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Abstract: Genome sequencing has identified a large number of putative autism spectrum disorder
(ASD) risk genes, revealing possible disrupted biological pathways; however, the genetic and
environmental underpinnings of ASD remain mostly unanswered. The presented methodology
aimed to identify genetically related clusters of ASD individuals. By using the VariCarta dataset,
which contains data retrieved from 13,069 people with ASD, we compared patients pairwise to
build “patient similarity matrices”. Hierarchical-agglomerative-clustering and heatmapping were
performed, followed by enrichment analysis (EA). We analyzed whole-genome sequencing retrieved
from 2062 individuals, and isolated 11,609 genetic variants shared by at least two people. The analysis
yielded three clusters, composed, respectively, by 574 (27.8%), 507 (24.6%), and 650 (31.5%) individuals.
Overall, 4187 variants (36.1%) were common to the three clusters. The EA revealed that the biological
processes related to the shared genetic variants were mainly involved in neuron projection guidance
and morphogenesis, cell junctions, synapse assembly, and in observational, imitative, and vocal
learning. The study highlighted genetic networks, which were more frequent in a sample of people
with ASD, compared to the overall population. We suggest that itemizing not only single variants,
but also gene networks, might support ASD etiopathology research. Future work on larger databases
will have to ascertain the reproducibility of this methodology.

Keywords: autism spectrum disorder (ASD); cluster analysis; gene networks; patient similarity
analytics; neurite morphogenesis; synapse assembly; connectivity

1. Introduction

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders
characterized by impaired social communication, repetitive behaviors, and restricted interests [1].
Genetic [2,3] and epigenetic [4] factors have been identified as leading actors in ASD pathophysiology,
as twin studies have confirmed. A meta-analysis on 6413 twins, including affected twins, showed a
heritability in families with an autistic patient of 64–91% [5]. Autism appears to be the final outcome
of complex genetic and epigenetic architectures [3], with possible contributions of environmental
factors [6]. However, many questions regarding interactions between genes and environment still
remain unanswered [7].
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In fact, in the light of more recent genetic research, it has been highlighted that thousands of genetic
variants may contribute to this disorder [8], further confirming the complex heterogeneous etiology
of ASD, with consequent variegated configurations of biological and behavioral characteristics [9].
This heterogeneity calls for the need to ground autism research more and more on studies and
techniques which can cope with large sample sizes [10].

During the last decades, developments in gene-hunting techniques have identified several
ASD associated genes, including genes that code for proteins involved in synaptic functions [8,11].
Such new technologies, including exome-wide and genome-wide interrogation, are considered effective
methodologies for detecting links between a common variant located in a specific DNA region and the
risk of developing ASD [2]. More recently, the largest exome sequencing study in ASD, which analyzed
a cohort of 35,584 subjects, including 11,986 with ASD, was published [12]. By describing rare de novo
and inherited coding variations, it identified 102 putative ASD risk genes at a false discovery rate
of ≤0.1. Thirty of these genes were identified for the first time, as they had never been significantly
enriched for de novo and/or rare variants in previous studies. Notwithstanding these efforts, and the
important knowledge arising from this recent exome sequencing study, no major causative gene has
been isolated so far [13,14]. Consequently, several essential questions regarding the pathophysiology
of ASD, including which cell types and biological processes are disrupted, are still poorly understood.
Some advancements in the detection of rare genetic variants have been made by studying genetic
syndromes related to ASD [9], and which have shed a new light on the pathophysiology of the
disorder [15]. By studying the syndromic ASD, some evidence has emerged that even heterogeneous
ASD phenotypes might possibly present with a convergent pathophysiology [8].

Considering this complex challenge, network-based analyses have been suggested as possible
powerful tools to discover interaction patterns in ASD pathophysiology, and to provide a functional
explanation of genetic heterogeneity in ASD [16,17]. Several authors have investigated possible methods
of producing network-based prioritization of ASD genes [16]. In particular, machine learning algorithms
have been employed in order to delineate the ASD architecture [18–20]. In addition, cluster analysis
has seen increasing applications in biomedicine, to further the understanding of ASD [21]. In order to
better assess the strength of evidence associated with ASD candidate genes [11] large systematic databases
are needed. There are already several databases collecting ASD variant data, for example SFARI [22],
AutismKB [23], and the one developed within the Autism Speaks’ MSSNG project [24]. However,
even though advances in technology, and widespread databases, are continuing to disentangle the genetic
aspects of ASD, the pathogenesis of the disorder is still a matter of speculation.

Moving from this background, the present study aimed to look at gene-networks rather than
at specific gene variations, and to identify and categorize those biological processes that might act
as a possible pathophysiological substrate for ASD. Hence, instead of focusing on single genes,
DNA segments, or genetic variants, we prioritized those biological processes that occur in genetically
related clusters of patients. The recent availability of VariCarta [25], an ASD specific database,
allowed executing a preliminary analysis on an adequate amount of individuals. The VariCarta dataset
is freely available at https://varicarta.msl.ubc.ca/index, both using a web interface or by downloading
the whole dataset in csv format. All data generated or analyzed during the present study are included
in this published article and its additional files.

