous sections.

We consider a per-traveler tax/subsidy, potentially differing by lane, imposed on the

monopolist. We allow taxes to depend on the mass of travelers in the two lanes, so that

t = t(s, f) and T = T (s, f). The maximization problem the monopolist faces is:

max
p≥0,
P≥0

[p− t(s, f)]n+ [P − T (s, f)]N (51)

s.t. (40)− (41)

where (40) and (41) are the same individual rationality and incentive compatibility

constraints faced by the monopolist in the absence of taxes and already discussed in

Section 5.3. Solving these two constraints w.r.to the monopolist’s fares p and P and

plugging them into the monopolist’s problem in (51) allows us to rewrite it as follows

max
s≥0,
f≥0

[B (1− s− f)− (1− s− f) gs− t(s, f)] s+ (52)

[B (1− s− f)− (1− s− f) gs+ g (1− f) (s− f)− T (s, f)] f

s.t. s+ f ≤ 1.

12Our analysis would be identical if the same taxes were imposed directly on travelers.
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Let the solutions to this problem be denoted by sCT and fCT . When solutions are

interior, these are implicitly defined by the following set of FOCs

B (1− sCT − fCT )− B′ (1− sCT − fCT ) (sCT + fCT )+ (53)

− gsCT (2− 4fCT − 3sCT )− t (sCT , fCT )+

− ∂t (sCT , fCT )

∂sCT

sCT − ∂T (sCT , fCT )

∂sCT

fCT = 0;

B (1− sCT − fCT )− B′ (1− sCT − fCT ) (sCT + fCT )+ (54)

+ g
(

3(fCT )
2 + 2(sCT )

2 − 2fCT

)

− T (sCT , fCT )+

− ∂T (sCT , fCT )

∂fCT

fCT − ∂t (sCT , fCT )

∂fCT

sCT = 0.

Let tC and TC denote the per-traveler tax/subsidy in the slow and fast lane respec-

tively that restore the social optimum. We establish the following result:

Proposition 10. Assume full centralization. The social optimum is restored by a system

of per-traveler taxes/subsidies of the following form

tC = g s− zC ;

TC = g f − zC .
(55)

where

zC ≡































0 if g ≤ 18 (B(0)−B′(0))

4+
√
7

∼= 2.7085× (B(0)− B′(0)) ;

B′ (0)− B (0) + g 4+
√
7

18
if 18 (B(0)−B′(0))

4+
√
7

≤ g ≤ 36B(0)

4+
√
7
;

B′(1− sFB − fFB)(sFB + fFB)+

+g
(

2fFB − (s2FB − 3
2
f 2
FB

)

if g ≥ 36B(0)

4+
√
7

∼= 5.4179× B(0).

(56)

The Proposition illustrates that social optimality is restored by imposing on the mo-

nopolist a per-traveler tax/subsidy scheme based on the mass of travelers, differentiated

by lane. Hence, tC and TC consist of a tax component (i.e., gs and gf), which increases

in the mass of travelers in that lane, and a subsidy component (i.e., zC in both lanes),

exogenously determined by the tax authority, based on the socially optimal number of

travelers and equal across the two lanes.

The tax components of tC and TC differs dramatically vis-à-vis those in case of full

decentralization as they are not congestion charges. Instead, they induce the monopolist

to mitigate the misallocation typical of a fully centralized regime, by shifting passengers

from the slow to the fast lane, as long as s > f . The logic of this tax is similar, for

instance, to that of the tax on quality in Lambertini and Mosca (1999), and Cremer and

Thisse (1994) in the context of a vertically differentiated oligopoly, when in our model
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we interpret congestion as a quality level.

An additional instrument is however needed to eliminate the distortion caused by the

monopolist when it excludes travelers in a socially inefficient manner. Without taxes, as

discussed in Section 5.3, the total number of travelers may be below or above the social

optimum. After introducing the tax components of tC and TC , however, the monopolist

always reduces total travel below the efficient level. To ensure a socially efficient number

of travelers, the monopolist must be granted a subsidy on the total mass of travelers, as

in (56).

The two components of the taxes serve very different purposes, and also have re-

markably different features. The levels of the tax components only depend on the

monopolist’s choices, being contingent on s and f . In this respect, it is a very simple

tax to set, since it does not require any specific knowledge by the tax authority, if not

the value of g. On the other hand, the subsidy component requires a deeper knowledge

of the market, being based on a perfect knowledge of the travelers’ benefit function and

of the solution to the first best problem.

Overall, in equilibrium, the subsidy component may exceed the tax component, so

that the monopolist receives a net subsidy from the tax authority. This situation always

occurs when g is sufficiently high so that efficiency commands to partially cover the

market. The tax/subsidy scheme therefore requires to absorb some funding from general

taxation. Pels and Verhoef (2004) emphasize the political difficulties in implementing a

negative tax scheme on airline companies. The same logic might well apply to the AVs

market. The political feasibility of this tax/subsidy scheme appears very dubious, even

more so than the congestion charges. A potential solution to improve political feasibility

is to associate the scheme to an upfront fixed license that preserves the budget neutrality.

7 Conclusions

The transition to AVs will open a variety of important issues in several domains, includ-

ing technology, law and ethics.

The technological trajectory of AVs is linked to the progress of artificial intelligence.

The ability of artificial intelligence to learn quickly, and, in particular, to adapt switfly

to new circumstances will determine how fast the level of automation will progress. The

standards set by the Society of Automotive Engineers International identify five different

levels of automation, ranging from level 0 of no automation, to level 5 of a fully auto-

mated vehicle, able to move autonomously in all terrains and under all circumstances in

which an experienced human driver would drive. The most advanced currently manu-

factured vehicles, produced by Waymo, stand at level 4, defined as highly automatized

vehicles that can run without a driver in selected (usually urban) areas. There is some

debate on the time horizon for the emergence and commercialization of level 5 vehicles.13

13https://www.economist.com/leaders/2019/10/10/driverless-cars-are-stuck-in-a-jam (last accessed
January 29, 2020).
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However, level 4 vehicles are enough for urban traffic to be organized around robotaxis

and fleets, with all the resulting welfare effects illustrated in our analysis.

