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Simple Summary: In this study, we investigated the expression of 27 cytokines/chemokines in
the serum of 232 individuals (136 melanoma patients vs. 96 controls). It identified several
cytokines/chemokines differently expressed in melanoma patients as compared to the healthy
controls, as a function of the presence of the melanoma, age, tumor thickness, and gender, indicating
different systemic responses to the melanoma presence. We also analyzed the gene expression of the
same 27 molecules at the tissue level in 511 individuals (melanoma patients vs. controls). From the
gene expression analysis, we identified several cytokines/chemokines showing strongly different
expression in melanoma as compared to the controls, and the 4-gene signature “IL-1Ra, IL-7, MIP-1a,
and MIP-1b” as the best combination to discriminate melanoma samples from the controls, with an
extremely high accuracy (AUC = 0.98). These data indicate the molecular mechanisms underlying
melanoma setup and the relevant markers potentially useful to help the diagnosis of biopsy samples.

Abstract: The identification of reliable and quantitative melanoma biomarkers may help an early
diagnosis and may directly affect melanoma mortality and morbidity. The aim of the present study
was to identify effective biomarkers by investigating the expression of 27 cytokines/chemokines in
melanoma compared to healthy controls, both in serum and in tissue samples. Serum samples were
from 232 patients recruited at the IDI-IRCCS hospital. Expression was quantified by xMAP technology,
on 27 cytokines/chemokines, compared to the control sera. RNA expression data of the same 27
molecules were obtained from 511 melanoma- and healthy-tissue samples, from the GENT2 database.
Statistical analysis involved a 3-step approach: analysis of the single-molecules by Mann–Whitney
analysis; analysis of paired-molecules by Pearson correlation; and profile analysis by the machine
learning algorithm Support Vector Machine (SVM). Single-molecule analysis of serum expression
identified IL-1b, IL-6, IP-10, PDGF-BB, and RANTES differently expressed in melanoma (p < 0.05).
Expression of IL-8, GM-CSF, MCP-1, and TNF-α was found to be significantly correlated with Breslow
thickness. Eotaxin and MCP-1 were found differentially expressed in male vs. female patients. Tissue
expression analysis identified very effective marker/predictor genes, namely, IL-1Ra, IL-7, MIP-1a,
and MIP-1b, with individual AUC values of 0.88, 0.86, 0.93, 0.87, respectively. SVM analysis of
the tissue expression data identified the combination of these four molecules as the most effective
signature to discriminate melanoma patients (AUC = 0.98). Validation, using the GEPIA2 database
on an additional 1019 independent samples, fully confirmed these observations. The present study
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demonstrates, for the first time, that the IL-1Ra, IL-7, MIP-1a, and MIP-1b gene signature discriminates
melanoma from control tissues with extremely high efficacy. We therefore propose this 4-molecule
combination as an effective melanoma marker.

Keywords: melanoma markers; cytokines; machine learning; Support Vector Machine; principal
component analysis

1. Introduction

Melanoma is the most aggressive skin cancer with a good prognosis when early diagnosis is
achieved. While relevant advances come from newly available therapies, novel approaches are
necessary to improve early diagnosis and therapeutic efficacy. Several studies addressed the complex
role that specific cytokines and growth factors may play in melanoma biology, acting either as
pro- or anti-proliferation and either positively or negatively regulating the immune response [1].
For instance, CXCL10 (IP-10) exerts both pro-and anti-melanoma effects, mostly due to splice variants
of its CXCR3 receptors [2]. Several cytokines/chemokines and corresponding receptors are known to
be expressed in melanoma tissue, to regulate the multifaceted machinery coordinating the proliferation
rate, the angiogenic response, the inflammatory response, the immune response, and the metastatic
diffusion [1,3]. Simultaneous quantification of several cytokine/chemokine analytes has recently
become available in serum as well as in tissue samples. Previous studies report gene expression
profiles identifying low- vs. high-risk patients. For instance, the 31 GEP prognostic classifier identifies
BAP1b, MGP, SPP1, CXCL14, CLCA2, S100A8, BTG1, SAP130, ARG1, KRT6B, GJA1, ID2, EIF1B,
S100A9, CRABP2, KRT14, ROBO1, RBM23, TACSTD2, DSC1, SPRR1B, TRIM29, AQP3, TYRP1, PPL,
LTA4H, and CST6 [4]. Other studies investigated the expression of orphan receptors as well as known
chemokine receptors and chemokine ligands in melanoma metastases, leading to the identification of
several molecules differentially expressed in metastatic melanoma, such as GPR18, GPR34, GPR119,
GPR160, GPR183, P2RY10, CCR5, CXCR4, CXCR6, CCL4, CCL5, CCL14/15, CXCL8, CXCL9, CXCL14,
and XCL1/2 [5]. An additional study reports a significant expression change of six chemokines (namely,
CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10) related to the lymphocyte infiltration in the melanoma
tissue [6]. Statistically significant differential plasma expression in melanoma patients vs. controls has
been reported for IL-2, IL-6, and IL-10 [7]. Despite the high statistical significance of the differences,
none of these molecules show relevant AUC values according to ROC analyses; therefore, to date,
they cannot be proposed as markers with clinical relevance.

Additional studies carried out in melanoma patients identified the serum expression level of
proinflammatory cytokines, such as IL-2Ra, IL-12-p40, and IFN-α, as good predictors of relapse-free
survival [8]. In another study carried out in 40 patients, the serum expression levels of 115 analytes
were investigated, including most of the known cytokines and chemokines, such as IL-6, IL-7, IL-10,
IL-16, TNF- α trimer, IL-1b, IFN-γ, IL-4R, IL-18, RANK-L, IL-1b, IL-2R, IL-6R, MPIF-1, Leptin, MIG,
GDNF, MIP-1 alpha, MIP-1b, MIP-1 delta, ITAC, GM-CSF, MCP-4, MIP-3a, MIP-3b, MMP-1, SP-C,
amphiregulin, RANK, MCP-2, IP-10, OPG, FGF-2, and many others. The serum expression profile of
TNF-α receptor II, TGF-a, TIMP-1, and C-reactive protein was identified as a profile with prognostic
value to predict overall survival in melanoma patients, with an Area Under the Curve (AUC) of
0.89 reduced to 0.72 when the leave-one-out cross-validation technique was applied [9]. An additional
study indicates the expression of IL-1Ra, IL-2, and IFNa2 as pro-inflammatory cytokines related to
the cytotoxicity associated with anti-CTL4 and anti-PD1 combined therapy [10]. Tissue expression of
CCR6 and its ligand CCL20 (MIP-3a) were identified as progression predictors in primary melanoma
patients [11]. Prostate-specific membrane antigen (PSMA) was identified by immunohistochemistry
analysis as a good marker of metastatic melanoma, in 41 Stage III/IV melanoma human specimens [12].
The ROC analysis measured an AUC = 0.82, i.e., a good performance but not good enough to allow
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its clinical application as a melanoma marker. Consensus among different studies is often difficult
given experimental discrepancies on serum/plasma handling or the antibodies’ sensibility/specificity.
Using multiplex immune-based technology may overcome these issues, at least in part, by measuring
many different analytes within the same sample.

We have previously investigated melanoma markers by in vitro screening [13], as well as by
investigating the ion channels [14,15], autophagy-related molecules [16,17], or molecules related
to lipid metabolism [18] in populations composed of hundreds/thousands of controls and patients.
In the present study, we investigated the cytokine/chemokine protein expression in the serum of 232
controls/melanoma patients recruited in our hospital, and the gene expression on 511 melanoma tissues
selected from the GENT2 database. We report here, for the first time, significant differences related to
gender, age, and Breslow thickness in the serum-expression dataset. In the tissue-expression dataset,
we report, for the first time, a highly relevant gene marker combination, discriminating healthy controls
from melanoma patients with an extremely high accuracy, and reaching an AUC = 0.982, according to
the ROC analysis.

2. Results

The cytokine/chemokine expression in melanoma patients was analyzed to identify molecules with
strong and significant differential expression in patients vs. controls. The cytokine/chemokine protein
expression in the serum of 232 patients recruited at the IDI hospital and their RNA expression in tissue
biopsies of 511 samples from the GENT2 public database were evaluated. The serum expression and tissue
expression of the same 27 human chemokines/cytokines were analyzed as a single-molecule analysis, as a
paired-molecule analysis, or as a profile analysis, as reported in the cartoon depicted in Figure 1.