We first defined a metric to measure the genetic similarity between patients according to their
variations, and then applied hierarchical clustering in order to identify groups of genetically similar
individuals [26]. Afterwards, we proceeded with the enrichment analysis upon each cluster of patients,
so as to identify ASD-related biological pathways which might have been impacted by the genetic
variations. Finally, we discuss the implications of biological process knowledge for clinical practice.

https://varicarta.msl.ubc.ca/index
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2. Materials and Methods

2.1. Gene Database

For this research work we used the VariCarta dataset from British Columbia University, a web-based
database of human DNA genetic variants identified in individuals with an ASD diagnosis [25]. It also
presents a list of genes, with both a set of variants, and the reference to the individual affected by
the variant. This information was fundamental for the cluster analysis we carried out. However,
no further details about individuals, e.g., age, gender, ethnicity, family relationship, as well as
information regarding the homozygous/heterozygous status of each subject, are reported in the
database. VariCarta was developed to support the identification of genetic variants in individuals
with ASD. To address this challenge, it was necessary to collect a large quantity of subject information,
through the aggregation of data, with the risk of methodological inconsistencies and subject overlap
across studies. The VariCarta developers tried to tackle this task by collecting and cataloging
literature-derived genomic variants found in ASD subjects, through the use of ongoing semi-manual
curation, and with a robust data import pipeline. Thus, while developing the database, it was possible
to find and correct errors, to convert variants into a standardized format, to identify and harmonize
cohort overlaps, and to document data origin. The database is constantly updated with new relevant
gene-targeted ASD research papers. The version analyzed in this study, dated 12 November 2019,
contains 184,212 variant events from 13,069 individuals, collected across 69 publications. It consists
of 211,669 records, each one containing a genetic variant event, as reported in the paper from which
it was retrieved, irrespective of whether it is considered (according to today’s knowledge) a variant
that contributes to ASD or not. However, several of the 184,212 events are duplicated variants, as they
have been retrieved from different publications that included the same individual. The actual number
of unique variants is 149,695. All the variants included in VariCarta are the result of previously
published controlled studies, which had suggested an association between the variant and ASD.
The variants belonging to controls have not been included in VariCarta [25]. Variants related to
whole-genome sequencing have been retrieved from 2062 individuals. Since a single variant event
can be reported by more than one paper, duplicated events were removed during the analysis.
Most of the variants retrieved from the literature, and included in VariCarta, are de novo variants;
considering whole-genome sequencing, de novo variants cover 99.7% (149,270/149,695) of all variants,
and only 0.3% are inherited variants.

In VariCarta, an exome aggregation consortium minor allele frequency (ExAC) [27] is reported
for 0.9% of unique variants of the whole-genome sequencing (1290/149,695). Out of the 1290 variants
reporting an ExAC score, only 0.7% (9/1290) have an ExAC score above 0.05, and 2.5% (32/1290) an
ExAC above 0.01. Therefore, the large majority of the variants reported by VariCarta are non-common.
A combined annotation dependent depletion score (CADD) [28], is reported for 1.3% of unique variants
(1945/149,695). For all these variants, we also used ExAC and CADD scores to filter gene lists before
the enrichment analysis.

2.2. Analysis of the Dataset

The dataset is accessible both using a web interface and by downloading the whole dataset in
csv format. As the web interface allows limited research, we downloaded the whole dataset in csv
format. Each row of the dataset is a variant event, including, among others, the symbol of the affected
gene, the category of variant (synonymous SNV and nonsynonymous SNV, frameshift insertion, etc.),
the adopted sequencing type (whole genome sequencing, exome sequencing, targeted sequencing),
and the subject id, which is a unique identifier of the patient presenting the variant. In VariCarta the
amount of synonymous (SNV) variants is limited: considering whole-genome sequencing, there are
only 556 synonymous (SNV) variants among the 149,695 unique variants (i.e., 0.4%). The dataset is
also provided with reference information, which allows tracing the paper where the information was
gathered from. In the current study we focused on whole genome sequencing, and did not consider
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targeted analysis sequencing, because this technique is focused on identifying specific genes highly
related to a disease, assuming that these are known. Such an assumption can be made only for well
documented causes of ASD, such as tuberous sclerosis or Fragile X syndrome, diagnosed in about 15%
of individuals with ASD [29]. This is not the case for “idiopathic ASD”, which represents the majority
of all ASD diagnoses. Therefore, limiting the analysis to some genes, while ignoring others, could lead
to a limited detection of gene variants in a single subject. Furthermore, in the database the number
of records revealed by targeted sequencing was only about 2% of all records, (3698/184,212 records).
From the remaining records we created a subset of unique variants, composed of 81.3% of all records
collected in the dataset (149,695/184,212). We selected two features, “Gene Symbol” and “Subject id”,
and made a pairwise comparison of the patients of each group to build a “patient similarity matrix”,
defined as follows: Let A be a matrix N × N where N is the number of patients; let Gi be the set of
genes affected by a variation in the subject i, and Gj the set of genes affected by a variation in the subject
j; we defined each element ai,j of A as the intersection between Gi and Gj. A Log2 transformation was
applied to each element ai,j of the matrix A in order to normalize the results.