From the legal standpoint, the introduction of AVs, both at level 4 and at level 5,

will likely shift the responsibility for accidents from drivers to manufacturers, which will

require the design of a new liability regime in the urban transport context (Abraham

and Rabin, 2019).

From the moral perspective, Awad et al. (2018) discuss the tradeoffs involved in dis-

tributing the wellbeing created by machines, as well as the harm they cannot eliminate.

An important moral question has to do, for instance, with how to solve the problem of

the division of road risk between the different parties, including the occupants of the

cars and the other stakeholders, for example pedestrians.

The transition to AVs, however, will also raise many important economic questions.

Key for our analysis, a crucial effect on reducing congestion will come from the process

of traffic centralization, resulting from the organization of urban traffic around fleets,

which AVs will make cheaper thanks to the reduction in drivers’ costs.

Our paper considers a world of AVs, with the resulting potential benefits from co-

ordination. We analyze the welfare effects of moving from a decentralized system, with

atomistic vehicles only, to a centralized market, in which all travelers use vehicles that

are part of a fleet managed by a monopolist, through a transition period where some

atomistic vehicles share the road with others that are part of a fleet. We analyze an

environment with heterogenous travelers who are sorted in one of two lanes, with poten-

tially different levels of congestion. In this setting, a reduction in aggregate congestion

costs potentially arises not only as a result of a reduction in overall travel, but also as a

result of an optimal sorting of travelers across different lanes with different speeds. AVs,

along with other recent developments in urban transport will dramatically decrease the

cost of the sorting technology, thereby making it a viable and important alternative

to manage congestion. We show that, while centralization internalizes the congestion

externality, it introduces additional distortions. We analyze sorting and rationing as

tools to manage congestion. We find that, when sorting is the most relevant, welfare

decreases with centralization. When, instead, rationing is also required, centralization

may be welfare-superior.

The self driving technology will likely affect both travel demand, and the welfare-

maximizing level of congestion. With AVs, consumers may spend more productively

their time on vehicles. This will arguably increase the welfare-maximizing level of con-

gestion. At the same time, however, travel demand is expected to increase as well as

a result (Gucwa, 2014). Whether the combination of the two effects will induce more

or less travel rationing under the social planner is debatable. Additional factors could

contribute to changing both travel demand, and the welfare-maximizing level (with an

unclear effect on required rationing), including the improved vehicles coordination, as

well as changes in the cost of infrastructural expansions. As a result, it may well possible

that sorting will become, in several urban contexts, more important than reducing the
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aggregate amount of cars circulating, to curb congestion cost. Our model shows that,

in such environments, the centralization process brought about by the emergence of

fleets of AVs is likely to have adverse welfare effects. Notice, finally, that a monopolistic

company that manages the infrastructure (rather than a fleet of AVs) and can charge

different prices across lanes behaves exactly like our monopolist in a fully centralized

setting. Our results suggest that, when congestion is dealt with by sorting, and not by

rationing, a monopolist that manages the infrastructure reduces welfare with respect to

the fully decentralized case, with atomistic drivers. This should raise a word of caution

on infrastructural projects for AVs managed by private unregulated entities.

We then analyze how to restore first best with road taxes. The familiar congestion

charges are optimal with decentralized travel. However, they fail to restore optimal

welfare when vehicles are part of a fleet. In this case, the welfare-maximizing tax/subsidy

scheme is very different, and may require subsidizing the company – something likely

to be politically very unappealing.

A couple of extensions of our model seem natural. One would analyze welfare when

multiple companies, each managing a fleet of AVs, compete for passengers. While we

believe the qualitative results would not be altered, the analysis might provide some

additional insights. A second possible extension would involve the analysis of the in-

teraction between a welfare-oriented public transit company and a profit-maximizing

service provider. This could be illustrative of the effects of government direct involve-

ment in the urban transit business in a world of fleets.
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Appendix A: derivations and proofs

This Appendix contains the proofs of all Lemmata and Propositions of the paper, to-

gether with the derivations of additional results contained in the paper.

Proof of Proposition 1. First, we show that, if the planner optimally excludes

some travelers, it would exclude travelers with the lowest θ’s. By contradiction, suppose

that it dispatches a θ′-type, and it does not dispatch a θ′′-type, with θ′ < θ′′. Then, a

switch between the θ′′-type not traveling and the θ′-type traveling would leave congestion

unaffected while increasing the aggregate net benefit from traveling because B′(θ) > 0,

thereby increasing social welfare.

Second, we show that it is never optimal to assign to the same lane travelers in

non-contiguous partitions of the unit line. Let types θ′ and θ′′ be traveling in a lane

with a mass of travelers equal to l′ + l′′. Assume, by contradiction, that θ′ ∈ [θ̄′, θ̄′ + l′]

and θ′′ ∈ [θ̄′′, θ̄′′ + l′′], with θ̄′ + l′ < θ̄′′. Let also type θ′′′ be traveling in a lane with a

mass of travelers equal to l′′′ and that θ′′′ ∈ [θ̄′ + l′, θ̄′′]. Next, assume that l′ + l′′ < l′′′

so that the lane where types θ′ and θ′′ travel is less congested than the one where type

θ′′′ travels. A switch between types θ′ and θ′′′ would leave congestion in both lanes

unaltered, while increasing the aggregate net benefit from traveling because θ′ < θ′′′ and

B′(θ) > 0. Similarly, assume that l′′′ < l′ + l′′ so that the lane where types θ′ and θ′′

travel is more congested than the one where type θ′′′ travels. A switch between types θ′′

and θ′′′ would leave congestion in both lanes unaltered, while increasing the aggregate

net benefit from traveling because θ′′ > θ′′′ and B′(θ) > 0.