2.1. Serum Expression: Single-Molecule Analysis of the Cytokines/Chemokines in Melanoma Patients vs.
Controls

The serum dataset included the following information: histopathological diagnosis (96 pathological
subjects versus 136 controls), sex (112 male and 120 female), age (median 46.5 years, and mean
48.54 years), Breslow’s depth (minimum value 0 mm, maximum 12 mm, median 0.7 mm, and mean
1.34 mm), and the expression values of the 27 cytokines/chemokines expressed as pg/mL. Table 1
summarizes the information on the serum dataset.

Table 1. Descriptive statistics of the population for the serum-expression analysis.

Patient Type Number Mean Age Mean Thickness (mm) Thickness Distribution

<1 mm *
Number

≥1 mm *
Number

Female controls 72 41.3 0.00 0 0

Male controls 64 45.3 0.00 0 0

Female
melanoma 48 54.5 1.60 23 22

Male
melanoma 48 58.0 1.08 31 14

Total 232

* The 1 mm limit is consistent with the current threshold used for staging of T1 melanoma patients and allowed the
best case distribution. Not all pathological samples report the thickness value.

Tables S1 and S2 report more general data (number of samples for each molecule, minimum value,
25% percentile, median, 75% percentile, maximum, mean, standard deviation, and having passed the
normality test (or not)) for all controls and all melanoma patients, respectively.

Table 2 reports the mean values of serum expression of the 27 cytokines/chemokines, the statistical
significance of the differences, and the AUC according to the ROC analyses. Five molecules show a
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significantly (p < 0.05) different expression in melanoma vs. the controls, namely, IL-1b, IL-6, IP-10,
PDGF-BB, and RANTES. The ROC analyses indicated that none shows a good ability to act as a serum
marker of melanoma; in fact, an AUC < 0.70 was found in all cases. Nevertheless, the following
Breslow-, age-, and gender-specific characterization indicated many statistically significant differences.Cancers 2020, 12, x FOR PEER REVIEW 4 of 27 
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Table 2. Serum expression. Medians of the expression values of the 27 cytokines/chemokines
for the control and melanoma patients. The table also reports the significance of the differences
according to Mann–Whitney analyses. For p-values < 0.05, the null hypothesis that the control and
melanoma patients have the same median should be rejected (significant values reported in bold
and are underlined); i.e., a p < 0.05 indicates a significant difference. Moreover, the table reports the
classification performances as the AUC values from the ROC analyses.

Cytokines
Controls
Median
(n = 136)

Melanoma
Median
(n = 96)

p-Value
Mann–Whitney

Controls vs. Melanoma

AUC ± S.E.
by ROC Analysis

IL-1b 0.53 0.65 0.04 0.61 ± 0.05

IL-1Ra 26.77 17.83 0.14 0.56 ± 0.04

IL-2 3.45 2.14 0.14 0.66 ± 0.10

IL-4 2.95 2.88 0.47 0.53 ± 0.04

IL-5 2.77 2.34 0.22 0.60 ± 0.08

IL-6 5.37 3.17 0.04 0.70 ± 0.09

IL-7 2.24 2.24 0.72 0.52 ± 0.05

IL-8 6.63 6.4 0.55 0.52 ± 0.04

IL-9 45.58 42.05 0.29 0.54 ± 0.04

IL-10 7.08 4.56 0.10 0.63 ± 0.08

IL-12(p70) 15.74 16.07 1.00 0.50 ± 0.05

IL-13 2.43 2.99 0.83 0.52 ± 0.09

IL-15 52.22 30.11 1.00 0.50 ± 0.27

IL-17 16.72 13.1 0.37 0.54 ± 0.04

Eotaxin 95.28 106.28 0.38 0.53 ± 0.04

FGF-2 32.68 30.01 0.26 0.55 ± 0.04

G-CSF 4.73 5.41 0.33 0.55 ± 0.05

GM-CSF 10.21 10.63 0.67 0.53 ± 0.06

IFN-γ 19.1 23.2 0.48 0.53 ± 0.04

IP-10
(CXCL10) 438.69 501.41 0.04 0.58 ± 0.04

MCP-1(MCAF) 18.59 12.49 0.24 0.58 ± 0.07

MIP-1a (CCL3) 1.78 1.74 0.59 0.52 ± 0.04

MIP-1b (CCL4) 54.36 56.26 0.43 0.53 ± 0.04

PDGF-BB 1603.74 1033.41 0.01 0.61 ± 0.05

RANTES
(CCL5) 11,353.34 8735.27 0.01 0.57 ± 0.06

TNF-α 16.4 18.06 0.26 0.52 ± 0.06

VEGF 59.75 57.98 0.88 0.54 ± 0.06

Bold underlined: highlight the result.

The Breslow thickness-related differences are reported in Tables 3 and 4. Table 3 reports the mean
expression of the 27 cytokines in all melanoma patients as a function of Breslow thickness <1 mm vs.
>1mm. Three molecules, namely IL-8, MCP-1, and RANTES, show a statistically significant differential
expression. As a further characterization, the correlation of Breslow thickness with serum expression
was then investigated in all melanoma patients. Expression of IL-8, GM-CSF, and MCP-1 on one site,
and TNF-α on the other, shows a significant negative and positive correlation, respectively (Table 4).
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Table S3 reports the correlations with Breslow thickness in male melanoma and in female melanoma
patients and shows that the cytokines with significant correlations are different in males vs. females.

Table 3. Serum expression as a function of Breslow thickness. Count indicates the number of patients
analyzed. The median expression values of the 27 molecules with a Breslow thickness <1 mm or >1 mm
are reported. The significance of the difference according to the Mann–Whitney analyses is also reported:
for p-values > 0.05, the null hypothesis that the two distributions of cytokine expressions have the
same median should be rejected (significant values are reported in bold and are underlined). In simpler
words, when the p-value is < 0.05, the cytokine expressions in patients with a Breslow thickness <1 mm
and expression in patients with a thickness >1 mm have significantly different medians.

Cytokines

Melanoma Breslow
Thickness
<1 mm

Melanoma Breslow
Thickness
≥1 mm

Mann-Whitney
<1 mm vs. ≥1

mm

Count Median Count Median p Value

IL-1b 26 0.65 16 0.72 0.66

IL-1Ra 44 18.24 27 17.83 0.59

IL-2 5 1.9 7 2.38 0.25

IL-4 54 2.85 35 3.06 0.81

IL-5 15 2.34 9 1.7 0.86

IL-6 7 0.83 8 3.34 0.18

IL-7 31 2.24 15 2.9 0.34

IL-8 47 7.8 30 5.78 0.01

IL-9 52 42.55 35 41.91 0.64

IL-10 11 3.84 10 5.12 0.92

IL-12(p70) 40 20.48 20 14.64 0.51

IL-13 11 2.43 8 3.2 0.60

IL-15 2 13.02 1 42.31 0.67

IL-17 38 13.15 30 11.79 0.94

Eotaxin 54 108.94 35 93.24 0.71

FGF-2 49 29.73 34 31.46 0.77

G-CSF 27 5.45 10 4.12 0.30

GM-CSF 17 14.06 25 9.78 0.22

IFN-γ 51 23.49 31 22.13 0.51

IP-10 (CXCL10) 53 491.81 35 574.3 0.88

MCP-1(MCAF) 18 10.56 11 24.83 0.02

MIP-1a (CCL3) 54 1.82 35 1.71 0.56

MIP-1b (CCL4) 53 55.51 35 53.52 0.73

PDGF-BB 53 1048.16 35 1080.98 0.47

RANTES (CCL5) 53 10,341.43 35 7534.18 0.03

TNF-α 43 16.65 19 22.78 0.06

VEGF 51 63.58 35 52.26 0.45

Bold underlined: highlight the result.
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Table 4. Serum expression in all melanoma patients (male + female): correlation with Breslow thickness.
For p-values < 0.05 (reported in bold and underlined), the null hypothesis (i.e., the Spearman’s
correlation coefficient R is 0) should be rejected; i.e., cytokine distributions with p-values < 0.05 are
significantly correlated with Breslow thickness.

