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1. Introduction
Internal gravity waves (IGWs) are waves that are driven by buoyancy forces in a stratified
medium. They play an important role in mixing material and transporting energy and momentum
in planetary atmospheres, oceans and the radiative interior of solar-type stars. In the Earth’s
atmosphere, IGWs have been observed and modelled for many years, both in the lower
atmosphere [1,2] as well as at ionospheric heights [3]. Moreover, IGWs play an important role
in the coupling of these two regions. In the oceans IGWs power the overturning meridional
circulation that affects pollutant disposal, marine productivity and global climate [4]. Elsewhere
in the Solar System IGWs have been detected on Mars [5] and Jupiter [6,7]. In fact, the viscous
damping of IGWs on Jupiter could explain the enigmatic temperature structure of the planet’s
thermosphere, addressing a long-standing problem in planetary physics [7]. In astrophysics,
IGWs, randomly excited in space and time by overshooting convection, have been invoked to
explain the uniform rotation of the solar core [8] and the rotation profile and the surface Lithium
abundance of solar-type stars [9]. IGWs have also been proposed as an agent for the mechanical
heating of stellar atmospheres and coronae [10]. More recent studies [11–13] show the diagnostic
potential of the IGWs for magnetic field in the solar atmosphere at different heights above the
solar surface.

Owing to difficulties associated with directly observing IGWs in the Sun, however, they have
not garnered the same level of attention they have in these other disciplines. Despite these
difficulties, there is observational evidence of short wavelength (less than 6 Mm) IGWs in the
Sun’s atmosphere [14–20]. Here we report on an endeavour to directly measure the IGWs in the
Sun’s atmosphere and identify how they couple to atmospheric flows.

2. Simulations
Simulations of IGWs can serve as a good (and necessary) bench test to study the propagation of
travelling wave-packets. The absence of noise and any other disturbances offers fundamental
benefits when studying the complex behaviour of wave-packets at different layers in the
atmosphere. We have therefore developed a simple simulation of upward propagating gravity
waves in the Sun’s atmosphere as a test bench for our analysis. In particular, we have created
simulated time series of spatially resolved observations of the velocity signals at the two altitudes
corresponding to the formation heights of the solar Fraunhofer lines used by the SOHO/MDI [21]
and Hinode/SOT [22] experiments, with spatial scales and dimensions commensurate with the
velocity observations of MDI and SOT (§3 and table 1). The parameters of the simulations match
exactly the time cadence and spatial resolution of the MDI–SOT dataset. This then allows us to
directly compare the results of the analyses of our simulated datasets with the analyses of real
data we have at hand.

We follow the approach of [27] and model each packet of gravity waves as a travelling wave
which produces a perturbation

ζ (x, y, z, t) = Aζ cos(kxx + kyy + kzz − ωt), (2.1)

where kx,y,z represent the wavenumbers, ω is the angular frequency and Aζ is the amplitude of
the wave. We define the angle of propagation of this wave-packet with the equation:

ω = N
kh√

k2
h + k2

z

= N cos θ , (2.2)

where kh =
√

k2
x + k2

y is the horizontal wavenumber, N is the Brunt–Väisälä frequency and θ is
the angle between the vertical (z) direction and the group velocity. Thus, we can calculate the
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Figure 1. This figure shows the x-z cross-section of a single wave-packet at two times, t0 (b) and t1 (a). At time t1, the wave-
packet is displaced to the right in x with respect to its location at time t0 due the non-zero horizontal group velocity of the
wave-packet. In addition, the regions of large amplitude within the wave-packet have moved downward and to the right due
to the phase velocities of the waves that comprise the wave-packet. The red dashed lines represent the layers corresponding
to SOHO/MDI and Hinode/SOT formation heights. The blue arrow represents the group velocity of the wave-packet, whereas
the black arrow represents the phase velocity. Note, in order to clearly see the horizontal displacement of the wave-packet in
its journey between the two observing heights, we have displayed the figure with a large aspect ratio. This results in the angle
between the arrows showing the directions of the group and phase velocities of thewave-packet appearing to be different from
its expected value of 90◦. (Online version in colour.)