As a result, the welfare function can be rewritten as follows

W =

∫ 1−l2

1−l1−l2

(B(θ)− θgl1) dθ +

∫ 1

1−l2

(B(θ)− θgl2) dθ, (A-1)

where l1 is the mass of travelers in lane 1 and l2 is the mass of travelers in lane 2. It is

easy to prove that l1 > l2, so that travelers with lower θ’s are placed in lane 1, the more

congested lane. Consider two travelers, θ′ and θ′′, with θ′ < θ′′ and first suppose θ′ uses

lane 1, while θ′′ uses lane 2. In equilibrium, the aggregate net benefit for the two travelers

is w ≡ B (θ′)− θ′gl1 +B (θ′′)− θ′′gl2. Suppose now that θ′′ uses lane 1 and θ′ uses lane

2. The aggregate net benefit for the two travelers is w′ ≡ B (θ′′)− θ′′gl1 +B (θ′)− θ′gl2.

Then, w − w′ = B (θ′) − θ′gl1 + B (θ′′) − θ′′gl2 − (B (θ′′) − θ′′gl1 + B (θ′) − θ′gl2) =

g(θ′′ − θ′)(l1 + l2) > 0, which shows that social welfare is higher in the first case. The

planner problem may then be written as in (7).

The Lagrangean of problem (8) is

LFB ≡
∫ 1−f

1−s−f

(B(θ)− θgs) dθ +

∫ 1

1−f

(B(θ)− θgf) dθ − λ(s+ f − 1). (A-2)

At the solutions to this problem, denoted by sFB, fFB and λFB, Kuhn-Tucker conditions
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require

∂LFB

∂s
=B (1− sFB − fFB)− 2gsFB

(

1− fFB − 3

4
sFB

)

− λFB = 0, (A-3)

∂LFB

∂f
=B (1− sFB − fFB) + g

(

s2FB +
3

2
f 2
FB − 2fFB

)

− λFB = 0, (A-4)

∂LFB

∂λ
=sFB + fFB − 1 ≤ 0, λFB ≥ 0 and

∂LFB

∂λ
λFB = 0. (A-5)

Assume that λFB = 0 and sFB + fFB − 1 < 0, so that the solution is interior.

Substitute λFB = 0 in (A-3) and (A-4), equate them and solve w.r.to fFB to obtain

(12).

Assume instead that λFB ≥ 0 and sFB + fFB = 1. Substitute sFB = 1 − fFB in

(A-3) and (A-4), equate them and solve w.r.to fFB to obtain fFB = 5−
√
7

6
. Use again

sFB = 1− fFB to get sFB = 1+
√
7

6
. Plug fFB and sFB thus obtained into (A-3) or (A-4)

and solve w.r.to λFB to obtain λFB = B(0) − g 4+
√
7

36
. Solve λFB ≥ 0 w.r.to g to get

g ≤ gFB. �

Derivation of the comparative static results in the first best. We derive here

the comparative statics results mentioned in Section 3, i.e., ∂sFB

∂g
< 0 and ∂fFB

∂g
< 0.

Denote the FOCs of the maximization problem for the planner in (8), given in

(9) and (10), as hs(sFB, fFB, g) = 0 and hf (sFB, fFB, g) = 0, respectively. Implicit

differentiation of the FOCs w.r.to g gives

dsFB

dg
=

∂hf

∂g
∂hs

∂fFB
− ∂hf

∂fFB

∂hs

∂g

∂hf

∂fFB

∂hs

∂sFB
− ∂hf

∂sFB

∂hs

∂fFB

; (A-6)

dfFB

dg
=

∂hf

∂g
∂hs

∂sFB
− ∂hf

∂sFB

∂hs

∂g

∂hf

∂fFB

∂hs

∂sFB
− ∂hf

∂sFB

∂hs

∂fFB

. (A-7)

In problem (8), SOCs require
∂hf

∂fFB

∂hs

∂sFB
− ∂hf

∂sFB

∂hs

∂fFB
> 0. As a result,

sign
dsFB

dg
= sign

(

∂hf

∂g

∂hs

∂fFB

− ∂hf

∂fFB

∂hs

∂g

)

(A-8)

and

sign
dfFB

dg
= sign

(

∂hf

∂g

∂hs

∂sFB

− ∂hf

∂sFB

∂hs

∂g

)

. (A-9)

Using (9) and (10) yields

∂hs

∂sFB

= −B′(1− sFB − fFB)− 2g

(

1− fFB − 3

2
sFB

)

, (A-10)
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∂hs

∂fFB

= −B′(1− sFB − fFB) + 2gsFB, (A-11)

∂hf

∂sFB

= −B′(1− sFB − fFB) + 2gsFB, (A-12)

∂hf

∂fFB

= −B′(1− sFB − fFB) + g (3fFB − 2) , (A-13)

∂hs

∂g
= −2sFB

(

1− fFB − 3

4
sFB

)

, (A-14)

∂hf

∂g
= (sFB)

2 +
3

2
(fFB)

2 − 2fFB. (A-15)

When evaluated at the equilibrium relationship (12), the numerator of dsFB

dg
is negative

for any sFB ≤ s̄FB, where s̄FB is the full coverage and maximum value of sFB, computed

in Proposition 1. Hence, dsFB

dg
< 0. Also, from (12), dfFB

dsFB
> 0, hence dfFB

dg
= dfFB

dsFB

dsFB

dg
<

0.

