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TRAP1: A CHAPERONE WITH MANIFOLD METABOLIC EFFECTS

Tumor necrosis factor receptor-associated protein 1 (TRAP1), also known as heat shock protein
75 (Hsp75), is the mitochondrial member of the Hsp90 family of molecular chaperones, which acts
as a key regulator of mitochondrial homeostasis and bioenergetics (Hoter et al., 2018). At variance
with the other members, TRAP1 (i) shows a marked asymmetric conformation; (ii) can use both
Ca2+ and Mg2+ as cofactors; and (iii) aids substrate folding without co-chaperone assistance, this
making it unique among Hsp90 family members (Lavery et al., 2014; Masgras et al., 2017b; Elnatan
and Agard, 2018).

To date, few TRAP1 clients have been discovered, most of which are proteins involved in
different mitochondrial functions, such as apoptosis and metabolism control (Hoter et al., 2018).
TRAP1 exerts a protective role in mitochondria and is able to prevent oxidative stress-induced
cell death through the inhibition of the permeability transition pore (PTP) opening (Matassa
et al., 2018). This effect can be both direct, through the inhibition of cyclophilin D (CypD),
and indirect, through the modulation of reactive oxygen species (ROS) concentration (Amoroso
et al., 2014; Matassa et al., 2018). Such ability is intimately linked to TRAP1 role in metabolism,
i.e., the control of electron flow along the respiratory complexes of the electron transport chain
(ETC) (Masgras et al., 2017b). In particular, TRAP1 is able to downregulate both Complex II
and Complex IV activities, which occurs in concert with phosphorylation events mediated by
mitochondria-localized kinases (Yoshida et al., 2013; Masgras et al., 2017a). This feature represents
a key intersection point in TRAP1-mediated control of metabolism since Complex II takes part
in the ETC but also acts as the succinate dehydrogenase (SDH) within the tricarboxylic acid
(TCA) cycle (Sciacovelli et al., 2013). SDH catalyzes the conversion of succinate into fumarate;
therefore, its inhibition causes an imbalance in the relative concentration of these metabolites, i.e.,
an increase of succinate (Sciacovelli et al., 2013; Rizza et al., 2016). It has been demonstrated that
this accumulation enables the release of the hypoxia-inducible factor 1α (HIF1α) inhibition. This
event stabilizes the active dimer HIF1α/β, leading to the activation of HIF1-mediated transcription
of genes coding for glycolytic enzymes, and for BCL2 and adenovirus E1B 19-kDa-interacting
protein 3 (Bnip3), which mediates mitochondrial selective removal by autophagy (mitophagy)
(Singh et al., 2017; Zhang et al., 2018). In such a way, TRAP1 is able to rewire metabolism by
downregulating mitochondrial oxidative phosphorylation (OXPHOS) and promoting glycolysis,
a feature resembling the so-called “Warburg effect” distinctive of cancer cells (Yoshida et al.,

2013). As a result, OXPHOS downregulation is associated with limited ROS production, increased
mitochondrial tolerance to oxidative stress, and protection from apoptosis (Masgras et al., 2017b;
Matassa et al., 2018).
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TRAP1 IS A TARGET OF
S-NITROSYLATION

S-nitrosylation is a redox posttranslational modification of
cysteine residues induced by nitric oxide (NO) (Rizza and
Filomeni, 2016). It is dynamically regulated by the amount
of NO produced by NO synthases (NOSs) and exchanged
between nitrosothiols (SNOs) and free sulfhydryls (SHs), as
well as by the ability of denitrosylases to reduce SNO groups.
S-nitrosoglutathione reductase (GSNOR) is the prototype of
this class of enzymes. It contributes to regulate the levels of
S-nitrosylated proteins (PSNOs) (Rizza and Filomeni, 2017);
therefore, conditions of GSNOR deficiency are associated
with a general increase of PSNOs. Recently, it has been
demonstrated that Gsnor-null cells are characterized by
mitochondrial dysfunction and metabolic changes (Rizza
et al., 2018). Moreover, it has been reported that GSNOR-
downregulating hepatocellular carcinoma (HCC) cells
show reduced levels of TRAP1 (Rizza et al., 2016). Mass
spectrometry analyses indicated that this phenomenon is
associated with selective nitrosylation of Cys501 in TRAP1,
and cell biology experiments provided the evidence that
this modification induces loss of stability of TRAP1 and its
accelerated degradation via the proteasome (Rizza et al.,
2016).

Besides this regulation, it has also been very recently
reported that S-nitrosylation of Cys501 produces a decrease of
TRAP1 ATPase activity likely through an allosteric mechanism
(Faienza et al., 2020). ATPase assays, together with molecular
dynamics simulations, indicate that S-nitrosylation negatively
impacts TRAP1 activity i) directly, through intra- and inter-
protomer long-range communication events that exert distal
effects on the active site, and ii) indirectly, through the
regulation of open-to-close state transition, which is crucial
for this class of chaperones to complete the ATPase cycle
(Faienza et al., 2020). Cells expressing a mutant form of
TRAP1, in which Cys501 is substituted by a serine (C501S),
are more resistant to mitochondrial toxins (Rizza et al.,
2016) and to staurosporine-induced apoptosis (Faienza
et al., 2020), suggesting that S-nitrosylation of Cys501
impacts TRAP1 biology. Integrating these pieces of evidence,
it is reasonable to propose that S-nitrosylation-induced
degradation of TRAP1 is a direct consequence of its loss
of activity.