In order to sort rows and columns, to highlight clusters underlying the common occurrence of gene
networks in patients, we used the clustermap function of the Python library Seaborn [30]. This function
leverages hierarchical clustering [31] and heatmaps [32] to identify clusters inside the rows and columns
of the input matrix, which can be either a rectangular observation matrix or a square distance matrix.
Hierarchical clustering is a widely used clustering algorithm that is able to identify hierarchical relations
between groups [33]. It is particularly effective when some hierarchical structure (like a taxonomy) is
expected to be identified, and when the number and nature of groups and subgroups are not known in
advance. Hierarchical clustering has been used in biology [34] since the 70s. Today it is applied to genetics,
combined with heatmaps for microarray analysis [35], and recently, it has been applied to psychiatry to
identify subgroups of patients with ASD, based on comorbidity [36] or phenotype analysis [37,38].

2.3. Hierarchical Agglomerative Clustering (HAC)

The specific algorithm we used was hierarchical agglomerative clustering (HAC) [39], a bottom-up
iterative process. It tries to progressively identify sets of similar subsets of data, by leveraging a
distance function, also called hierarchical linkage. In the HAC process items are iteratively aggregated
using the distance function to evaluate similarities between subgroups.

The HAC we used during the analysis was the Python implementation, provided by the Seaborn
library in its clustermap function. Seaborn’s clustermap combines HAC, to sort rows and columns
of its heatmaps, with showing dendgrograms on the axes, to highlight the hierarchical structure.
The implementation of HAC included in clustermap begins with a forest of clusters that have yet to be
used in the hierarchy being formed. When two clusters B and C from the forest are combined into
a single BC cluster, B and C are removed from the forest, and BC is added to the forest. When only
one cluster remains in the forest, the algorithm stops, and this cluster becomes the root. A distance
matrix is maintained at each iteration. The d[i,j] entry corresponds to the distance between clusters
i and j in the original forest. At each iteration, the algorithm has to update the distance matrix to
reflect the distance between the newly formed cluster, BC, and the remaining clusters in the forest.
The computation of the distance, d[i,j], depends on the method used. In the event, we adopted the
“complete” method that applies the following function:

d(u, v) = max(dist(u[i], v[ j])) (1)

This function, also called the farthest point algorithm, or Voorhees algorithm, implies that
the distance between two clusters, u and v, is the maximum distance between the farthest points.
We applied this method in order to try to maximize the differences between clusters. The function
used to measure the distance between the points was the Euclidean distance (2-norm). We then used
the partitions to try to identify gene networks that could be characteristic of each subgroup.
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2.4. Enrichment Analysis

In order to identify biological processes that could be impacted by the gene variations of each subgroup
we used enrichment analysis. Gene set enrichment analysis [40] (GSEA) (also called functional enrichment
analysis) is a method of identifying classes of genes or proteins that are over-represented in a large set of
genes or proteins, and may be associated with disease phenotypes. The method uses statistical approaches
to identify significantly enriched or depleted groups of genes. This can be done by comparing the input gene
set to each of the bins (terms) in the gene ontology. A statistical test can be performed for each bin to evaluate
if it is enriched for the input genes. The results for each pathway are expressed in terms of fold enrichment
(FE), i.e., the ratio between the number of genes present in the cluster list belonging to that pathway,
and the number of genes expected to belong to that pathway in a random set of genes of the same size.
The setting used for the enrichment analysis was the GO Ontology database (Released 21 February 2020) [41].
The applied reference list of expected genes was the one for homo sapiens.

2.5. Statistical Analysis

PantherDB [42] was applied for the Enrichment analysis (PANTHER Overrepresentation Test;
Released 7 April 2020). To verify the statistical significance of the submitted set of genes, we applied
Fisher’s exact test. The obtained raw p-values were adjusted for multiple comparisons by means of the
false discovery rate method (FDR) [43]. A conservative statistical significance threshold of p < 0.005
(two-tailed) was applied for all analyses. As both raw and FDR-adjusted p-values are strongly dependent
on sample size, once the statistically significant terms were identified, we ranked the biological processes
by fold enrichment, a measure of the effect-size [44]. In order to highlight interactions between the set of
identified genes we used String DB [45] “Gene Network View”. In the produced network interaction
graph, the number of edges represents the existing interactions between the submitted genes. This was
compared with the expected number of edges, i.e., the expected interactions between a set of random
genes of the same size. STRING DB was also used to compute the protein–protein interaction (PPI)
enrichment p-values on partitions identified by the intersection of gene sets identified by the clustering.

3. Results

3.1. Cluster Heatmap

The cluster heatmap of the dissimilarity matrix of the patients is presented in Figure 1a. All 2062 patients
are distributed along the two axes. Each number is the subject identification (id) assigned to a specific
patient as it is presented in the VariCarta database. Each cell of the matrix is the log2 transformation of the
number of the common gene variations between two patients. The usual diagonal line that would show the
comparison of each patient with himself was suppressed by the clustermap function.

Further analyses were performed on the macro-clusters represented in Figure 1b. The dendrogram
showing their relationships was extracted from the one visible in the cluster heatmap axes, limiting it to the
third hierarchy level.