Proof of Proposition 2. We first prove that any equilibrium must be such that

s = f . Assume, by contradiction, that s > f ; any traveler in the lane S has an incentive

to switch to the other lane, proving that this cannot be an equilibrium. When s = f and

in the absence of fares, the two IC constraints (3) and (5) are always trivially satisfied

and the two IR constraints (2) and (4) become identical and equal to B (θ) − θgs =

B (θ) − θgf . This value is nonnegative for any θ, showing that all atomistic travelers

travel. �

Proof of Lemma 1. We proved in Proposition 2 that all atomistic travelers travel. It

follows that

sa + fa = 1− µ. (A-16)

Next, consider separately the two conditions on µ in the Lemma. First, assume

1− µ ≥ sc − f c. (A-17)

We want to prove that sa and fa are such that s = sa + sc = fa + f c = f . Assume, by

contradiction, sa and fa are such that s > f . For all θ-type atomistic travelers in lane

S, it must be the case that

B (θ)− θg(sa + sc) ≥ B (θ)− θg(fa + f c),

which reduces to sa+ sc ≤ fa+f c or, equivalently, using s = sa+ sc and f = fa+f c, to

s < f . This contradicts our initial hypothesis that s > f . A similar argument rules out

the possibility that s < f . Hence, when (A-17) holds, sa and fa are such that s = f .

39



Next, assume

1− µ < sc − f c. (A-18)

We want to prove that sa = 0. Assume, by contradiction, that sa > 0. For all θ-type

atomistic travelers in lane S, it must be the case that

B (θ)− θg(sa + sc) ≥ B (θ)− θg(fa + f c),

which reduces to sa+sc ≤ fa+f c or, equivalently, using (A-16), to 1−µ ≥ sc−f c+2sa.

This contradicts (A-18). Hence, when (A-18) holds, sa = 0 and, substituting sa = 0

into (A-16), fa = 1− µ as in (16). �

Proof of Proposition 3. The proof is part of the proof of Proposition 6. �

Proof of Proposition 4. The proof is part of the proof of Proposition 7. �

Proof of Proposition 5. We evaluate and compare the welfare expression in (26) at

the equilibrium masses of travelers in the different market situations.

Let B ≡
∫ 1

0
B(θ)dθ. Denote by W̄subscript the equilibrium welfare, where the subscript

is the ones used in the different subsections of Section 4, that is, FB for first best, A

for atomistic travelers only, AC for atomistic and corporate travelers coexisting, and C

for corporate travelers only; in case of atomistic and corporate travelers coexisting, we

use subscript AC when µ ∈
(

0, 1
2

]

and AC ′ otherwise. Then

W̄FB = B − 44− 7
√
7

108
g, (A-19)

W̄A = W̄AC = B − 1

4
g, (A-20)

W̄ ′′
AC′ = B − 16µ3 − 24µ2 + 45µ− 1 + (8µ2 − 10µ− 1)

√

4µ2 − 2µ+ 1

108µ
g, (A-21)

and

W̄C = B − 12−
√
3

36
g; (A-22)

the comparison follows through immediately. �

Proof of Lemma 2. The proof is part of the proof of Proposition 6. �

Proof of Proposition 6. Assume µ is sufficiently large so that 1 − µ < sc − f c

holds at equilibrium sc and f c (something that will be checked later on), in which case

Proposition 2 and Lemma 1 ensure that sa = 0 and fa = 1− µ.
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The Lagrangean of the monopolist problem in (32) is given by

GAC ≡
(

B

(

1− sc + f c

µ

)

−
(

1− sc + f c

µ

)

gsc
)

(sc + f c)+ (A-23)

+ g

(

1− f c

µ

)

(sc − f c − fa) f c − γ (sc + f c − µ) .

At the solutions to this problem, denoted by scAC ,f
c
AC and γAC , exploiting fa = 1 − µ,

Kuhn-Tucker conditions require

∂GAC

∂sc
=B

(

1− scAC + f c
AC

µ

)

−
B′

(

1− scAC+fc
AC

µ

)

× (scAC + f c
AC)

µ
+ (A-24)

+
gscAC [3scAC + 4f c

AC − 2µ]

µ
− γAC = 0,

∂GAC

∂f c
=B

(

1− scAC + f c
AC

µ

)

−
B′

(

1− scAC+fc
AC

µ

)

× (scAC + f c
AC)

µ
+ (A-25)

+
g
[

2 (scAC)
2 + f c

AC (4 (1− µ) + 3f c
AC − 2)− (1− µ)µ

]

µ
− γAC = 0,

∂GAC

∂γ
=scAC + f c

AC − µ ≤ 0, γAC ≥ 0 and
∂GAC

∂γ
γAC = 0. (A-26)

Assume that γAC > 0 and scAC + f c
AC = µ. Substitute scAC = µ − f c

AC in (A-24)

and (A-25), equate them and solve w.r.to f c
AC to obtain f c

AC as in (21). Use again

scAC + f c
AC = µ to obtain scAC as in (21). Plug scAC and f c

AC thus obtained into (A-24) or

(A-25) and solve w.r.to γAC to obtain γAC = B(0)−B′(0) + g
(4µ−1)

√
4µ2−2µ+1+8µ2+5µ−1

18µ
.

Solve γAC ≥ 0 w.r.to g to obtain g ≤ gAC as in (35). Plug scAC and f c
AC back into the

inequality 1− µ < sc − f c, which becomes µ > 1
2
. Hence, when the monopolist chooses

scAC and f c
AC , atomistic travelers place themselves as in (16).

Assume that γAC = 0 and scAC + f c
AC ≤ µ, so that the solution is interior. Substitute

γAC = 0 in (A-24) and (A-25), equate them and solve w.r.to f c
AC to obtain f c

AC(s
c
AC) as

in (39).

Assume now µ is sufficiently small so that 1−µ ≥ sc− f c in equilibrium (something

that will be checked later on) and (16) holds.