Cytokines No. of Pairs Spearman R Correlation of Serum
Expression with Breslow Thickness p-Value (2-Tails)

IL-1b 42 0.04 0.80

IL-1Ra 71 0.04 0.75

IL-2 12 0.01 0.97

IL-4 89 −0.02 0.88

IL-5 24 0.01 0.96

IL-6 15 0.24 0.40

IL-7 46 0.28 0.06

IL-8 77 −0.23 0.05

IL-9 87 −0.09 0.42

IL-10 21 −0.14 0.55

IL-12(p70) 60 −0.02 0.86

IL-13 19 −0.09 0.72

IL-15 3 1.00 0.33

IL-17 68 0.05 0.67

Eotaxin 89 −0.01 0.96

FGF-2 83 0.03 0.81

G-CSF 37 0.04 0.83

GM-CSF 42 −0.40 0.01

IFN-γ 82 0.07 0.53

IP-10 (CXCL10) 88 0.04 0.72

MCP-1(MCAF) 29 0.39 0.04

MIP-1a (CCL3) 89 −0.09 0.40

MIP-1b (CCL4) 88 −0.02 0.86

PDGF-BB 88 −0.10 0.35

RANTES (CCL5) 88 −0.20 0.06

TNF-α 62 0.31 0.01

VEGF 86 −0.02 0.87

Bold underlined: highlight the result.

A further analysis was carried out as a function of age, in all melanoma patients and all controls.
The Spearman’s correlation index was computed between the age and the expression value of each
cytokine. Seven significant correlations were found in the controls involving IL-7, IL-12(p70), IL-13,
IP-10, MIP-1a, MIP-1b, and VEGF. Such correlation were mostly lost in the melanoma patients; in fact,
the patients showed only two significant correlations with age, namely, IP-10 and G-CSF (Table 5).
A similar finding in male controls vs. male melanoma and in female controls vs. female melanoma
is reported in Tables S4 and S5, showing a strong reduction in the correlation with age in melanoma
samples compared to the controls.
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Table 5. Serum expression in all melanoma patients (male + female): correlation with age. For p-values
< 0.05 (reported in bold and underlined), the null hypothesis (i.e., the Spearman correlation coefficient
R is 0) should be rejected; i.e., cytokine distributions with p-values < 0.05 are significantly correlated
with age.

Cytokines

All Controls (Male + Female) All Melanoma (Male + Female)

No. of
Pairs

Spearman R
Correlation of Serum
Expression with Age

p Value
(2 Tails)

No. of
Pairs

Spearman R
Correlation of Serum
Expression with Age

p-Value
(2 Tails)

IL-1b 85 0.14 0.21 44 −0.13 0.40

IL-1Ra 121 0.15 0.10 75 −0.08 0.50

IL-2 19 −0.21 0.38 13 0.23 0.46

IL-4 135 0.08 0.36 95 −0.05 0.66

IL-5 30 0.34 0.07 25 −0.20 0.33

IL-6 21 0.00 0.99 16 −0.01 0.96

IL-7 81 0.35 0.001 48 −0.09 0.53

IL-8 128 0.12 0.17 83 −0.20 0.07

IL-9 135 0.12 0.17 93 0.05 0.61

IL-10 39 0.05 0.77 22 −0.09 0.69

IL-12(p70) 110 0.30 0.002 62 −0.08 0.55

IL-13 27 0.39 0.04 19 0.21 0.38

IL-15 2 - - 4 - -

IL-17 108 0.12 0.23 73 −0.01 0.93

Eotaxin 132 0.13 0.13 95 −0.01 0.97

FGF-2 129 0.02 0.85 88 0.01 0.94

G-CSF 92 −0.03 0.76 40 −0.38 0.02

GM-CSF 48 −0.05 0.72 46 −0.10 0.53

IFN-γ 136 0.09 0.31 86 −0.12 0.26

IP-10
(CXCL10) 136 0.22 0.01 94 0.20 0.05

MCP-1(MCAF) 47 0.11 0.45 30 −0.17 0.38

MIP-1a
(CCL3) 133 0.23 0.01 95 −0.16 0.13

MIP-1b
(CCL4) 136 0.30 0.0005 94 −0.15 0.15

PDGF-BB 135 0.02 0.86 94 −0.11 0.29

RANTES
(CCL5) 136 −0.02 0.84 94 −0.08 0.42

TNF-α 120 0.17 0.06 65 −0.14 0.28

VEGF 135 0.17 0.05 92 0.09 0.41

Bold underlined: highlight the result.

Then, a gender-specific analysis was carried out. Namely, expression levels of the 27 cytokines
in male melanoma were compared to female melanoma. Table 6 shows that Eotaxin is significantly
increased in male vs. female melanoma, and MCP-1 expression is significantly reduced in male vs.
female melanoma, highlighting gender-related differences in cytokine/chemokine serum expression.
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Table 6. Serum expression in male melanoma compared to female melanoma. For p-values < 0.05
(reported in bold and underlined), the null hypothesis (i.e., the two distributions have the same median)
should be rejected. Briefly, the cytokine distributions for the control and melanoma patients with
p-values < 0.05 have significantly different medians.

Cytokines
Male Melanoma Female Melanoma Mann–Whitney

Median Value Median Value p-Value

IL-1b 0.63 0.785 0.07

IL-1Ra 15.17 24.125 0.25

IL-2 1.9 3.09 0.14

IL-4 3.05 2.75 0.06

IL-5 2.34 2.02 0.36

IL-6 3.34 3.0 0.73

IL-7 2.24 2.31 0.49

IL-8 6.57 6.32 0.64

IL-9 44.35 38.84 0.14

IL-10 3.84 6.31 0.13

IL-12(p70) 16.94 14.57 0.98

IL-13 2.19 3.23 0.60

IL-15 - 30.11 -

IL-17 13.1 12.96 0.67

Eotaxin 135.15 91.8 0.002

FGF-2 32.55 29.73 0.25

G-CSF 5.09 5.45 0.60

GM-CSF 11.71 9.97 0.47

IFN-γ 20.83 27.33 0.26

IP-10 (CXCL10) 567.19 468.93 0.13

MCP-1(MCAF) 10.995 25.6 0.05

MIP-1a (CCL3) 1.86 1.7 0.49

MIP-1b (CCL4) 56.89 51.09 0.30

PDGF-BB 1145.64 900.76 0.06

RANTES (CCL5) 9536.67 7879.5 0.19

TNF-α 17.355 20.11 0.34

VEGF 65.345 50.515 0.49

Bold underlined: highlight the result.

Altogether, the results reported in Tables 2–6 indicate strong and significant differential expression
of several cytokines/chemokines, as a function of Breslow thickness, age, and gender. Such differences
support the known role of these molecules in controlling proliferation, immune response, chemotaxis,
and inflammation in melanoma samples, and provide molecular insights into the systemic response to
melanoma (see the Discussion section).

2.2. Serum Expression: Analysis of Paired Molecules by a Correlation Matrix

A correlation analysis was then carried out. Namely, Spearman’s correlations between the
expression values of all pairs of molecules were investigated in control and in melanoma patients.
Figures 2 and 3 show the molecule pairs exhibiting the highest correlation coefficients in the control and
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in melanoma patients, respectively. Specifically, Figure 2A,B shows the heatmap of the intersections
having a p < 0.05 and Spearman’s rank coefficient >0.60, in the control and melanoma samples,
respectively. Figure 3A,B show the molecules pair exhibiting a more severe selection, i.e., a correlation
with p < 0.05 and a coefficient >0.7. In Figure 2, the 27 molecules were roughly clustered according
to their biological functions. A higher number of strong correlations appear in the melanoma
samples as compared to the controls, involving either immune/inflammatory molecules, chemokines,
and angiogenic factors, indicating that the cytokines/chemokines expression network appears to be
more reciprocally correlated in the melanoma samples.Cancers 2020, 12, x FOR PEER REVIEW 10 of 27 
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present in the melanoma samples are highlighted with blue dashed lines.
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2.3. Serum Expression: Profile Analysis by SVM

The serum expression of the 27 chemokines/cytokines was then analyzed as a global profile.
The SVM supervised learning algorithm was used, performing a simultaneous analysis of all molecules
as predictors of melanoma state. A 10-fold cross-validated, linear-kernel SVM search method was
carried out, and the missing values were handled in two alternative ways, as specified in the Methods
section. The SVM analysis of the sera data improved the classification efficacy as compared to the
single-molecule analysis reported in Table 2, leading to an AUC value = 0.761 and an average accuracy
of 0.724 with a p = 0.108 (reported in bold and underlined in Table 7). This is slightly higher than 0.7,
i.e., the best AUC value obtained by analysis in the single-molecule data (Table 2). Such a result was
obtained by removing the missing values and considering as predictors the age and the expression
values of the molecules IL-4, IL-8, IL-9, Eotaxin, FGF-2, IFN-γ, IP10, MIP-1a, MIP-1b, PDGF-BB,
RANTES, and VEGF.

Table 7. Results of the SVM method applied to the serum expression dataset. Missing values are either
removed or assigned as zero. In the first case, some molecules are removed from the predictor values
(remaining molecules are listed in the “Molecules” column). Sex and/or age are or are not regarded as
predictors. The p-value is the probability that the “Accuracy” value is not significantly above the “No
Info Rate” value.

