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ABSTRACT. Invariants of topological spaces of dimension three play a major
role in many areas, in particular ...

Introduction by the Organizers

The workshop Invariants of topological spaces of dimension three, organised by
Max Muster (Miinchen) and Bill E. Xample (New York) was well attended with
over 30 participants with broad geographic representation from all continents. This
workshop was a nice blend of researchers with various backgrounds ...
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Abstracts

Weak quasi-Hopf algebras, VOAs and conformal nets
SEBASTIANO CARPI
(joint work with Sergio Ciamprone, Claudia Pinzari)

Weak quasi-Hopf algebras, introduced by Mack and Schomerus in [13, 14], are a
generalization of Drinfeld’s quasi-Hopf algebras. Every fusion category is tensor
equivalent to the representation category of a weak quasi-Hopf algebra [11]. After
these early works there seems has not been no relevant progress in the theory until
the recent work by Ciamprone and Pinzari [2] where some specific examples from
quantum groups at roots of unity in the type A case where studied in detail.

In a subsequent work by Ciamprone and Pinzari and me [3] we develop vari-
ous aspects of the theory and consider many examples and applications. Here, 1
will briefly report of some the results contained in the latter work with emphasis
on the unitarity and conformal field theory aspects emerging in connection with
vertex operator algebras (VOAs) and conformal nets. These results indicate that
weak quasi-Hopf algebras give a useful and natural tool to study certain relevant
properties of fusion categories and conformal field theory.

A a weak quasi-Hopf algebra is a quintuple (A, A ¢, S, ®) satisfying various
assumptions. Here A is a unital associative algebra (over C), the coproduct A :
A — A® A is a homomorphism, the counit € : A — C is a nonzero homomorphism,
the antipode S : A — A is an antiautomorphism, & is the associator.

In contrast with the quasi-Hopf algebra case the coproduct is not assumed to
be unital so that A(14) is an idempotent in A ® A commuting with A(A) which
is in general different from 14 ® 14. This fact allows a much more flexibility.

The coproduct gives a tensor structure on the representation category Rep(A4).
The tensor product m ®mo on objects of Rep(A) is then given by the restriction
of 11 ® Mg 0 A to the invariant subspace m ® w3 0 A(14)Vy, ® V. If A is finite-
dimensional and semisimple then Rep(A) is a fusion category.

Now, for a given (finite-dimensional and semisimple) A, the additive function
D : Gr(Rep(A4)) — Z defined by D([r]) := dim(V;) is a weak integral dimension
function i.e. it satisfies D([mr1®@m2]) < D([m1])D([r2]), D([¢]) = 1 and D([7]) =
D([r]) > 0. All fusion categories have integral weak dimension functions.

The following result is due to Haring-Oldenburg [11].

Theorem ([11]). Let C be a fusion category and D : Gr(C) — Z be an integral
weak dimension. Then there exists a finite dimensional semisimple weak quasi-
Hopf algebra (A, A,e,S,®) and a tensor equivalence F : C — Rep(A) such that
D([X]) = dim(Vr(x)) for all X € Obj(C).

Extra structures on C give extra structures on A (see [11] and [3]): braidings
give R-matrices; C*-tensor structures on C give Q-involutive structures on A (in
particular the algebras A become a C*-algebras). The weak quasi-Hopf algebra
associated to a fusion category C is highly non-unique. It depends on the choice
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of the integral weak dimension function D and, once D is fixed, is only defined up
to a “twist”.

Now let C* be a linear C*-category, C be a fusion category and F : C* — C
be a linear equivalence. In the proof of the following theorem weak quasi-Hopf
algebras plays a crucial role.

Theorem 1. ([3]). If C is tensor equivalent to a unitary fusion category DT then
C* can be upgraded to a unitary fusion category so that F : CT — C becomes a
tensor equivalence. This unitary tensor structure on CV is unique up to unitary
equivalence and makes CT unitary tensor equivalent to DT .

In fact the result is still valid if C is only assumed to be rigid and semisimple
provided that it has an integral weak dimension function. As a corollary we find
a positive answer to a question by Cesar Galindo in [6]

Corollary 2. ([3]). Two tensor equivalent unitary fusion categories must be
unitary tensor equivalent.

A different proof of the latter result was found independently by Reutter [15].

We now apply the previous theorem to the unitarizability of the representation
categories of unitary affine VOAs. Let g be a complex simple Lie algebra, let k be
a positive integer and let Vj, be the corresponding simple level k affine VOA. It
is known that Vj, is a unitary strongly rational VOA and that every Vj,-module
is unitarizable. We denote by Rep“(Vj,) the linear C*-category of unitary Vj, -
modules. Because of the unitarizability of the Vj, -modules the forgetful functor
F :Rep“(Vg,) — Rep(Vy, ) is a linear equivalence. By a result of Finkelberg [4, 5]
we know that Rep(V}, ) is tensor equivalent to the “semisimplified” tensor category
f/{\eB(Gq) associated to the representations of the quantum group G, with G the
simply connected compact Lie group corresponding to g and and the rooth of unity
q is given by q¢ = e@®+n7) . Here hY is the dual Coxeter number, d = 1if gis ADE,
d=2if gis BCF and d =3 if g is Gs. -

It was shown by Wenzl and Xu [17, 18] that Rep(G,) is tensor equivalent to a
unitary fusion category. As a consequence we have the following result.

Theorem 3. ([3]). Rep“(Vy, ) has a structure of unitary fusion category which is
unique up to unitary equivalence.

Unitary tensor structures on Rep“(V;,) have been constructed directly in a
series of papers [7, 7, 9] by Bin Gui for the Lie types A, B, C, D, and G2 and
more recently by James Tener in [16] for the remaining cases Eg, E7, Fg and Fy
by completely different methods. By our uniqueness result these structures agree
with those we have found.

Our method works also for many other VOAs such as e.g. lattice VOAs and
certain holomorphic orbifolds.

As another application of the theory of weak quasi-Hopf algebra we give a
classification of pseudo-unitary type A ribbon fusion categories. The starting
point is the work of Kazhdan and Wenzl [12] on the classification of type A tensor
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categories. As a consequence of our results we have in particular the following
theorem.
Theorem 4. ([3])Let C be a modular fusion category with modular matrices S, T
coinciding with the Kac-Peterson matrices for the s{(n) affine Lie algebra at posi-
tive integer level k. Then C is ribbon equivalent to Rep(Vsi(n), )-

Now let Ay,
unitary VOA Vi), [1]. As a first consequence of Theorem 4 we have

be the conformal net on S* associated to the strongly local

Corollary 5. We have a unitary ribbon equivalence F : Rep" (Vii(n),) — Rep(AVsl(n)k ).
The same result has been independently obtained by Bin Gui [10] by different

methods (direct analytic proof instead of classification). As a second consequence

of Theorem 4 we obtain e new proof of Finkelberg’s equivalence in the type A case.

Corollary 5. Ifg=e¢ @ there is a unitary ribbon equivalence F : Rep(Vsi(ny, ) —
Rep(SU(n),).
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