The Lagrangean of the monopolist problem in (28) is given by

LAC ≡
[

B

(

1− c

µ

)

−
(

1− c

µ

)

g
c+ sa + fa

2

]

c− λ (c− µ) . (A-27)

At the solutions to this problem, denoted by cAC and λAC , Kuhn-Tucker conditions
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require

∂LAC

∂c
=
3g (cAC)

2

2µ
+ cAC

g (1− 2µ)− B′
(

1− cAC

µ

)

µ
+ (A-28)

+
2B

(

1− cAC

µ

)

− g (1− µ)

2
− λAC = 0,

∂LAC

∂λ
=cAC − µ ≤ 0, λAC ≥ 0 and

∂LAC

∂λ
λAC = 0. (A-29)

Assume that λAC > 0 and cAC = µ. Substitute cAC = µ in (A-28) and solve w.r.to

λAC to obtain λAC = B(0) − B′(0) + 1
2
g. Solve λAC > 0 w.r.to g to obtain gAC as in

(35).

Assume that λAC = 0 and cAC < µ, so that the solution is interior. Substitute

λAC = 0 in (A-28) to obtain (29).

We now check under which conditions 1 − µ < (≥) sc − f c in equilibrium. First

note that 1 − µ > 1
2
> µ ≥ scAC − f c

AC for any scAC , f
c
AC ; this means that µ ≥ 1

2
is a

necessary condition for 1 − µ < scAC − f c
AC to be fulfilled, hence for differentiation to

arise. Therefore, we focus on the interval µ ∈
[

1
2
, 1

)

to calculate the threshold value µ′

such that 1− µ = scAC − f c
AC .

The difference scAC − f c
AC , computed using (39), is

1

3

(

scAC − 2µ+

√

−4scAC − µ+ 2sµ+ µ2 + 7 (scAC)
2 + 1 + 1

)

.

We find that: 1 − µ > scAC − f c
AC at µ = 1

2
for any admissible scAC and f c

AC ; 1 − µ <

scAC − f c
AC at µ = 1 for any scAC and f c

AC such that scAC + f c
AC 6= 0. Since both 1 − µ

and scAC − f c
AC are continuous in µ, it follows that scAC − f c

AC has 2n + 1 intersections

with 1 − µ in µ ∈
(

1
2
, 1

)

, n ∈ N = {0, 1, 2, 3...}. If n = 0, the result that µ′ ∈
(

1
2
, 1

)

follows because 1 − µ > scAC − f c
AC for any µ ∈

[

1
2
, µ′

)

and 1 − µ < scAC − f c
AC for any

µ ∈ (µ′, 1]. To rule out that n > 0, we proceed as follows. If n were higher than 0,

there would be n intersections between scAC − f c
AC and 1− µ - denote µ∗ the values of µ

at these intersections - such that scAC − f c
AC > (<) 1− µ when µ < (>)µ∗. This would

imply that in the n neighborhoods of µ∗, the firm finds it profitable to switch from

differentiation to no differentiation as µ increases. Yet, this cannot be the case. Indeed,

the only partial coverage solution that solve problem (32) is a pair (scAC , f
c
AC) satisfying

FOCs (33) and (34) such that scAC − f c
AC > 1 − µ (and P > p); any alternative pair

(scAC , f
c
AC) such that scAC−f c

AC ≤ 1−µ (and P = p) could have been chosen by the firm

but it is not because it does not maximize profits. As µ increases, the partial coverage

profit-maximizing solutions are still feasible in that scAC − f c
AC > 1 − µ is fulfilled a

fortiori, hence switching to no differentiation cannot be a profit-maximizing strategy. �

Proof of Proposition 7. The Lagrangean of the monopolist problem in (42) is given
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by

LC ≡ (B (1− s− f)− (1− s− f) gs) (s+ f) + (g (1− f) (s− f)) f − λ(s+ f − 1).

(A-30)

At the solutions to this problem, denoted by sC , fC and λC , Kuhn-Tucker conditions

require

∂LC

∂s
=B (1− sC − fC)− B′ (1− sC − fC) (sC + fC)+ (A-31)

− gsC (2− 4fC − 3sC)− λC = 0,

∂LC

∂f
=B (1− sC − fC)− B′ (1− sC − fC) (sC + fC)+ (A-32)

g
(

3 (fC)
2 − 2fC + 2 (sC)

2)− λC = 0,

∂LC

∂λ
=sC + fC − 1 ≤ 0, λC ≥ 0 and

∂LC

∂λ
λC = 0. (A-33)

Assume that λC = 0 and sC + fC − 1 < 0. Substitute λC = 0 in (A-31) and (A-32),

equate them and solve w.r.to fC to obtain (46).

Assume instead that λC ≥ 0 and sC + fC = 1. Substitute sC = 1− fC in (A-31) and

(A-32), equate them and solve w.r.to fC to obtain fC = 1
2
−

√
3
6

as in (B-14). Use again

sC = 1− fC to get sC = 1
2
+

√
3
6

as in (B-14). Plug fC and sC thus obtained into (A-31)

or (A-32) and solve w.r.to λC to obtain λC = B(0)−B′(0)+g 4+
√
3

6
. Solve λC ≥ 0 w.r.to

g to obtain g ≤ gC as in (45). �

Derivation of the sufficiency of Assumption 3 for full coverage to occur in

first best and in all regimes. We show that, when Assumption 3 holds, full coverage

always occurs.

First best. In the first best, full coverage occurs when g ≤ gFB, where gFB is given in

(11). From the concavity of B(.) and Assumption 3, we may write B′(1) ≤ B′(0) ≤ B(0).

Using (11) and Assumption 1, then g < B′(1) < gFB, which proves our claim.

Full decentralization. Full coverage is the result of Assumptions 1 and 2 only, which

ensure that all travelers enjoy a nonnegative utility when traveling and paying no fee.