The whole-genome matrix presented a high number of shared variations between patients. Three clusters
were identified (A, B, and C). We labeled the three clusters according to their density, i.e., the amount of
shared variations between the patients, from the highest to the lowest. We considered as a density factor (DF)
the average value of all the elements of a cluster. Each value of the matrix is the log2 transformation of the
number of gene variations in common between the two patients representing, respectively, the row and the
column of the matrix. Cluster A is composed of 574 patients (27.8% of the considered individuals), sharing
8357 gene variations (DF: 1.429); Cluster B is composed of 507 patients (24.6%), sharing 6818 gene variations
(DF: 1.014); Cluster C is composed of 650 patients (31.5%), sharing 7704 gene variations (DF: 0.720). Beyond
the three clusters, we also identified 331 patients who shared no, or very few, gene variations (all together
41 genes). We included them in the “mixed group” D, whose DF was just 0.001.
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Figure 1. (a) Both axes are represented by patients. For the sake of readability, only 2% of the
2062 subject ids are represented in the heatmap. Each value of the matrix is the result of a pairwise
comparison of patients, computed by calculating the log2 of the size of the intersection between the
sets of gene variations in the pair of patients. The values range from 0 (no gene variations in common)
to 6 (more than 60 gene variations in common). The dendrograms show the cluster hierarchy proposed
by the HAC algorithm. Considering the first three hierarchical levels, four macro-areas, with different
densities, can be identified on the diagonal axis. (b) The four areas are highlighted in different colors.
A, B, and C represent three clusters. Each cluster is characterized by a different density, expressed by
density factor (DF), i.e., the mean value of all the cells belonging to the cluster. Cluster A: DF = 1.429;
Cluster B: DF = 1.014; Cluster C: DF = 0.720. Beyond the three clusters, patients who shared no,
or very few, gene variations were also identified, and included in the “mixed group” (D): DF = 0.001.
Non-highlighted areas represent overlapping between clusters, implying the existence of variants in
common to all subgroups.

In order to estimate the possible impact of inherited variants in computing similarity between
patients, we also computed a similarity matrix based only on inherited variants (0.3% of all variants).
The result showed very small clusters, with leak similarity values, between patients. Subsequently,
we computed the same clustering, considering only the de novo variants (99.7% of all variants),
yielding the same results in terms of cluster composition as the ones presented in Figure 1b. Therefore,
the few inherited variants were not excluded from the subsequent enrichment analysis.

As the VariCarta database is made up of a collection of various datasets gathered from published
studies, we checked if the identified clusters overlapped with the populations of these datasets. For each
cluster (A, B, C, and D), we identified the published papers that contained individuals included in
the cluster. The list of papers by cluster showed that there was no cluster whose original dataset was
unique or originating only from a few papers [Supplementary Table S1]. We could therefore exclude
overlapping between the original datasets and the identified clusters.

3.2. Enrichment Analysis

For each of the clusters shown in Figure 1b we extracted a list of common gene variations,
gene variations in at least two patients of the cluster, and then executed an enrichment analysis.
The results of the 40 biological processes with the highest FE values are presented in Table 1.
Only clusters A, B, and C were considered, as the mixed group, D, did not return any statistically
significant results. The involved biological processes were ranked by fold enrichment to highlight the
most specific processes involved.
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Table 1. Enrichment analysis on Clusters A, B, and C, ranked by fold enrichment. Whole-genome sequencing data.

Cluster A Cluster B Cluster C

GO Biological Process FE FDR GO Biological Process FE FDR GO Biological Process FE FDR

neuron projection guidance
(GO:0097485) 1.75 6.88 × 10−6 dendrite morphogenesis

(GO:0048813) 2.38 3.03 × 10−3 neuron recognition
(GO:0008038) 2.46 2.19 × 10−3

axon guidance
(GO:0007411) 1.74 9.84 × 10−6 neuron projection guidance

(GO:0097485) 2.07 7.85 × 10−10 ventricular septum
development (GO:0003281) 2.18 2.85 × 10−3

regulation of axonogenesis
(GO:0050770) 1.71 9.35 × 10−4 axon guidance

(GO:0007411) 2.07 1.29 × 10−9 cardiac septum
development (GO:0003279) 2.01 5.15 × 10−4

axonogenesis (GO:0007409) 1.68 3.30 × 10−7 synapse assembly
(GO:0007416) 2.07 1.28 × 10−3

negative regulation of
developmental growth

(GO:0048640)
1.89 4.10 × 10−3

neuron projection
morphogenesis
(GO:0048812)

1.68 2.13 × 10−9 action potential
(GO:0001508) 2.06 2.60 × 10−3 cell–cell junction assembly

(GO:0007043) 1.87 3.43 × 10−3

plasma membrane
bounded cell projection

morphogenesis
(GO:0120039)

1.68 1.95 × 10−9
developmental growth

involved in morphogenesis
(GO:0060560)

2.05 4.71 × 10−4
neuron projection

morphogenesis
(GO:0048812)

1.86 1.45 × 10−13

regulation of JNK cascade
(GO:0046328) 1.68 2.23 × 10−3 regulation of synapse

assembly (GO:0051963) 2.02 1.89 × 10−3

cell morphogenesis
involved in neuron

differentiation
(GO:0048667)

1.85 5.59 × 10−12

cell morphogenesis
involved in neuron

differentiation
(GO:0048667)

1.68 3.49 × 10−8

cell morphogenesis
involved in neuron

differentiation
(GO:0048667)

2.00 1.31 × 10−14 neuron projection guidance
(GO:0097485) 1.84 5.84 × 10−7

cell projection
morphogenesis
(GO:0048858)

1.67 2.25 × 10−9 axonogenesis (GO:0007409) 2.00 2.11 × 10−12

plasma membrane
bounded cell projection

morphogenesis
(GO:0120039)

1.84 3.30 × 10−13

regulation of cell junction
assembly (GO:1901888) 1.67 1.34 × 10−3

negative regulation of cell
morphogenesis involved in

differentiation
(GO:0010771)

2.00 4.30 × 10−3 axon guidance
(GO:0007411) 1.84 6.70 × 10−7
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Table 1. Conts.