Missing
Values

Num.
Melanoma

Num.
Controls

Training
Set Size

Testing
Set Size

Predictors:
Sex or
Age

AUC
(ROC) Accuracy No Info

Rate p-Value

Removed * 72 124 138 58

Sex, Age 0.674 0.621 0.64 0.66

Sex 0.658 0.638 0.64 0.56

Age 0.761 0.724 0.64 0.11

None 0.615 0.586 0.64 0.83

Set to 0 ** 96 136 164 68

Sex, Age 0.621 0.588 0.59 0.55

Sex 0.510 0.588 0.59 0.55

Age 0.704 0.662 0.59 0.13

None 0.619 0.588 0.59 0.55

* When the missing values were removed, IL-4, IL-8, IL-9, Eotaxin, FGF-2, IFN-γ, IP-10, MIP-1a, MIP-1b, PDGF-BB,
RANTES, and VEGF were simultaneously analyzed by the SVM. ** When the missing values were set to 0, all 27
cytokines/chemokines were simultaneously analyzed by SVM.

The SVM analysis on the serum expression data show that the profile analysis may improve the
classification efficacy as compared to the single-molecule analysis, but unfortunately not enough to
reach clinically relevant values.

2.4. Tissues Expression: Single-Molecule Analysis of 27 Cytokines/Chemokines in Melanoma Patients and Controls

Gene expression of the 27 chemokines/cytokines was then evaluated in tissue biopsies of melanoma
samples and in control samples. Expression data were derived from the skin cancers section of the
GENT2 database. The interface available at the link http://gent2.appex.kr/gent2/ presents data from all
skin cancers combined, reporting analyses of Basal Cell Carcinoma (BCC) pooled with Squamous Cell
Carcinoma (SCC), Merkel carcinoma primary, Merkel carcinoma metastatic, primary and metastatic
melanoma data, for a total of 810 samples. We therefore extracted data referring to normal skin, primary
melanoma, and all other melanoma data, excluding all other skin cancers from the analysis. After such
a selection, 511 samples were considered, namely, 201 normal skins, 83 primary/primary in-transit
melanoma patients, and 227 metastatic melanoma patients. The median gene expression values of the
27 molecules are reported in Table 8 for the three categories. No other stratifications (such as sex, age,
or Breslow thickness) were carried out, given the database limitations reported in the Material and
Methods section. Differences of the medians in the categories assessed by Mann–Whitney analysis
revealed that most molecules show significantly different median values (p < 0.05). ANOVA analysis

http://gent2.appex.kr/gent2/
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was also carried out on the three groups, indicating similarly strong significant differences for most
molecules investigated (see Table S6).

Table 8. Tissue expression: medians of the expression values of the 27 chemokines/cytokines for
the control and for melanoma patients (all, primary, and metastatic). The table also reports the
significance of the difference according to Mann–Whitney analyses (Wilcoxon two-sample rank-sum
test): for p-values < 0.05 the null hypothesis (i.e., the corresponding sets of samples have the same
median) should be rejected (values in bold and underlined).

Cytokines

Median p-Value (Mann–Whitney)

Ctrls
(201)

Melanoma

Ctrls vs. all

(with Bonferroni Correction)

All
(310)

Prim.
(83)

Metast.
(227)

Ctrls vs.
Prim.

Ctrls vs.
Metast.

Prim. vs.
Metast.

IL-1b 6.66 7.04 6.73 7.15 <0.0001 0.15 <0.0001 0.71

IL-1Ra 9.38 7.02 7.03 7.01 <0.0001 <0.0001 <0.0001 1.31

IL-2 2.58 2.81 2.58 3.00 0.59 0.96 1.00 1.00

IL-4 3.46 3.46 3.17 3.58 0.96 0.45 1.00 0.15

IL-5 2.81 3.00 3.00 3.00 0.48 1.00 1.00 1.00

IL-6 5.61 6.39 5.98 6.64 <0.0001 0.06 <0.0001 0.06

IL-7 7.22 5.49 5.17 5.73 <0.0001 <0.0001 <0.0001 0.01

IL-8 3.32 3.32 3.17 3.32 0.99 1.00 1.00 1.00

IL-9 2.58 2.81 2.58 2.81 0.76 1.00 1.00 0.48

IL-10 3.70 4.88 4.75 5.04 <0.0001 <0.0001 <0.0001 0.66

IL-12(p70) 4.25 2.32 2.81 2.00 <0.0001 <0.0001 <0.0001 0.12

IL-13 5.64 5.52 5.55 5.49 0.96 1.00 1.00 1.00

IL-15 6.95 6.83 6.30 6.97 0.44 0.001 1.00 0.01

IL-17 5.67 6.83 6.07 7.37 <0.0001 0.08 <0.0001 0.05

Eotaxin 4.75 5.29 4.95 5.39 <0.0001 0.21 <0.0001 0.06

FGF-2 7.11 7.03 6.25 7.24 0.51 <0.0001 0.53 <0.0001

G-CSF 11.83 11.55 12.25 11.37 0.95 0.001 0.30 0.006

GM-CSF 4.81 4.64 4.52 4.64 0.83 1.00 1.00 0.99

IFN-γ 4.70 5.58 4.91 5.83 <0.0001 0.03 <0.0001 0.01

IP-10 (CXCL10) 2.81 3.86 3.17 4.25 <0.0001 0.36 <0.0001 0.01

MCP-1(MCAF) 3.32 3.46 3.00 3.58 0.03 1.00 0.03 0.01

MIP-1a (CCL3) 5.13 8.11 7.76 8.24 <0.0001 <0.0001 <0.0001 0.07

MIP-1b (CCL4) 5.29 7.90 7.35 8.13 <0.0001 <0.0001 <0.0001 0.12

PDGF-BB 13.21 13.01 13.21 12.83 0.02 0.60 0.001 0.003

RANTES (CCL5) 6.86 8.16 7.81 8.22 <0.0001 <0.0001 <0.0001 1.00

TNF-α 6.13 7.54 7.27 7.57 <0.0001 <0.0001 <0.0001 0.003

VEGF 8.95 8.97 8.67 9.03 0.37 0.001 1.00 0.002

Bold underlined: highlight the result; Italics: Genes.

A ROC analysis was then carried out for every molecule by comparing the control vs. all melanoma,
control vs. primary melanoma, control vs. metastatic, and primary melanoma vs. metastatic melanoma
samples. The results are reported in Table 9. Four molecules were found to be very good classifiers of
the control vs. melanoma samples, namely, IL-1Ra, IL-7, MIP-1a, and MIP-1b, with AUC values of
0.88, 0.86, 0.93, and 0.87, respectively. The corresponding ROC curves for the control vs. all melanoma
samples are shown in Figure 4.
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Table 9. ROC analysis of the tissue expression data. For each molecule, the AUC values for the
ROC analysis was calculated for the following sets of expression values: controls vs. all melanoma,
controls vs. primary melanoma, controls vs. metastatic melanoma, and primary melanoma vs.
metastatic melanoma samples. For every AUC value, the standard error of the measure obtained by
the cross-validation procedure is also shown.