phase and group velocities and the vertical wavenumber for each frequency and horizontal
wavenumber:

vp(x,y,z) = ω

k(x,y,z)
, (2.3)

cg(x,y,z) = ∂ω

∂k(x,y,z)
and k2

z = k2
h

(
N2

ω2 − 1

)
, (2.4)

where vp(x,y,z) and cg(x,y,z) are the components of phase and group velocity, respectively. For
IGWs, the group and phase velocity vectors are perpendicular to each other. Therefore, they have
opposite sign in the z-direction (figure 1).

A Gaussian-shaped wave-packet is then completed by defining the amplitude as

Aζ exp

[
−
(

(x − x0 − cgxt)2

σ 2
x

+ (y − y0 − cgyt)2

σ 2
y

+ (z − z0 − cgzt)2

σ 2
z

)]
, (2.5)

where (x0, y0, z0) are the initial positions and σx, σy and σz are the physical widths and depth of
the wave-packet.

Up to this point, we have considered an atmosphere without a mean flow, i.e. U = 0. We can
also assume a time and height independent flow that modifies equation (2.1)

ζ (x, y, z, t) = Aζ cos(kxx + kyy + kzz − (ω + Uxkx + Uyky)t), (2.6)

where (Ux, Uy) are the horizontal components of the flow.
As IGWs in the Sun’s atmosphere are believed to be randomly excited in space and time by

convective tongues that penetrate into the stratified atmosphere, the resultant IGW wavefield is
random [28].

To mimic this behaviour, we use several tens of thousands of wave-packets generated with
random parameter values selected from the ranges given in table 1. We note that we assume the
distribution for each parameter to be uniform over its range and acknowledge that this is a crude
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Table 1. Left panel: Properties of the dataset used in the analysis [23]. Right panel: Boundaries of the simulation input
parameters. The parameters for the wave-packet simulations have been chosen according to [10,24,25].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of pixels along X-axis 256 pix x0 [0, 255] pix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of pixels along Y-axis 256 pix y0 [0, 255] pix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of frames 735 z0 [−100, 100] km
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cadence 60 s t0 [0, 734] pix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

duration 12.25 h σx [500, 1500] km
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pixel scale 0.61 arcsec/pix σy [500, 1500] km
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wavenumber resolution 0.056 Mm−1 σz [100, 500] km
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

frequency resolution 0.023 mHz Aζ [100, 250] m s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MDI formation height [26] 125 km kh [1, 6] Mm−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SOT Mg b2 formation height [23] 720 km ω/2π [0.5, 3.5] mHz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

approximation. We then performed simulations with and without background flows. Figure 1
shows a slice through an example wave-packet observed at two instances in time.

3. Observations
To anchor our simulations, we also analyse a set of real (simultaneous) multi-height Dopplergram
time series, which were acquired on 20 October 2007 by Hinode/SOT in the Mg b2 line and
by SOHO/MDI in its high-resolution mode in the Ni line at 6768 Å. Table 1 summarizes the
properties of this coordinated dataset. The formation height of the MDI Doppler signal is from
[26], and the mean formation height of the SOT Doppler signal was estimated from the slope of
the linear part of the phase difference spectrum between the two lines [23]. Other information
about this particular data set and the data reduction process can be found in [23].