Partial centralization. Note that gAC in (35) is nonpositive when B′(0)
B(0)

≤ 1, which proves

our claim.

Full centralization. An argument identical to the one used in the case of partial central-

ization proves our claim. �

Derivation of the conditions for the existence of the Spence distortion. A suf-

ficient condition for the mass of travelers to be larger under full centralization than in the

first best is whenever the monopolist fully covers the market but the social planner does

not, i.e., max {gFB, gAC} ≤ g. This occurs when max
{

6
4+

√
3
[B′(0)− B(0)] ; 36

4+
√
7
B(0)

}

≤
g < B′ (1). This interval is not empty if and only if B′(0) < 28+

√
7+6

√
3

36
B′(1) ∼=
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1.1399B′(1), thus requiring the gross benefit function B(.) to be “not too” concave.

�

Proof of Proposition 8. With the linear specification B (θ) = b0+ bθ, the welfare gap

∆W ≡ WAC −WA becomes

∆W =
(µ− cAC) (−gc2AC − 2bµ+ 2gµ− gµ2 − 4µb0 + 2bcAC − gcAC + 2gcACµ)

4µ
(A-34)

with

cAC =
2b− g + 2gµ−

√

g2µ2 − g2µ− 4bg + 4b2 + g2 + 2bgµ− 6gµb0
3g

.

To study the sign of ∆W , we first observe that plugging cAC = 0 into ∆W yields

∆W (0) =
µ

4
(−2b+ 2g − 4b0 − gµ) ,

which is negative under Assumption 1. We then solve ∆W = 0 for cAC and get three

solutions: µ,

c =
2b+ g(2µ− 1)−

√

(2b− g)2 − 4g(4b0 − g)µ

2g

and

c =
2b+ g(2µ− 1) +

√

(2b− g)2 − 4g(4b0 − g)µ

2g
.

We prove our result in three steps. (i) First observe that (2b− g)2−4g(4b0−g)µ < 0

iff µ >
(2b−g)2

4g(4b0−g)
and 4b0 − g > 0. In this case, the quadratic expression in (A-34) is

negative, hence ∆W < 0. (ii) Second, when µ <
(2b−g)2

4g(4b0−g)
and 4b0 − g > 0, we find that

µ < c < c and that ∂∆W
∂cAC

> 0 at cAC = µ. Since ∆W < 0 at cAC = 0 and ∆W is a

continuous function in cAC ∈ (0, µ), then ∆W < 0 at any cAC ∈ (0, µ). (iii) Finally,

when 4b0 − g < 0, we find that c < µ < c and ∂∆W
∂cAC

< 0 at cAC = µ. This implies that

∆W ≤ 0 when cAC ≤ c and ∆W > 0 when c < cAC < µ.

To prove that cAC > c when µ → 0 and max
{

2
3
b+ 2b0, 4b0

}

< g, we proceed as

follows. Note that cAC = c = 0 at µ = 0. Moreover,

lim
µ→0

∂cAC

∂µ
=

6b0 + 3 (2b− g)

6 (2b− g)
> 0 (A-35)

and

lim
µ→0

∂c

∂µ
=

4b0 + 2 (b− g)

2b− g
> 0. (A-36)

Note that (A− 35) > (A− 36) iff g > 2
3
b+ 2b0, which proves our result. �

Derivation of the marginal aggregate congestion cost in a fully decentralized

44



regime. We calculate the marginal aggregate congestion cost imposed by type-0 traveler

on fellow travelers in the same lane in a fully decentralized regime when there is no

differentiation across lanes (i.e. when µ ∈ (0, µ′]).

From (37), all travelers face the same congestion level sAC = fAC = cAC+1−µ

2
. Ag-

gregate congestion costs are given by Γ ≡
∫ 1

0
θg cAC+1−µ

2
dθ. The marginal congestion

cost is then simply given by ∂Γ
∂cAC

= g

4
. When choosing whether to exclude the type-0

from traveling, the planner compares this with the benefit this individual derives from

traveling, i.e. U(0) = b0. �

Proof of Proposition 9. When g ≤ gFB, full coverage occurs not only with atomistic

travelers but also in the first best (see (11) and Proposition 2). Since the type-0 traveler

gets utility B (0)− t from traveling in the slow lane, Assumptions 1 and 2 implies that

full coverage occurs as in the social optimum when t = tA. Given tA, substitute s̄FB as

in (13) into the IC constraint (5) to write

B

(

1

2
+

√
7− 2

6

)

−
(

1

2
+

√
7− 2

6

)

g

(

1

2
−

√
7− 2

6

)

− T ≥ (A-37)

B

(

1

2
+

√
7− 2

6

)

− g

(

1

2
+

√
7− 2

6

)2

− tA

and solve it w.r. to T when holding as an equality to obtain TA.

When g ≥ gFB, the market is fully covered under atomistic travelers, but not in the

social optimum. To obtain tA, consider that the marginal net effect on social welfare of a

θ-type traveler deciding to travel in the slow lane (as opposed to not traveling) is given

by the LHS of (9), while his private benefit is given by (1). The difference between

(1) and the LHS of (9) is positive and therefore corresponds to the non-internalized

component of the marginal social cost, which we set equal to tA. Given tA, use sFB and

fFB in the IC constraint (5) to write

B (1− fFB)− (1− fFB) gfFB − T = B (1− fFB)− (1− fFB − sFB) gsFB − tA.

and solve it w.r. to T when holding as an equality to obtain TA. �

Proof of Proposition 10. Using (55), the Lagrangean of the monopolist problem in

(52) is given by

LCT ≡ (B (1− s− f)− (1− s− f) gs) s+ (A-38)

+ (B (1− s− f)− (1− s− f) gs+ g (1− f) (s− f)) f+

− (gs− zC) s− (gf − z) f (A-39)

− λ (s+ f − 1) .