Cytokines AUC ± S.E. of ROC Analysis

Ctrls vs. all
Melanoma

Ctrls vs.
Primary

Ctrls vs.
Metastatic

Primary vs.
Metastatic

IL-1b 0.62 ± 0.03 0.57 ± 0.04 0.63 ± 0.03 0.54 ± 0.04

IL-1Ra 0.88 ± 0.02 0.88 ± 0.03 0.88 ± 0.02 0.53 ± 0.04

IL-2 0.51 ± 0.03 0.54 ± 0.04 0.51 ± 0.03 0.53 ± 0.04

IL-4 0.50 ± 0.03 0.55 ± 0.04 0.52 ± 0.03 0.57 ± 0.04

IL-5 0.52 ± 0.03 0.51 ± 0.04 0.52 ± 0.03 0.51 ± 0.04

IL-6 0.64 ± 0.03 0.59 ± 0.04 0.66 ± 0.03 0.59 ± 0.04

IL-7 0.86 ± 0.02 0.91 ± 0.03 0.85 ± 0.02 0.61 ± 0.04

IL-8 0.50 ± 0.03 0.52 ± 0.04 0.51 ± 0.03 0.52 ± 0.04

IL-9 0.51 ± 0.03 0.53 ± 0.04 0.52 ± 0.03 0.55 ± 0.04

IL-10 0.68 ± 0.03 0.65 ± 0.03 0.69 ± 0.03 0.55 ± 0.04

IL-12(p70) 0.78 ± 0.02 0.77 ± 0.03 0.79 ± 0.02 0.58 ± 0.04

IL-13 0.50 ± 0.03 0.50 ± 0.04 0.50 ± 0.03 0.50 ± 0.04

IL-15 0.52 ± 0.03 0.64 ± 0.01 0.52 ± 0.03 0.61 ± 0.04

IL-17 0.61 ± 0.03 0.54 ± 0.04 0.63 ± 0.03 0.59 ± 0.04

Eotaxin 0.63 ± 0.03 0.57 ± 0.04 0.65 ± 0.03 0.59 ± 0.04

FGF-2 0.52 ± 0.03 0.67 ± 0.04 0.54 ± 0.03 0.66 ± 0.04

G-CSF 0.50 ± 0.03 0.63 ± 0.04 0.55 ± 0.03 0.61 ± 0.04

GM-CSF 0.51 ± 0.03 0.52 ± 0.04 0.52 ± 0.03 0.54 ± 0.04

IFN-γ 0.69 ± 0.03 0.60 ± 0.04 0.72 ± 0.03 0.61 ± 0.04

IP-10 (CXCL10) 0.64 ± 0.03 0.56 ± 0.04 0.67 ± 0.03 0.61 ± 0.04

MCP-1(MCAF) 0.56 ± 0.03 0.54 ± 0.04 0.59 ± 0.03 0.62 ± 0.04

MIP-1a (CCL3) 0.93 ± 0.01 0.91 ± 0.02 0.93 ± 0.02 0.58 ± 0.04

MIP-1b (CCL4) 0.87 ± 0.02 0.87 ± 0.02 0.86 ± 0.02 0.58 ± 0.04

PDGF-BB 0.56 ± 0.03 0.55 ± 0.04 0.60 ± 0.03 0.62 ± 0.04

RANTES (CCL5) 0.73 ± 0.03 0.73 ± 0.03 0.72 ± 0.02 0.53 ± 0.04

TNF-α 0.77 ± 0.03 0.68 ± 0.03 0.80 ± 0.02 0.62 ± 0.04

VEGF 0.52 ± 0.03 0.63 ± 0.04 0.52 ± 0.03 0.63 ± 0.04

Bold: highlight the result; Italics: Genes.
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Figure 4. AUC plots of the IL-1Ra, IL-7, MIP-1a, and MIP-1b gene expression in the controls vs.
all melanoma samples, for the tissue-expression values.

These results indicate that analyzing the gene expression of single molecules identifies relevant
and significant differences; in this case, the ability to discriminate melanoma from the controls is
much higher than the serum-expression data. Nevertheless, such values are below the threshold
commonly indicated for potential clinical application. We then carried out the paired-molecule and
profile analysis.

2.5. Tissue Expression: Analyzing Paired Molecules by a Matrix Correlation

The analysis of the paired-molecule correlations was then carried out, similarly to what we have
done for the sera dataset. The correlations between the expression values of all pairs of molecules in the
control and melanoma patients were analyzed by computing Spearman’s rank correlation coefficient.

Figures 5 and 6 show the molecule pairs exhibiting high correlation coefficients in the control
and melanoma patients. The heatmap in Figure 5 highlights the pairs with significant correlation
coefficients of R > 0.6 with p < 0.05. Figure 6 shows a more severe selection, i.e., the pairs with
a correlation p-value < 0.05 and coefficient >0.70. As observed in the serum dataset, this analysis
indicates that many strong correlations appear in the melanoma samples as compared to the controls,
involving immune/inflammatory molecules, chemokines, and angiogenic factors.
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Figure 6. Correlation analysis of the tissue expression values of all the control (A) and melanoma
(B) samples. The connected circles show the paired molecules with a p < 0.05 and Spearman’s R
coefficient >0.70, in the control and melanoma samples, respectively. The correlations specifically
present in the melanoma samples are highlighted with blue dashed lines.

2.6. Tissue Expression: Profile Analysis by SVM

As in the case of the serum expression data, the SVM supervised learning algorithm was used to
investigate all molecules simultaneously as melanoma predictors. Impressive results were achieved
by analyzing the tissue-expression data. The results are shown in Table 10. The average of the AUC
values obtained in the 10 iterations of the cross-validation procedure is 0.99, much higher than the
highest AUC value obtained in the ROC analysis of the single molecules (namely, 0.93; see Figure 4
and Table 9). The p-value is <0.00001; hence, we are highly confident about the statistical significance
of this observation.
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Table 10. SVM method applied to the tissue-expression dataset. Sex and age were not considered as
predictors for the lack of data in the dataset. The p, i.e., the probability that the “Accuracy” value is not
significantly higher than the “No Info Rate” value, is lower than 0.00001. Hence, we can safely reject
the null hypothesis and we can assume that the accuracy of the predictive model is higher than the
value of the No Info Rate (0.61), corresponding to the performance of a dummy, fixed-answer predictor.

Num.
Melanoma

Num.
Controls

Training
Set Size

Testing
Set Size

AUC
(ROC) Accuracy No Info

Rate p-Value

310 201 358 153 0.99 0.95 0.61 <0.00001

We then conclude that by using all molecules as melanoma classifiers, the accuracy of the prediction
is extremely strong. The ROC curve of the predictive model based on the simultaneous analysis of all
molecules is shown in Figure 7.
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A model based on many predictors (in this case 27) may present some practical issues. We thus
performed a Recursive Feature Elimination (RFE) procedure (summarized in the Methods section),
to select the most relevant molecules of the predictive SVM-based model. According to this analysis,
the most sensible predictors are, in order, MIP-1a, IL-1RA, IL-7, MIP-1b, IL-12(p70), and TNF-α. The best
four molecules correspond to the ones shown in Table 9, obtained with ROC analyses of the single
molecules. As shown in Figure 8, a model based on two molecules, namely, MIP-1a and IL-1RA,
achieves an AUC value = 0.965, while a 4-predictor model (MIP-1a, IL-1RA, IL-7, and MIP-1b) reaches
an AUC = 0.982. These molecules stably represent the best 4-marker combination with the highest
AUC value. Further increasing the number of predictors does not add any relevant improvement
(see Figure 8).

We therefore conclude that combined analysis of the expression of the MIP-1a, IL-1RA, IL-7,
and MIP-1b genes represents the best combination within the 27 investigated, able to very effectively
discriminate the control from the melanoma samples.



Cancers 2020, 12, 3680 17 of 27

Cancers 2020, 12, x FOR PEER REVIEW 16 of 27 

single molecules. As shown in Figure 8, a model based on two molecules, namely, MIP-1a and IL-

1RA, achieves an AUC value = 0.965, while a 4-predictor model (MIP-1a, IL-1RA, IL-7, and MIP-1b) 

reaches an AUC = 0.982. These molecules stably represent the best 4-marker combination with the 

highest AUC value. Further increasing the number of predictors does not add any relevant 

improvement (see Figure 8). 

We therefore conclude that combined analysis of the expression of the MIP-1a, IL-1RA, IL-7, and 

MIP-1b genes represents the best combination within the 27 investigated, able to very effectively 

discriminate the control from the melanoma samples. 

 

Figure 8. AUC values obtained by the SVM algorithm using one predictor (MIP-1a), two predictors 

(MIP-1a + IL-1RA), three predictors (MIP-1a + IL-1RA + IL-7), four predictors (MIP-1a + IL-1RA + IL-7 

+ MIP-1b), etc., up to six predictors. 

We finally investigated the role of the expression of these four genes as a prognostic factor. 

According to the survival analysis tool available in the GEPIA2 database, 3 out of 4 show significant 

Hazard Ratios. Namely, IL7, MIP-1a (CCL3), and MIP-1b (CCL4) show a HR of 0.71, 0.65, and 0.5, 

respectively, with p = 0.01, 0.002, and 1 × 10−7, respectively. These data indicate significantly improved 

survival in patients with high expression values for these three genes. 

2.7. Results Validation 

The expression of the four molecules reported in Figure 6 was then investigated in an 

independent database, namely, GEPIA2 (found at http://gepia2.cancer-pku.cn/). Expression was 

confirmed to be significantly different in melanoma compared to the healthy controls, for IL-1Ra 

(recognized as ILRn by GEPIA2), IL-7, MIP-1a (recognized as CCL3 by GEPIA2), and MIP-1b 

(recognized as CCL4 by GEPIA2) (see Figure 9). 