Cluster A Cluster B Cluster C

GO Biological Process FE FDR GO Biological Process FE FDR GO Biological Process FE FDR

axon development
(GO:0061564) 1.67 1.76 × 10−7

neuron projection
morphogenesis
(GO:0048812)

2.00 3.64 × 10−16 axonogenesis (GO:0007409) 1.84 6.78 × 10−10

cell part morphogenesis
(GO:0032990) 1.66 2.93 × 10−9

plasma membrane
bounded cell projection

morphogenesis
(GO:0120039)

1.99 4.61 × 10−16
cell projection

morphogenesis
(GO:0048858)

1.83 4.04 × 10−13

renal system development
(GO:0072001) 1.62 1.87 × 10−4 regulation of cell junction

assembly (GO:1901888) 1.99 2.52 × 10−6 axon development
(GO:0061564) 1.82 1.99 × 10−10

telencephalon development
(GO:0021537) 1.62 4.40 × 10−4

cell projection
morphogenesis
(GO:0048858)

1.97 1.10 × 10−15 regulation of axonogenesis
(GO:0050770) 1.82 1.27 × 10−4

kidney development
(GO:0001822) 1.62 3.42 × 10−4 cell junction assembly

(GO:0034329) 1.95 7.79 × 10−8 cell part morphogenesis
(GO:0032990) 1.80 8.91 × 10−13

regulation of small GTPase
mediated signal

transduction (GO:0051056)
1.61 6.55 × 10−5 cell-cell junction assembly

(GO:0007043) 1.93 3.16 × 10−3
regulation of small GTPase

mediated signal
transduction (GO:0051056)

1.78 3.01 × 10−7

regulation of neuron
projection development

(GO:0010975)
1.61 5.54 × 10−8 synapse organization

(GO:0050808) 1.93 2.32 × 10−8 cell junction assembly
(GO:0034329) 1.76 8.13 × 10−6

regulation of cell
morphogenesis involved in

differentiation
(GO:0010769)

1.60 1.26 × 10−4 axon development
(GO:0061564) 1.92 6.41 × 10−12 cell–cell junction

organization (GO:0045216) 1.76 1.54 × 10−3

positive regulation of
neuron differentiation

(GO:0045666)
1.60 1.03 × 10−5 cell part morphogenesis

(GO:0032990) 1.92 5.66 × 10−15 neuron projection
development (GO:0031175) 1.75 8.64 × 10−15

cell morphogenesis
involved in differentiation

(GO:0000904)
1.60 1.97 × 10−8

cell morphogenesis
involved in differentiation

(GO:0000904)
1.90 1.35 × 10−15 regulation of cell junction

assembly (GO:1901888) 1.73 5.78 × 10−4

FE: Fold Enrichment; FDR: False Discovery Rate p-value. Biological processes are identified by their reference numbers (GO:XXXXXX) in the Gene Ontology. The first 40 FE ranked
biological processes of each cluster are shown. An additional table file shows the full list of the 58 biological processes of Cluster A, the 135 processes of Cluster B, and the 87 processes of
Cluster C, with a FE ≥ 1.5 [Supplementary Table S2]. The occurrences of gene variation are listed in the Supplementary Table S3.
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3.3. Cluster Comparisons

Most of the processes of the three clusters are common, even though some differences can be
detected, either because of the different order in the list, which indicates a different weight of that
process in the cluster, or because of the presence of cluster-specific processes. For example, as shown
in Table 1, in clusters A and B the majority of the biological processes with the highest FE relate to
neuron and synapse activity, while the biological processes of cluster C are more shifted towards organ
development and morphogenesis.

For each cluster we then extracted variants shared by at least two subjects in the same cluster. As shown
in Figure 2, by intersecting the three clusters we identified seven partitions. We executed enrichment analysis
on all the partitions separately. None of the partitions, except the intersection between the three clusters
returned significant results. Table 2 shows the enrichment analysis on the ABC intersection.
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Figure 2. Venn diagram of gene overlap among clusters A, B, and C. By intersecting clusters A, B,
and C, seven partitions can be identified. Figures overwritten on the seven partitions of the diagram
show the number of genetic variants shared by at least two subjects of each intersection. Overall,
11,609 genetic variants were isolated: 4187 of these variants (36.1%) were common to the three clusters;
1935 (16.7%), 1107 (9.5%), and 1484 (12.8%) variants were specific to clusters A, B, and C, respectively.
The subsequent enrichment analysis was executed on each partition separately. Only the intersection
between the three clusters returned a significant result: the FDR protein–protein interaction (PPI)
enrichment p-value for the intersection of clusters A, B, C was p < 1.0 × 10−16.

Table 2. Enrichment analysis on the intersection among clusters A, B, and C. Whole-genome
sequencing data.