At the solutions to this problem, denoted by sCT , fCT and γCT , Kuhn-Tucker con-
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ditions require

∂LCT

∂s
=B (1− sCT − fCT )− B′ (1− sCT − fCT ) (sCT + fCT )+ (A-40)

− gsCT (2− 4fCT − 3sCT ) + z − λCT = 0;

∂LCT

∂f
=B (1− sCT − fCT )− B′ (1− sCT − fCT ) (sCT + fCT )+ (A-41)

+ g
(

3(fCT )
2 + 2(sCT )

2 − 2fCT

)

+ z − λCT = 0;

∂LCT

∂γ
=sCT + fCT − 1 ≤ 0, γCT ≥ 0 and

∂LCT

∂λ
γCT = 0. (A-42)

Assume that λCT = 0 and sCT + fCT − 1 < 0. Substituting λCT = 0 in (A-40) and

(A-41), equalize them and solve w.r.to f to get

fCT (sCT ) =
1

3

(

2 (1 + sCT )−
√

7s2CT − 4sCT + 4

)

; (A-43)

which is identical to (12). Notice that the level of the subsidy z does not affect fCT (sCT )

in (A-43).

Assume instead that λCT ≥ 0 and sCT + fCT = 1. Substituting sCT = 1 − fCT in

(A-40) and (A-41), equating them and solving w.r.to fCT gives fCT = 1
2
−

√
7−2
6

as in

(13). Using again sC = 1 − fC gives sC = 1
2
−

√
7−2
6

as in (13). Plugging fCT and sCT

thus obtained into (A-40) or (A-41) and solving w.r.to λCT it gives λCT =
g(4+

√
7)

B(0)−B′(0)+z
.

Solving λCT ≥ 0 w.r.to g gives

g ≤ gCT ≡ 18 [B(0)− B′(0) + z]

4 +
√
7

. (A-44)

Notice that, when z = 0, gCT < gFB, so that g ≤ gCT implies g ≤ gFB; that is, whenever

the monopolist subject to a system of tax/subsidy as in (55) with z = 0 covers the

market, a social planner would do it as well. This implies that, when g ≤ gCT , the

subsidy that restores social optimality is equal to zero.

When instead g >
18[B(0)−B′(0)]

4+
√
7

, a positive subsidy is required for (A-44) to hold. The

smallest subsidy is obtained by solving (A-44) w.r.to z when this holds as an equality.

This gives z = B′ (0)−B (0)+g 4+
√
7

18
, which is optimal as long as full coverage is socially

optimal, i.e. g ≤ 36B(0)

4+
√
7
.

Focus now on g >
36B(0)

4+
√
7
. In this case, the social planner partially covers the market,

hence we do not want the monopolist to fully cover the market. The optimal subsidy is

then computed as follows. Equalize the FOC w.r.to s or f in the monopolist problem in

(53) to the FOC w.r.to s or f in the social planner problem in (9), and solve with respect

to z. This gives zC = B′(1− sFB − fFB)(sFB + fFB) + g
(

2fFB − (sFB)
2 − 3

2
(fFB)

2
)

.�
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Appendix B: numerical simulations

In this Appendix, we sketch the methodology we use for the numerical welfare analysis

in Section 5.4. First, we assume

B(θ) = b0 + bθ, (B-1)

with b0 ≥ 0 and b > 0. As mentioned, Assumption 1 and 2 become g < b and b0 ≥ 0,

respectively. Also, Assumption 3 becomes b ≤ b0, which we take never to hold to avoid

duplicating the analysis contained in Section 4.4. Without further loss of generality, we

normalize b = 1. As a result, recalling that, by construction, µ ∈ [0, 1], the space of

parameters of interest of our analysis is {µ, b0, g} ∈ [0, 1]× [0, 1)× (0, 1).

We use Maple to perform our numerical analysis. We evaluate and compare welfare

under full decentralization (µ = 0) with welfare under partial or full centralization

(0 < µ ≤ 1).

When µ = 0, we know from Proposition 2 that any allocation of travelers such that

sA = fA = 1
2
is an equilibrium and that all equilibria are payoff equivalent. Hence, we

allocate travelers with θ ∈
[

0, 1
2

)

to line S and travelers with θ ∈
[

1
2
, 1

]

to line F and

plug these values in (26), which now, because of (B-1), takes the following form

WA =

∫ 1

2

0

(

b0 + bθ − 1

2
θg

)

dθ +

∫ 1

1

2

(

b0 + bθ − 1

2
θg

)

dθ. (B-2)

When 0 < µ < 1, we create a grid of parameters combinations, letting µ vary by

0.1 and letting the other parameters vary by 0.05. For each combination of the triplet

{µ, b0, g}, we calculate with numerical methods the equilibrium values of scAC , f c
AC ,

saAC and fa
AC and then use these values to calculate social welfare. Details of these

calculations are given below:

i) When µ ∈
(

0, 1
2

]

, we know from Lemma 2 that there is never differentiation across

lanes. Full coverage occurs when g ≥ gAC , where, because of (B-1), gAC = 2 (b− b0).