Figure 8. AUC values obtained by the SVM algorithm using one predictor (MIP-1a), two predictors
(MIP-1a + IL-1RA), three predictors (MIP-1a + IL-1RA + IL-7), four predictors (MIP-1a + IL-1RA + IL-7 +

MIP-1b), etc., up to six predictors.

We finally investigated the role of the expression of these four genes as a prognostic factor.
According to the survival analysis tool available in the GEPIA2 database, 3 out of 4 show significant
Hazard Ratios. Namely, IL7, MIP-1a (CCL3), and MIP-1b (CCL4) show a HR of 0.71, 0.65, and 0.5,
respectively, with p = 0.01, 0.002, and 1 × 10−7, respectively. These data indicate significantly improved
survival in patients with high expression values for these three genes.

2.7. Results Validation

The expression of the four molecules reported in Figure 6 was then investigated in an independent
database, namely, GEPIA2 (found at http://gepia2.cancer-pku.cn/). Expression was confirmed to be
significantly different in melanoma compared to the healthy controls, for IL-1Ra (recognized as ILRn by
GEPIA2), IL-7, MIP-1a (recognized as CCL3 by GEPIA2), and MIP-1b (recognized as CCL4 by GEPIA2)
(see Figure 9).

The combined expression of these four molecules was then subject to a PCA analysis carried
out by the “Dimensionality reduction” tool in GEPIA2. The three most relevant components very
effectively differentiated melanoma from controls (Figure 10), indicating that the combined analysis of
these four molecules may represent an effective melanoma marker.

This observation fully validated the SVM analysis reported in Figure 6.

http://gepia2.cancer-pku.cn/


Cancers 2020, 12, 3680 18 of 27
Cancers 2020, 12, x FOR PEER REVIEW 17 of 27 

 

Figure 9. Tissue expression according to the GEPIA2 database. An asterisk (*) indicates p < 0.0001. 

The combined expression of these four molecules was then subject to a PCA analysis carried out 

by the “Dimensionality reduction” tool in GEPIA2. The three most relevant components very 

effectively differentiated melanoma from controls (Figure 10), indicating that the combined analysis 

of these four molecules may represent an effective melanoma marker. 

This observation fully validated the SVM analysis reported in Figure 6. 

Figure 9. Tissue expression according to the GEPIA2 database. An asterisk (*) indicates p < 0.0001.
Cancers 2020, 12, x FOR PEER REVIEW 18 of 27 

 

Figure 10. PCA analysis on the tissue expression values of IL-1Ra, IL-7, MIP-1a, and MIP-1b. 

3. Discussion 

While several serum biomarkers are investigated in melanoma patients [19], diagnostic markers 

currently applied in clinics are restricted to S-100, HMB-45, Melan-A, and SM5-1 [20,21], and the 

prognostic markers to monitor melanoma progression are S100B, MART1, PMEL, and S100A13 [22]. 

As recently reported [23], potential markers in melanoma are mutations (on BRAF, NRAS, KIT, 

GNA11/GNAQ, NF1, CDKN2AI, immunohistochemical biomarkers (such as PD-11 and PD-L1, as 

well as mutated BRAF and NY-ESO-1), miRNAs, and other serum molecules. The key role 

cytokines/chemokines play in the immune/inflammatory response and in proliferation and 

chemotaxis control has been largely investigated; nevertheless, their role as diagnostic or prognostic 

markers remains to be elucidated. We and others demonstrated the key role of growth factors such 

as FGF-2, PDGF, and TNF-α in controlling melanoma growth [24–26] and melanoma aggressiveness 

[27]. The present study is the first, to our knowledge, presenting a signature of four 

cytokines/chemokines as an extremely effective melanoma marker, in a large patient collection. The 

present study measures cytokine/chemokine expression in serum and in tumor biopsies. We did not 

expect that the same cytokines/chemokines would be modified in serum and in tissues. In fact, the 

molecules measured in the serum are likely produced as a systemic response, while the molecules 

measured within the biopsies are directly produced in the tumor or in the regions immediately close 

to it. Therefore, the cytokines/chemokines measured within the biopsies reflect more directly the 

tumor biology and its aggressive behavior. On the contrary, the cytokines/chemokines measured in 

the serum reflect more how the organism responds to the tumor from an 

inflammatory/immunological point of view. We cannot exclude that molecules produced within the 

primary tumor may reach the blood. However, such signals may be not measured due to the large 

dilution in the blood stream and their expression values may fall below the detection limit. We used 

the xMAP technology for quantification in serum samples, to minimize as much as possible the 

sensitivity limitations. 

For the sake of clarity, we will discuss below the results of serum expression separately from the 

results on tissue expression. 

Serum expression: Analyzing the serum expression of 27 cytokines/chemokines did not identify 

any relevant marker when individually analyzed. Nevertheless, significant and strong differential 

expressions were found in melanoma vs. controls (see Table 2), as well as in melanoma samples as a 

function of Breslow thickness (see Tables 3 and 4) or age (Table 5). Furthermore, significant gender-

specific differences were identified in Eotaxin and MCP-1 expression (Table 6), as well as in GM-CSF, 

Figure 10. PCA analysis on the tissue expression values of IL-1Ra, IL-7, MIP-1a, and MIP-1b.



Cancers 2020, 12, 3680 19 of 27

3. Discussion

While several serum biomarkers are investigated in melanoma patients [19], diagnostic markers
currently applied in clinics are restricted to S-100, HMB-45, Melan-A, and SM5-1 [20,21], and the
prognostic markers to monitor melanoma progression are S100B, MART1, PMEL, and S100A13 [22].
As recently reported [23], potential markers in melanoma are mutations (on BRAF, NRAS, KIT,
GNA11/GNAQ, NF1, CDKN2AI, immunohistochemical biomarkers (such as PD-11 and PD-L1,
as well as mutated BRAF and NY-ESO-1), miRNAs, and other serum molecules. The key role
cytokines/chemokines play in the immune/inflammatory response and in proliferation and chemotaxis
control has been largely investigated; nevertheless, their role as diagnostic or prognostic markers
remains to be elucidated. We and others demonstrated the key role of growth factors such as
FGF-2, PDGF, and TNF-α in controlling melanoma growth [24–26] and melanoma aggressiveness [27].
The present study is the first, to our knowledge, presenting a signature of four cytokines/chemokines
as an extremely effective melanoma marker, in a large patient collection. The present study measures
cytokine/chemokine expression in serum and in tumor biopsies. We did not expect that the same
cytokines/chemokines would be modified in serum and in tissues. In fact, the molecules measured
in the serum are likely produced as a systemic response, while the molecules measured within the
biopsies are directly produced in the tumor or in the regions immediately close to it. Therefore,
the cytokines/chemokines measured within the biopsies reflect more directly the tumor biology and
its aggressive behavior. On the contrary, the cytokines/chemokines measured in the serum reflect
more how the organism responds to the tumor from an inflammatory/immunological point of view.
We cannot exclude that molecules produced within the primary tumor may reach the blood. However,
such signals may be not measured due to the large dilution in the blood stream and their expression
values may fall below the detection limit. We used the xMAP technology for quantification in serum
samples, to minimize as much as possible the sensitivity limitations.

For the sake of clarity, we will discuss below the results of serum expression separately from the
results on tissue expression.

Serum expression: Analyzing the serum expression of 27 cytokines/chemokines did not identify
any relevant marker when individually analyzed. Nevertheless, significant and strong differential
expressions were found in melanoma vs. controls (see Table 2), as well as in melanoma samples
as a function of Breslow thickness (see Tables 3 and 4) or age (Table 5). Furthermore, significant
gender-specific differences were identified in Eotaxin and MCP-1 expression (Table 6), as well as in
GM-CSF, TNF-α, IL-9, MIP-1a, IL-8, PDGF-BB, and MCP-1 (Tables S3–S5). This finding indicated the
molecular bases possibly underlying the different incidence and different mortality rates in male vs.
female melanoma [28–32], as well as the unexpected better response of immunotherapies in men than
in women [33].