GO Biological Process FE FDR

cell-cell adhesion mediated by cadherin (GO:0044331) 3.85 1.74 × 10−3

outflow tract septum morphogenesis (GO:0003148) 3.62 4.27 × 10−3

synaptic transmission, glutamatergic (GO:0035249) 3.36 8.03 × 10−4

neuron recognition (GO:0008038) 3.30 1.50 × 10−4

glutamate receptor signaling pathway (GO:0007215) 3.18 4.96 × 10−4

dendrite morphogenesis (GO:0048813) 3.05 1.98 × 10−4

receptor localization to synapse (GO:0097120) 3.05 2.83 × 10−3

heterophilic cell–cell adhesion via plasma membrane cell adhesion
molecules (GO:0007157) 2.99 2.58 × 10−3

regulation of cell–substrate junction organization (GO:0150116) 2.87 2.72 × 10−4

synapse assembly (GO:0007416) 2.84 2.45 × 10−6

heart valve morphogenesis (GO:0003179) 2.82 2.78 × 10−3
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Table 2. Conts.

GO Biological Process FE FDR

regulation of focal adhesion assembly (GO:0051893) 2.81 6.54 × 10−4

regulation of cell–substrate junction assembly (GO:0090109) 2.81 6.52 × 10−4

retina morphogenesis in camera-type eye (GO:0060042) 2.79 1.71 × 10−3

neuron projection guidance (GO:0097485) 2.75 2.15 × 10−15

axon guidance (GO:0007411) 2.73 5.03 × 10−15

negative regulation of axonogenesis (GO:0050771) 2.67 8.24 × 10−4

adherens junction organization (GO:0034332) 2.66 2.70 × 10−3

regulation of glutamate receptor signaling pathway (GO:1900449) 2.64 1.56 × 10−3

cardiac septum morphogenesis (GO:0060411) 2.64 6.87 × 10−4

negative regulation of cell morphogenesis involved in
differentiation (GO:0010771) 2.59 6.52 × 10−5

positive regulation of synapse assembly (GO:0051965) 2.59 2.49 × 10−3

protein localization to synapse (GO:0035418) 2.56 4.75 × 10−3

regulation of neurotransmitter receptor activity (GO:0099601) 2.52 1.13 × 10−3

mechanoreceptor differentiation (GO:0042490) 2.52 4.82 × 10−3

regulation of synaptic transmission, glutamatergic (GO:0051966) 2.50 3.75 × 10−3

cell morphogenesis involved in neuron differentiation
(GO:0048667) 2.48 8.42 × 10−20

neuron projection morphogenesis (GO:0048812) 2.47 1.37 × 10−21

axonogenesis (GO:0007409) 2.47 1.72 × 10−16

regulation of synapse assembly (GO:0051963) 2.46 1.41 × 10−4

plasma membrane bounded cell projection morphogenesis
(GO:0120039) 2.45 2.14 × 10−21

cell projection morphogenesis (GO:0048858) 2.43 4.51 × 10−21

positive regulation of phosphatidylinositol 3-kinase signaling
(GO:0014068) 2.43 1.35 × 10−3

dendrite development (GO:0016358) 2.42 1.01 × 10−4

neural crest cell differentiation (GO:0014033) 2.42 1.85 × 10−3

regulation of sodium ion transport (GO:0002028) 2.39 2.01 × 10−3

axon development (GO:0061564) 2.38 2.47 × 10−16

regulation of potassium ion transmembrane transport
(GO:1901379) 2.38 3.48 × 10−3

cell part morphogenesis (GO:0032990) 2.38 1.50 × 10−20

regulation of potassium ion transport (GO:0043266) 2.37 6.70 × 10−4

FE: Fold Enrichment (FE); FDR: False Discovery Rate p-value. Biological processes are identified by their reference
numbers (GO:XXXXXX) in the Gene Ontology. The first 40 FE ranked biological processes related to the intersection
among clusters A, B, and C are reported. An additional table file shows the full list of the 359 biological processes with
a FE ≥ 1.5 [Supplementary Table S2]. The occurrences of gene variations are listed in the Supplementary Table S3.

The resulting network interaction graph, generated by String-DB, is presented in Figure 3. For the
sake of clarity, the analysis was limited to genes, which were present in at least 50 patients. The number
of nodes of the network was 316, and the number of edges 990. The expected number of edges was
293; 3.4 times less than the number of edges of the submitted network.
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Figure 3. Network interaction graph of the intersection between clusters A, B, and C. Analysis of genes
present in at least 50 patients. Nodes: 360. Edges: 990. Expected number of edges: 293. The number
of edges represents the existing interactions between the submitted genes. This was compared with
the expected number of edges, i.e., the expected interactions between a set of random genes of the
same size.

3.4. Enrichment Analysis on ExAC Filtered Variants

We then filtered the dataset by allele frequency, using ExAC for the cases in which this value was
reported. The analysis on each distinct cluster did not return any significant results. An additional
enrichment analysis was performed on the set of genes belonging to the intersection between clusters
A, B, and C. First, we executed the analysis considering only variants with an ExAC score < 0.05,
and then we restricted the list of genes, considering only variants having an ExAC score < 0.01.

In both cases we identified three biological processes yielding an FE ≥ 12 and an FDR < 0.005:
“observational learning” (GO:0098597), “imitative learning” (GO:0098596), and “vocal learning”
(GO:0042297). The next processes, ordered by FE values, were processes related to neurotransmission,
like “membrane depolarization during action potential” (GO:0086010), “dendrite morphogenesis”
(GO:0048813), and “regulation of NMDA receptor activity” (GO:2000310). Further details are reported
in the Supplementary Table S1.