Full coverage. When g ≥ gAC , we know from Proposition 7 that an equilibrium is any

allocation of travelers such that

s̄cAC + s̄aAC = f̄ c
AC + f̄a

AC = 1
2
,

s̄cAC + f̄ c
AC = µ,

s̄aAC + f̄a
AC = 1− µ,

(B-3)

and that all these allocations are payoff equivalent. Hence, we allocate an equal mass

of both atomistic and corporate travelers to each lane and let (both types of) travelers

with θ ∈
[

0, 1
2

)

travel in lane S and those with θ ∈
[

1
2
, 1

]

in lane F . We use these

values in (26), which now, because of full coverage, no differentiation and (B-1), takes
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the following simple form

WAC =

∫ 1

0

(

b0 + bθ − 1

2
θg

)

dθ. (B-4)

Partial coverage. We know from Proposition 6 that

scAC + saAC = f c
AC + fa

AC = cAC+1−µ

2
,

scAC + f c
AC = cAC ,

saAC + fa
AC = 1− µ,

(B-5)

We solve numerically for cAC the FOC of the monopolist’ problem in (29), which now,

because of (B-1), becomes

3g (cAC)
2

2µ
+ cAC

g (1− 2µ)− b

µ
+

2
(

b0 + b
(

1− cAC

µ

))

− g (1− µ)

2
= 0. (B-6)

Then, we allocate an equal mass of both atomistic and corporate travelers to each lane

and let (both types of) travelers with θ ∈
[

1− (cAC + (1− µ)) , 1−(cAC+(1−µ))
2

)

travel in

lane S and those with θ ∈
[

1−(cAC+(1−µ))
2

, 1
]

to lane F . We use these values in (47),

which now, because of partial coverage, no differentiation and (B-1), takes the following

form

WAC =µ

∫ 1

1− cAC
µ

(

b0 + bθ − θg
cAC + 1− µ

2

)

dθ+ (B-7)

+ (1− µ)

∫ 1

0

(

b0 + bθ − θg
cAC + 1− µ

2

)

dθ.

ii) When µ ∈
(

1
2
, 1

)

, we know from Lemma 2 that differentiation may occur depending

on the value of µ′. We assume that differentiation occurs, calculate the equilibrium

solutions for the monopolist (see below) and check ex-post whether 1− µ < scAC − f c
AC .

If this inequality does not hold, no differentiation occurs and we proceed as detailed in

the case of µ ∈
(

0, 1
2

]

. If it does, we proceed as described below.

Full coverage occurs when g ≥ gAC as in (36), that, because of (B-1), becomes

gAC = K(µ) (b− b0) .

Full coverage. We know from Proposition that in equilibrium s̄aAC = 0 and f̄a
AC = 1−µ.

Also, from (21), s̄cAC and f̄ c
AC are given by

s̄cAC = 1
2
+

√
4µ2−2µ+1−2(1−µ)

6
,

f̄ c
AC = 1

2
−

√
4µ2−2µ+1+4(1−µ)

6
.

(B-8)

We use these values in (47), which now, because of full coverage, differentiation and
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(B-1), takes the following form

WAC =µ





∫ 1− f̄cAC
µ

0

(b0 + bθ − gθs̄AC) dθ +

∫ 1

1−
f̄c
AC
µ

(

b0 + bθ − gθf̄AC

)

dθ



+ (B-9)

+ (1− µ)

∫ 1

0

(

b0 + bθ − gθf̄AC

)

dθ

Partial coverage. We know from Proposition 6 that

saAC = 0,

fa
AC = 1− µ,

(B-10)

We solve numerically for scAC and f c
AC the FOCs of the monopolist’ problem in (33) and

(34), which now, because of (B-1), become

b0 + b

(

1− scAC + f c
AC

µ

)

− b (scAC + f c
AC)

µ
+ (B-11)

+
gscAC [3scAC + 4f c

AC − 2µ]

µ
= 0,

b0 + b

(

1− scAC + f c
AC

µ

)

− b (scAC + f c
AC)

µ
+ (B-12)

+
g
[

2 (scAC)
2 + f c

AC (4 (1− µ) + 3f c
AC − 2)− (1− µ)µ

]

µ
= 0.

Then, we set sAC = scAC and fAC = f c
AC + fa

AC . We let corporate travelers with

θ ∈
[

1− scAC+fc
AC

µ
, 1− fc

AC

µ

)

travel in line S and those with θ ∈
[

1− fc
AC

µ
, 1

]

travel in

line F , together with all atomistic travelers. We use these results in (47), which now,

because of partial coverage, no differentiation and (B-1), takes the following form

WAC =µ





∫ 1− fcAC
µ

1−
fc
AC

+fc
AC

µ

(b0 + bθ − gθsAC) dθ +

∫ 1

1−
fc
AC
µ

(b0 + bθ − gθfAC) dθ



+ (B-13)

+ (1− µ)

∫ 1

0

(b0 + bθ − gθfAC) dθ.

iii) When µ = 1, full coverage occurs when g ≥ gC as in (45), that, because of B-1),

becomes gC = 6
4+

√
3
(b− b0).

Full coverage. We know from Proposition 4 that

s̄C = 1
2
+

√
3
6

∼= 0.7887,

f̄C = 1
2
−

√
3
6

∼= 0.2113.
(B-14)
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We use these values in (47), which now, because of full coverage, differentiation and

(B-1), takes the following form

WC =

[

∫ 1−f̄C

0

(b0 + bθ − gθs̄C) dθ +

∫ 1

1−f̄AC

(

b0 + bθ − gθf̄C
)

dθ

]

. (B-15)

Partial coverage. We solve numerically for sC and fC the FOCs of the monopolist’

problem in () and (), which now, because of (B-1), become

b0 + b (1− sC − fC)− b (sC + fC)+ (B-16)

− gsC (2− 4fC − 3sC) = 0,

b0 + b (1− sC − fC)− b (sC + fC)+ (B-17)

g
[

3 (fC)
2 − 2fC + 2 (sC)

2] = 0.

We let corporate travelers with θ ∈ [1− sC − fC , 1− fC) travel in line S and those with

θ ∈ [1− fC , 1] travel in line F , together with all atomistic travelers. We use these results

in (47), which now, because of partial coverage, no differentiation and (B-1), takes the

following form

WC =

∫ 1−fC

1−sC−fC

(b0 + bθ − gθsC) dθ +

∫ 1

1−sC+fC

(b0 + bθ − gθfC) dθ.

The results of the numerical simulations thus obtained are available here.
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