Serum expression of IL-1b, IL-6, IP-10, PDGF-BB, and RANTES was found to be significantly
different in melanoma vs. controls (Table 2), reinforced by a much larger patient cohort, since previous
observations were carried out on much smaller patient cohorts [34,35]. These molecules make a
proinflammatory milieu previously found in uveal melanoma [36] and such findings agree with recent
data showing that serum inflammation markers are strongly associated with melanoma progression [37].
Cytokines and chemokines are closely engaged within a large network where several ligands share
few receptors [38], therefore reciprocally modulating their pro-, anti-inflammatory, chemotactic,
and angiogenic functions [39–41]. The chemokines network is known to mediate melanoma interaction
with the surrounding tissues [42]. Investigating cytokine/chemokine serum expression may therefore
reveal the coordinated tissue reaction to the presence of melanoma. In the present study, Spearman’s
correlation matrix revealed for the first time that strong and significant correlations of the expression
values are more numerous in melanoma samples than in healthy controls (Figures 2 and 3). In the
melanoma samples, molecules involved in inflammation, chemotaxis, and angiogenesis had strong and
significant correlations, namely, according to Figure 3, strong correlations of IL-10 with FGF-2, IL-10
with RANTES, IL-5 with IL-13, IL-6 with TNF-α, and of IFN-γwith MCP-1 appear in melanoma samples.
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Particularly interesting is the strong correlation of IL-6 to TNF-α in the melanoma samples; these two
molecules are known to control the ability to evade the immune system control in a PDL-1-dependent
manner [43]. Such correlation data indicated that the cross-talk of cytokines and chemokines is
altered in melanoma and this may help in defining a melanoma-specific, correlation-matrix fingerprint.
We therefore analyzed the entire panel of 27 cytokines/chemokines with the SVM machine learning
algorithm, to investigate simultaneously all molecules as predictors of melanoma state. In other
studies, SVM effectively discriminated melanoma on the basis of dermoscopic images [44], ultrasonic
and spectrophotometric images [45], BRAF status [46], or dermo-fluorescence spectra [47], with a
reported accuracy up to 90%. SVM was previously used for prognostic purposes in melanoma
patients [48] but, to our knowledge, the present study is the first applying the SVM analysis to
cytokine/chemokine-expression values to discriminate melanoma from controls, both in serum and
in tissue, in a large group of controls and patients. The SVM procedure was indeed able to improve
the ability to classify the serum samples, from AUC = 0.70 for IL-6 expression (see Table 2) up to
AUC = 0.761 for the combined indicators (see Table 7). However, this is still not good enough to propose
a clinical diagnostic application. We then concluded that the serum expression data of these molecules,
while showing strong and significant differences, may not be good classifiers. Several reasons may
underlie this result, such as biological reasons (namely, the large serum dilution) as well as technical
reasons (namely, samples storage or antibody cross-specificity). We cannot exclude that the cytokine
serum expression will give improved information with an improved technology. Protein quantification
is a rapidly evolving technology with the continuous upgrading of antibody combinations, sensitivity
improvement, and protocol optimization. As an example, a 2007 report [49] identified several cytokines
differently expressed in melanoma serum using multiplex xMAP technology, in 179 melanoma patients
and 378 healthy controls. However, those data merit to be re-evaluated in the light of the currently
available multiplex xMAP technology and new antibodies. As an alternative, quantitative proteomics
approaches, based on mass spectrometry, indicated proteins differently expressed in melanoma
compared to the controls [50]. However, the sensitivity of the latter techniques limits their application
for cytokine/chemokine quantification, as compared to immunometric methods. Analyzing serum from
melanoma patients aimed at identifying markers suitable for the early diagnosis, using a minimally
invasive technique, expressions significantly different were indeed identified. However, we could
not identify good markers within the 27 molecules investigated. This may depend on the molecules
chosen (i.e., we should probably change targets and focus on other molecules), or it may depend on
the high dilution factor in the serum samples.

We should address briefly the age-matching issue. As reported in Table 1, the mean age in the
healthy groups and melanoma groups is different. Such difference reflects what the reality is, i.e., cancer
patients are generally older than healthy controls, since increased age is a specific cancer risk factor.
In the present study, individuals were sequentially enrolled, and controls were individuals with a
suspect lesion removed and diagnosed by the pathologist as a not-cancer lesion. To have a similar
age distribution in patients and in the control groups, one would be forced to remove several young
healthy controls from the dataset (to match the rarely present young melanoma patients) and to remove
several old melanoma patients (to match the rarely present old healthy controls). Age-matching would,
therefore, strongly decrease the number of individuals analyzed, and alter the actual patient and control
age distribution. The SVM analysis reported in Table 7 was also carried out on the age-matched groups,
and the results are similar to the ones obtained from unmatched groups (See Table S7). Furthermore,
the matrix analysis reported in Figure 3 was carried out also on the age-matched groups, and the results
are identical to the ones obtained from the unmatched groups. We then conclude that age-matching,
required for correct statistical analysis, would strongly reduce the group numerosity; it also would
abolish a specific risk factor. In addition, the results achieved on the age-matched groups appear very
similar or identical to those obtained on the age-unmatched groups, under our experimental conditions.

Tissue expression: Analyzing the tissue expression was much more effective to discriminate
melanoma from controls. This is likely related to biological reasons (i.e., the direct analysis of the
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melanoma bearing tissue), as well as technical reasons (i.e., using a more stable quantification technique).
Very high AUC values were calculated, up to 0.92 (see Figure 4), with the single-molecule analysis.
Most of the investigated molecules showed a significant differential expression. This finding indicated
that, at the tissue level, most of the cytokines/chemokines investigated are strongly altered in melanoma,
prompting us to look for a further improvement of their classifier ability. Analysis of paired molecules
reinforced what was observed in the sera dataset, showing that high-correlation pairs appear in
melanoma while they are almost absent in the controls (Figures 5 and 6). Particularly interesting are
the strong correlations involving the chemokines RANTES, MIP-1a, and MIP-1b (Figures 5 and 6).

Then, an SVM analysis on all molecules simultaneously analyzed was carried out. This analysis
strongly improved the classification ability as compared to the single molecules. AUC reached an
extremely high value of 0.991 when all 27 cytokines/chemokines were simultaneously considered
as melanoma predictors. Use of the Recursive Feature Elimination (RFE) [51] procedure allowed
us to identify the four best-performing molecules. The combination of IL-1Ra/IL-7/MIP-1a/MIP-1b
shows the relevant AUC = 0.982. Interestingly to notice, the expression of IL-1Ra and IL-7 (known
anti-inflammatory cytokines) is significantly reduced in the melanoma samples, while expression
of MIP-1a and MIP-1b (known inflammatory chemokines) is significantly increased. Previous data
demonstrate that CCL3 (MIP-1α) and CCL4 (MIP-1b) control the infiltration of the immune cells by
recruiting antigen-presenting cells, including dendritic cells (DCs), to the tumor site via IFN-γ [52].
However, the specific signature made of the two anti-inflammatory and two pro-inflammatory
molecules is a novel finding to our knowledge.

Full validation of these results was achieved on an independent dataset, the GEPIA2 database,
reporting expression data from 1019 control and melanoma samples. The four molecules IL-1Ra,
IL-7, MIP-1a, and MIP-1b were confirmed to have a significant (p < 0.0001) differential expression in
melanoma (Figure 9), and their combined analysis with the PCA methodology (a different methodology
compared to SVM) was found to effectively discriminate the controls from the melanoma samples
(Figure 10).

The identification of the relevant gene markers from the tissue-expression data by using a
quantitative technique may help improve histological diagnoses. Identification of a 4-gene signature
may be a relevant help for pathologists. Measuring expression of these genes represents a quantitative
approach that is operator-independent and may be part of an automatic process useful to identify
suspect samples.

4. Materials and Methods

4.1. Patients Selection and Recruitment

Melanoma patients were consecutively recruited at the hospital sections of IDI-IRCCS, according
to the procedure approved by the IDI Ethics Committee (CE 287/1 approved 7/04/2009) based on a
suspect skin lesion. All patients gave written informed consent. Patients under any pharmacological
melanoma therapy were excluded. Serum was collected before the biopsy procedure, aliquoted,
and stored at −80 ◦C. According to the histological analysis, patients were then assigned to the control
arm or to the melanoma arm. A total of 232 patients were recruited in the present study.