3.5. Enrichment Analysis on CADD Filtered Variants

In order to perform the enrichment analysis by filtering genes in terms of CADD, we divided the
variants related to the intersection between clusters A, B, and C into five groups, according to their CADD
score: <10, 10–19, 20–29, 30–39, ≥40. We then executed an enrichment analysis for each subgroup. In all
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subgroups, biological processes with the highest FE and FDR < 0.005 were related to neurotransmission.
In particular, in the subgroup where the deleteriousness of variants was higher (≥40), we identified a
set of biological processes that were all related to synaptic transmission, namely: “negative regulation
of excitatory postsynaptic potential” (GO:0090394), with FE 43.58; “presynaptic membrane assembly”
(GO:0097105), with FE 43.58; “presynaptic membrane organization” (GO:0097090), with FE 39.94;
“prepulse inhibition” (GO:0060134), with FE 31.96; “modulation of excitatory postsynaptic potential”
(GO:0098815), with FE 18.64; “membrane assembly” (GO:0071709), with FE 17.12; “negative regulation
of synaptic transmission” (GO:0050805), with FE 12.91; “regulation of postsynapse organization”
(GO:0099175), with FE 12.69. The complete list of biological processes and the FE of each subgroup is
reported in the Supplementary Table S1.

4. Discussion

4.1. Enrichment Analysis

We identified three main genetic clusters of ASD patients, each one characterized by a set of genetic
variants. The subsequent enrichment analysis (EA), performed upon the clusters’ genes, allowed
pinpointing biological processes, both common to the three clusters, and cluster-specific. Most of
the processes that were common to the three clusters were involved in neuron projection guidance
and morphogenesis. Proper plasticity of axon and dendrites is a highly dynamic process leading to
functional circuit formation [46], which is crucial in the very early stages of brain development [47,48].
These processes involve numerous ASD related genes associated with disrupted synaptic connectivity
and function [12,49]. Neuronal migration and morphogenesis defects in ASD contribute to an altered
cortical connectivity in different brain regions [50,51], such as the well-known prefrontal area [52].
Therefore, in the developing brain, a premature alteration in neuronal plasticity, affecting mostly cortical
regions involved in cognitive and behavioral functions, might trigger the autistic phenotype [53,54].
Furthermore, fMRI [55,56] and electrophysiological [57,58] studies have also emphasized the role of an
atypical interconnection between specific brain areas in ASD. Considering these findings, the biological
processes we underlined for each cluster give further support to the theory that neurogenesis and its
molecular microenvironment are associated with autism.

4.2. Cluster Comparisons

This pathogenic background was also indicated by the enrichment analysis performed on the
intersection of the three clusters, which confirmed the role in ASD etiopathology of gene networks related
to biological processes affecting neuron development, for example “axon guidance”, “neuron projection
guidance”, or “dendrite morphogenesis”. As further evidence of disrupted connectivity in ASD, the EA
on the single clusters, and on their intersection, showed the importance of processes like “cell junction
assembly” and “synapse assembly”. Moreover, when filtering genes by CADD, the highest fold
enrichment values were associated with dendrite and synaptic related biological processes. The integrity
of synaptic proteins and cell adhesion molecules is crucial for synaptic formation, signal transduction,
and transmission [59]. Thus, synaptic dysfunction due to molecular damage, and a consequently
altered signal conduction, are consistent with ASD etiopathology [60]. Overall, the presence of shared
genetic networks between the three clusters and, consequently, of biological processes involving
both neurite and synaptic formation and function might be the underlying cause of comparable ASD
phenotypes among different individuals.

Interestingly, when filtering genes by ExAC scores, the analysis performed on the intersection
between the clusters identified significant processes connected to observational, imitative, and vocal
learning. Actually, imitation impairments in patients with ASD are typically related to their deficits in
connecting and learning from others [61], and the comprehension of their interpersonal synchrony skills is
now fundamental to trace the adaptive functioning and, consequently, the ASD severity, in children [62].
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Besides the shared genetic networks, our enrichment analysis also signaled some processes that
differentiate the three clusters, and that could possibly cause phenotypic dissimilarities. Actually,
the analysis brought to light the presence of cluster-specific processes, which were not shared with the
other clusters; for example, in the case of the biological process “kidney development” in Cluster A,
or “cardiac septum development” in Cluster C. Although this observation should be considered with
caution, as the relative FDR p-values, though statistically significant, are close to the threshold of
<0.005, it is noteworthy that recently ASD-related processes regarding the heart and kidney have
become features of scientific and clinical interest [63,64]. Both cluster-specific and common atypical
biological processes might interact to shape the specific phenotype of each individual. At any rate,
these observations point to the fact that when considering the disrupted processes of the different ASD
phenotypes we should not only look at the central nervous system but at other systems as well. Thus,
this is an important piece of evidence supporting the polygenic model that assumes that ASD is the
result of rare and common variant combination [65].