4. Analysis
‘Seismic interferometry’ shows that the cross-correlation of simultaneous recordings of a random
wavefield made at two locations is formally related to the impulse response between those
locations [29]. Inspired by this and the success of time-distance helioseismology [30], we present a
new analysis to find the signature of IGWs travelling through the solar atmosphere. The method
is based on three-dimensional cross-correlation between Dopplergrams at two different heights
above the base of the Sun’s photosphere. The first step in the analysis is the creation of a filter
mask in order to select only the gravity waves regime of the power spectrum. This corresponds to
the region below the Lamb line, defined as ω = cskh, where cs is the sound speed, and below the
Brunt–Väisälä frequency (which we take as 4 mHz). As we will compare the results of our analyses
using simulated and real data, we also neglect frequencies below 0.5 mHz and wavenumbers
above 6 Mm−1. The former is to reduce the level of convective signal in the real data, the latter
is to avoid the observed increased noise in the signal at the higher wavenumbers in the real data
(figure 3a). Figure 2 shows the three-dimensional filter at different wavenumbers and frequencies.
The second step is to modify this filter to select the frequency of the waves we want to analyse.
We do this by multiplying the filter by an additional Gaussian filter centred on the frequency
of interest with a full width at half maximum of 0.5 mHz. The combined filter is then applied
to the three-dimensional Fourier transforms of the two data cubes. The final step is to compute
the cross-spectrum by multiplying one filtered spectrum by the complex conjugate of the other
one, and then inverse Fourier transform the cross-spectrum to provide the three-dimensional
cross-correlation function.
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Figure 3. The phase difference kh − ω diagram for the SOHO/MDI andHinode/SOTDoppler observations (a) and the simulated
Doppler data (b). Both diagrams are computedbefore thefiltering procedure. Black dashed lines represent the Lamb line and the
Brunt–Väsäilä frequency. Positive angles (red) represent downward phase velocity. The gravity wave signal is visible between
1 Mm−1 and 6 Mm−1 and below the Lamb line up to about 4 mHz. The phase difference diagram for the simulations shows
multiple 360◦ phase wrappings at low temporal frequencies. (Online version in colour.)

5. Results
We first look at the phase difference kh − ω diagram for the real and simulated data as this is
historically the tool that has been used to validate the presence of gravity waves in the Sun’s
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data cubes. The red circles superimposed on the cross-correlation signals for the simulated data show the expected location of
maximum correlation for waves at the central frequency of the frequency filter and with no background flow. The red circles
superimposed on the cross-correlation signals for the real data show the expected location for the maximum correlation for a
Brunt–Väsäilä frequency of 5.5 mHz and a height separation of 600 km. The blue arrows in the images in the central column
represent the direction of the background flow. The results for the simulated data are shown with linear scaling, whereas the
results for the real data are shown with logarithmic scaling. The latter is necessary due to the large correlation near zero lag
which comes from non-wave sources (e.g. convection) which are absent in the simulations. (Online version in colour.)

atmosphere. This diagram is generated by computing the phase of the cross-spectrum and then
azimuthally averaging over kx and ky to give the temporal variation as a function of kh.

Looking at the kh − ω phase difference diagram between the two Doppler signals from
the SOHO/MDI and Hinode/SOT data (figure 3a), we see the signature of downward phase
velocities in the gravity wave regime below the Lamb line. This is what we expect for upward
propagating gravity waves, whose vertical group and phase velocities have opposite signs. The
kh − ω phase difference for the simulated data (figure 3b) shows the same behaviour although
with a larger range of phase difference (highlighted by the phase wrapping of the signal).

Next we look at the cross-correlation functions for the real and simulated data. In particular,
we look at the maximum values of the three-dimensional cross-correlation functions over all
temporal lags (figure 4). What we see are clear rings at spatial lags that vary with the frequency of
the waves under study. To understand this behaviour, let us return to figure 1 which shows how
a wave-packet propagates through the atmosphere. The cross-correlation function for the two
signals observed at the ‘SOT’ and ‘MDI’ heights in this figure will show a high amplitude at the
temporal lag corresponding to the group travel time between the two observing heights and at the
spatial lag corresponding to the horizontal distance travelled due to the wave-packet’s horizontal
group velocity and the time taken for the wave-packet to travel between the two observing
heights. If we move to three-dimensions and consider a large number of wave-packets emitted at
the same angle (i.e. the wave-packets have the same central frequency) with respect to the vertical,
but in all azimuthal directions (i.e. they trace out a cone in three dimensions), then we can see
that we will observe (2n − 1) rings in a cut of the three-dimensional cross-correlation function
at a given time lag, where n is the number of regions of maximum (or minimum) amplitude
across the wave-packet. If we look at the location of the maximum value in the cross-correlation
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plane waves instead of Gaussian-shaped wave-packets (amplitude in (2.5) set to unity). (Online version in colour.)