4.2. Serum Handling

A total of 7 mL of peripheral blood were collected from patients. Blood was collected in tubes
with no additives of any type. Tubes were taken at room temperature for 2 to 3 h; they were then
centrifuged at 15,000 rpm for 15 min; clear yellow color serum was stored in 100 µL aliquots and stored
at −80 ◦C. The red color was considered a hemolysis sign and such sera were then not analyzed in the
current study.
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4.3. Cytokines Quantification in Sera Samples

Sera were obtained from melanoma patients (n = 96) and from patients with non-melanoma
suspect lesions (n = 136) and were analyzed using xMAP technology on the Luminex platform
(X200 Instrumentation equipped with a magnetic washer workstation and software Manager 6.1),
which allows the simultaneous quantification of many molecules. The commercial kit used was
Bio-Plex Pro human cytokine 27-plex panel (Bio-Rad Laboratories, Hercules, CA, USA), able to measure
the following analytes: IL-1Ra, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12(p70), IL-13, IL-15,
IL-17, TNF-α, IFN-γ, Eotaxin, Macrophage Inflammatory Protein (MIP)-1a (MIP-1a; CCL3), Macrophage
Inflammatory Protein (MIP)-1b (MIP-1b; CCL4), Monocyte Chemoattractant Protein (MCP)-1 (CCL2),
Granulocyte Colony stimulating factor (G-CSF), GM-CSF, Basic Fibroblast growth factor (FGF-2),
Interferon γ-induced protein 10 (IP-10; CXCL10), Regulated on Activation, Normal T cell Expressed
and Secreted (RANTES), Platelet-Derived Growth Factor (PDGF-BB), and Vascular Endothelial Growth
Factor (VEGF). Samples were handled according to the manufacturer’s instructions and as previously
reported [27].

4.4. Serum Expression Data

The serum dataset was composed of 232 records corresponding to 232 different individuals.
The recorded data included in each case the histopathological diagnosis, sex, age, Breslow’s thickness,
and the expression values of the 27 chemokines/cytokines, reported in pg/mL. The expression of a
few molecules was undetectable in some patients. Specifically, expressions of IL-2, IL-5, IL-6, IL-10,
IL-13, and IL-15 were undetected in most cases and were measured in less than 30 controls and/or less
than 30 melanoma samples. We handled missing values in two alternative ways, i.e., we removed
the missing data point from the analysis (either the whole cytokine from all samples or the whole
sample containing the missing value, depending on the performed analysis while trying to maximize
the size of the resulting dataset), or, alternatively, we assumed the missing values are equal to zero,
thus assuming that all missing values were caused by expression values lower than the measurement
thresholds of the diagnostic kits.

4.5. Tissue Expression Data from GENT2 Database

The 27 molecules measured in the sera were investigated in control and melanoma samples taken
from the GENT2 database, according to transcriptomic data; data of 201 normal skin biopsies were from
11 independent studies (referred to as GSE39612, GSE30355, GSE14905, GSE13355, GSE7553, GSE42109,
GSE16161, GSE15605, GSE7307, GSE46239, and GSE7307); data of 83 primary melanoma biopsies were
from 4 independent studies (referred to as GSE10282, GSE15605, GSE7553, and GSE62837); data of 227
metastatic melanoma biopsies were from 11 independent studies (referred to as GSE62837, GSE7307,
GSE31879, GSE38312, GSE15605, GSE35640, GSE7553, GSE4587, GSE19293, GSE19234, and GSE22968).
The tissue dataset was composed of 511 records, each describing a single subject: the recorded data
included the histopathological diagnosis, sex, age, melanoma stage, and the expression values of the
27 cytokines. Each record always states whether the subject has been clinically diagnosed as affected
by melanoma (310 patients) or not (201 controls). In this dataset, there were no missing values within
the expression data. However, sex and age data were not recorded in most cases: only 217 records
reported sex (138 males and 79 females) and only 125 records indicated the age (minimum 20 years,
maximum 92 years, median 56 years, mean 59.56 years), and the majority of the control subjects had no
sex and age data (about 70% of total). Therefore, sex and age stratifications were not carried out in the
tissue-expression data.

4.6. Statistical Analyses

All statistical analyses were carried out on the “R” package version 4.0.0 [53].
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4.6.1. Single-Molecule Analysis

Expression data of the single molecules were analyzed as an evaluation of the statistical significance
of the median differences, by the Mann–Whitney test with Bonferroni correction. ANOVA analysis of
the differences between the controls, primary melanoma, and metastatic melanoma samples in the tissue
data was also performed and reported in Supplementary Material. In this case, normal distribution was
evaluated by the Shapiro–Wilk test, and homoscedasticity (homogeneity of variance) was evaluated by
the nonparametric Levene test. When the ANOVA analysis showed a significant difference between
the medians, Mann–Whitney with Bonferroni correction and Tukey’s honest significance tests were
applied as post-hoc tests.

4.6.2. Paired-Molecule Analysis

A data-matrix analysis investigated whether the expression correlations of all molecule pairs
show any relevant difference between the control and melanoma samples. Spearman’s rank correlation
coefficient was calculated.

4.6.3. Profile Analysis

Profile analysis was based on the Support Vector Machine (SVM) supervised learning algorithm,
using a linear kernel [54,55]. Briefly, the method finds the best separation hyperplane between the
set of control samples and the set of melanoma samples. Each sample is assumed as a single point
in the hyperspace of dimensions n, where n is the number of features that can be used as predictors
(specifically, the expression values of the molecules, and optionally age and sex). The result of the SVM
algorithm is a separation hyperplane that maximizes the cumulative quadratic distance between the
boundary points and the hyperplane itself. A parameter C plays a crucial role when the points are not
linearly separable: C represents the tradeoff between decreasing the quadratic distance and ensuring
that the boundary points are properly classified. We tuned the parameter C by testing 40 values
between approximately 10−14 and 105 and selecting the value yielding the largest Area Under Curve
(AUC) of the Receiver Operating Characteristic (ROC).

The missing expression values were removed from the dataset, according to two alternative
approaches. In the first approach, we removed either the entire sample or, if more convenient in terms
of resulting dataset size, all expression values of a specific molecule from the dataset. In the second
approach, we assigned all missing values to zero [56]. The expression values of each molecule were
then transformed to have average = 0 and standard deviation = 1, according to standard methods for
this kind of analysis [57,58]. To validate the results, a 10-fold cross-validation procedure was applied.
The SVM algorithm considers all predictors as coordinates in a multidimensional space, hence the
prediction model is based on the whole set of 27 expression values of the molecules. For the analysis
of the tissue-expression data, a Recursive Feature Elimination procedure [51] was applied to identify
the molecules having the greatest impact. Therefore, the most relevant molecules of the predictive
SVM-based model were identified. This method essentially repeats several times the cross-validated
SVM analysis by excluding one of the predictors at a time, then discarding the weakest one, and restarts
the whole process on the set of remaining predictors. By this procedure, the molecules having the
weakest impact on the performance of the SVM model were identified and removed from the feature set.

4.7. Results Validation

4.7.1. Cross-Validation Procedure

All statistical results involving random selections of samples (namely SVM analyses) were
validated using “cross-validation” methods to reduce errors due to overfitting. Overfitting errors are
caused by an over-optimization of the parameters of a statistical method that achieves an optimal
result on the available dataset but poor results on a dataset built from a different set of observations.
In a typical k-fold cross-validation procedure, the dataset is randomly partitioned in k subsets of
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approximately equal size. The statistical method is then repeated k times: in every execution, k-1 subsets
are used as “training sets” to optimize the parameters of the method, while the remaining “testing”’
subset is used to evaluate the performances of the method. Every execution of the method uses a
different subset as the “testing” set. Eventually, the performances of the method are taken as the
average performances of all k executions. In this work we selected k = 10; thus, every measure is the
net results of 10 experimental runs.

4.7.2. Validation

The tissue-expression results obtained from the data collected from the GENT2 database were
validated on an independent database, GEPIA2 (available at http://gepia2.cancer-pku.cn/#index),
reporting the RNA expression data from 461 controls and from 558 melanoma patients. Expression
and dimensionality reduction by PCA analysis were carried out by the specific tools available at the
GEPIA2 database.

5. Conclusions

We report here, for the first time, significant differences in cytokine expression as a function of
the pathological state and gender, or age, or Breslow thickness, in the serum expression of a large
patient dataset. Such differences are likely related to the systemic response to the tumor and may help,
at least in part, investigating the known heterogeneity of this tumor. Furthermore, by analyzing gene
expression in a large tissue expression dataset, we report, for the first time, a highly relevant 4-gene
signature that discriminates the controls from the melanoma patients. We also show here that the
machine learning algorithm SVM appears to be very effective in improving the classification ability for
potentially diagnostic purposes and clinical applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3680/s1,
Table S1: Serum expression general data in all controls (male + female). Table S2: General data on serum expression
in all melanoma patients (male + female). Table S3: Correlation of the serum expression with Breslow thickness
in male melanoma and in female melanoma. Table S4: Correlation of the serum expression with age, in female
controls compared to female melanoma. Table S5: Correlation of the serum expression with age, in male controls
compared to male melanoma. Table S6: Anova analysis of tissue expression data. Table S7: Results of the SVM
method applied to the serum expression dataset after age-matching. Results are similar to the analysis performed
on the unmatched data (see Table 7).
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