In our study, we also identified a group of 331 people composed of individual patients that had
either no or just a few variations in common with the rest of the sample. While individuals belonging to
clusters A, B, and C show substantial genetic similarities between them, the individuals of this last group
seem to be genetically uncorrelated. It might therefore be speculated that, in relation to ASD development,
genetics might play a stronger role in individuals of clusters, A, B, and C than in those outside these
clusters. These findings further support an ASD heterogeneity, as they may indicate that the clinical
phenotype might also be the outcome of common genetic variants that could interact with main variant,
epigenetic [65], or environmental factors [6], which have not been considered in this pilot study.

4.3. Translation into Clinical Research

An element of this preliminary work was the use of patient similarity analytics. This data-driven
approach has already been applied in medicine to the study of different diseases, including behavioral
disorders [66] and other psychiatric diseases [67]. Specifically, in ASD research and clinical medicine
patient similarity algorithms could play a role in structuring autism heterogeneity, i.e., in identifying ASD
patient subgroups who share the same etiopathology. Subgroups of patients can then be assessed by
additional fine-grained stratifications, based, for example, on their genetic characteristics or biological
processes. Once subsets of patients have been isolated and characterized, it becomes possible to perform
systematic individualized analyses, by evaluating the distance of a single patient from each subgroup.
Enumerating both the common and specific processes that characterize different ASD subpopulations
might allow understanding which, among a large number of autism genetic variants, are those that
play a major role in the etiopathology of ASD. This could help to bridge the crucial gap between the
detection of new genetic risk variants for ASD [68], and the clinical translation of these discoveries.
The presented methodology might be a useful starting point developing more focused research on
subgroups of individuals with ASD, by singling out homogeneous patient cohorts. Such an approach
could help to shed light on the relative impact of specific biological processes among different autistic
phenotypes. Although patient similarity analytics is still in development, it promises to be helpful in
identifying the contribution of noncoding mutations to autism risk [69], in predicting patients’ trajectory
over time [70], in providing clinical decision support [71], and in tailoring individual treatments [72].

4.4. Limitations

Our preliminary findings should be viewed with several limitations in mind. First, as the
VariCarta database we used contains neither genetic data of family members of the ASD patients,
nor of neurotypical subjects, we could not perform the same analysis on a group of non-affected
individuals. This is an important limitation of the database, as we know that comparing family-based
cases with unaffected siblings is crucial in disentangling de novo from inherited variants [12]. Similarly,
an analysis based on population stratification was not possible, since no specifics about individuals
(as age, gender, ethnicity, family relationship, etc.) are reported in VariCarta. Particularly, VariCarta does
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not provide information regarding the homozygous/heterozygous status of each individual. Therefore,
the variability of the effects of the variants related to this aspect could not be assessed in the present
analysis, even though, considering the design of this study, the lack of this information would have
had only a minor impact on the overall results. Additionally, ExAC or CADD scores are reported in
VariCarta only for a limited number of variants. Therefore, we could not remove common variants,
and evaluate the deleteriousness of variants in the cluster analysis, since too few variants would
have been available for a significant clustering. However, we deem it a minor limitation, as most
of the existing studies on autism genetics retrieved by VariCarta report mainly rare variants [25].
Furthermore, our analyses on the subset of variants, where these scores were reported, confirmed
the overall results. It also has to be stressed that we analyzed a database which did not include
epigenetic or environmental factors, thus limiting the characterization of the subgroups only to genetic
variant events. Second, we included in the analysis all variations, without differentiating their type
(base substitution, deletion, or insertions), category of nucleotide variation, or sequence variation
(exonic, intronic). Of course, different types of genetic variants may have completely different functional
effects; some might strongly contribute to the development of ASD, others might not. Actually, most of
the genetic variants may not be involved in ASD at all, even if the variants included in VariCarta
have been retrieved from published controlled studies, where the variant had been associated with
ASD. Third, the absence in the dataset of the description of each phenotype, including gender and
IQ, did not allow us to confirm our clustering results. Although there is evidence that biological and
behavioral characteristics may differ between males and females [50], in this study we did not have the
tools to delve into this aspect. Moreover, we could not verify if the biological processes impacted by
the variant networks of each cluster actually produced different phenotypes. Furthermore, 30–50% of
ASD individuals present with comorbid intellectual disability, or with other neurodevelopmental
disorders [15], and family studies have shown high heritability estimates in ASD, but lower ones
with respect to other neurodevelopmental disorders [73]. This lack of knowledge of the individual
phenotype did not allow distinguishing between variations that influence ASD, and variations that
influence other neurodevelopmental disorders.

5. Conclusions

Given the preliminary characteristics of our study, it will be important for future research to
replicate our findings, comparing them with genetic data of neurotypical people. A comparison of the
identified biological processes with associated phenotypes will definitely be necessary to confirm the
clinical validity and usefulness of our results. To improve our understanding of ASD heterogeneity,
neurobiology, and genomic architecture, study designs have to increasingly consider innovative
methodologies and newly developed biomedical informatics. Integrated genomic approaches,
supported by advanced mathematical modeling able to also contemplate environmental factors,
might lead to a better comprehension of the etiology and the pathogenic mechanisms of ASD.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/12/1476/s1,
Table S1: Sub-lists of biological processes and involved genes split by Allele Frequency and by CADD subgroups.
Table S2: List of biological processes with a Fold Enrichment ≥ 1.5. Table S3: List of occurrences of gene variations
retrieved by the analysis. (xls 1.15 mb).
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