function over a large number of realizations, we will find that it traces out an annulus whose
width is roughly the width of the wave-packet (due to the movement of the peaks due to the
phase velocity). If we now superimpose on the measured cross-correlation signals the expected
locations for the maximum signal according to equation (2.2)—the red dashed circles in figure 4—
it is clear that the signal in the results for the simulation with zero background flow are consistent
with the detection of packets of IGWs. Moreover, the real data show the same behaviour when
the Brunt–Väsäilä frequency is set at 5.5 mHz.

To further validate that the observed ring structure is due to IGWs and is not an artefact
of our filtering method, we performed a number of experiments. Figure 5 shows the cross-
correlation results on different datasets using the filtering procedure at 3 mHz. Looking at the
figure representing the MDI–SOT dataset and the simulation without flows, we can clearly see
rings around the zero-spatial lag point. However, when we analyse a white noise data cube, data
cubes that have been scrambled in time, and a simulation made of travelling waves where the
amplitude of the waves is not limited by equation (2.5), the results are very different. There is no
clear ring structure. This is a clear evidence that the rings visible in the cross-correlations of the
real data and in the IGWs simulation, are not artefacts. We now examine how a background flow
affects our measured cross-correlation function. Figure 4b,e shows the cross-correlation function
when there is a constant background flow of 220 m s−1. What is clear here is that the flow causes
the ring in the cross-correlation function to be shifted in the direction of the flow. The ring
also shows some distortion (which is more evident at higher flow speeds). A comparison of
the cross-correlation functions at 1 mHz and 1.5 mHz show that cross-correlation function at the
lower frequency is influenced more by the flow. This is due to the lower frequency wave-packet
spending a longer time in the flow (due to its shallower propagation angle and lower velocity): it
is therefore more affected by the flow.
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function at 1 mHz for the simulated data without a background flow. The plot inside the figure (red line) represents a vertical
cut through the ring of signal. The yellow and white dashed lines are Gaussian fits of the top and bottom sections of the ring.
The separation between the two Gaussian fits agrees with the expected diameter of the ring to within 0.1 pixels. (b) The cross-
correlation function as a function of temporal lag at the two positions in the ring in the left plot denoted by the red spots. The
data is shown by the red line. The fit to the data using eqn 1 of [31] is shown by the black dashed line. The fit parameters include
the group and phase travel times. The values for these quantities, located at the top left corner of each plot, have opposite signs,
as expected for IGWs. (Online version in colour.)

6. Discussion
Using a simple model of gravity wave excitation and propagation in the solar atmosphere, we
have shown that the three-dimensional cross-correlation function of the time-series of velocity
data acquired at two heights in the atmosphere show a unique ring-like structure that varies with
the frequency of the waves under study.

Moreover, we have shown that the characteristics of this ring structure are sensitive to flows
that are present between the two observing heights in the solar atmosphere. These results suggest
that we have uncovered a method to directly measure IGWs in the solar atmosphere.

Measurements of the ring structures at different frequencies and modelling of the temporal
variation of the cross-correlation functions in the rings are both straightforward (figure 6) and
provide a way to infer the properties of the detected gravity wave-packets (e.g. group and phase
travel times) and the solar atmosphere (e.g. through the Brunt–Väsäilä frequency and sensitivity
to flows). If validated, the results in this paper open the door for using IGWs as a probe of the
dynamics in the solar atmosphere (e.g. [32]).

We close with some cautious speculation. Close examination of figure 4 provides a tentative
hint that the real data may be showing evidence for a small background flow. However, more
research needs to be performed before this conclusion can be drawn. Also, there is evidence in
the literature for wave reflection in the atmosphere and downward propagating wave-packets
[33–36], but our simulation and analysis do not include this yet. The effects of flows and wave
reflection/boundary layers will be the subject of a future study.
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