Abbreviations: 5meC, 5-methylcytosine; Bnip3, BCL2 and adenovirus E1B 19-

kDa-interacting protein 3; CypD, cyclophilin D; ERK1/2, extracellular signal-

regulated kinase 1 and 2; GSNOR, S-nitrosoglutathione reductase; HCC,

hepatocellular carcinoma; HIF1α, hypoxia inducible factor 1α; Hsp, heat shock

protein; NO, nitric oxide; NOS, nitric oxide synthase; OXPHOS, oxidative

phosphorylation; PINK1, PTEN-induced kinase 1; PSNOs, S-nitrosylated proteins;

PTP, permeability transition pore; ROS, reactive oxygen species; SDH, succinate

dehydrogenase; TCA, tricarboxylic acid; TET, ten-eleven translocation; TRAP1,

tumor necrosis factor receptor-associated protein 1; UPRmt , mitochondrial

unfolded protein response.

EFFECTS OF TRAP1 S-NITROSYLATION IN
AGING

Various lines of evidence indicate that GSNOR downregulation,
or loss, correlates with cell senescence and mammalian aging
(Rizza et al., 2016, 2018). Based on what above reported, this
allows speculating that TRAP1 expression could be also involved,
or play a role, in aging physiopathology. Given the function
of TRAP1 as mitochondrial chaperone and its importance in
mitochondrial proteostasis, this hypothesis is credible. Aging is,
indeed, accompanied by a progressive decline of mitochondrial
functions and turnover, which, according to the mitochondrial
free radical theory of aging, is considered causative of a number
of age-associated pathologies, such as neurodegenerative diseases
(Akbari et al., 2019) and cancer (López-Otín et al., 2013).

Studies conducted in fruit flies have revealed that TRAP1
overexpression benefits insect health by increasing fertility and
locomotor ability (Baqri et al., 2014). The positive effects induced
by TRAP1 overexpression in Drosophila are directly related
to its ability to modulate heat and oxidative stress resistance
through the regulation of mitochondrial proteostasis and the
activation of the mitochondrial unfolded protein response
(UPRmt) (Baqri et al., 2014; Gumeni and Trougakos, 2016).
The loss of proteostasis is a signature of aging and is closely
related to chaperone functions (López-Otín et al., 2013; Sala
et al., 2017). Interestingly, this is exacerbated during aging by
PSNOs accumulation.

Parkinson’s Disease
Due to the role of TRAP1 in the maintenance of mitochondrial
homeostasis, it is conceivable that any dysregulation of its
expression/activity may be associated with the onset of diseases
related to mitochondrial dysfunctions. In agreement with this
assumption, negative modulation of TRAP1 protein levels has
been frequently reported in in vitro and in vivo models of
Parkinson’s disease (PD) (Pridgeon et al., 2007; Costa et al.,
2013; Zhang et al., 2013; Fitzgerald et al., 2017). In particular,
it has been demonstrated that ectopic expression of TRAP1 is
able to counteract dysfunctional phenotypes in PD models, such
as those induced by α-synuclein overexpression, preventing, or
attenuating, mitochondrial defects and apoptosis (Butler et al.,
2012; Fitzgerald et al., 2017; Hoter et al., 2018). Moreover,
in Drosophila and mammalian models of PD, it has been
reported that TRAP1 overexpression fully rescues mitochondrial
impairments associated with phosphatase and tensin homolog
(PTEN)-induced kinase 1 (PINK1) loss of function, but only
partially those induced by Parkin mutation (Costa et al., 2013;
Zhang et al., 2013), suggesting that TRAP1 acts downstream
of PINK1 and in parallel to Parkin. Interestingly, TRAP1
loss of function in Drosophila phenocopies the effects induced
by PINK1 deficiency, including mitochondrial and locomotor
activity defects (Costa et al., 2013).

TRAP1 ability to rescue PINK1 deficiency goes through
TRAP1 phosphorylation by PINK1 (Pridgeon et al., 2007),
which enhances its ability to inhibit oxidative stress and to
protect neuronal cells from death (Fitzgerald et al., 2017;
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Hoter et al., 2018). Along the same line, a homozygous loss-
of-function mutation of TRAP1, caused by a premature stop
codon, has been identified in a sporadic PD patient. Studies
performed in fibroblasts obtained from this patient revealed
different molecular phenotypes distinctive of mitochondrial
dysfunction, e.g.: i) high ROS levels; ii) impaired UPRmt; iii)
loss of mitochondrial transmembrane potential; iv) enhanced
susceptibility tomitophagy and apoptosis (Fitzgerald et al., 2017).
However, debates on the methods used in this study to perform
genome datasets analyses, together with the low frequency of this
mutation, call into question the general relevance of this finding
in PD research (Fitzgerald et al., 2018; Gaare et al., 2018).

Mitochondrial functions, as well as PINK1 and Parkin
activities, are affected by conditions of excessive S-nitrosylation,
which are a distinctive signature of PD brains. How much
this is a cause or consequence of PD, or contributes in a
positive feedback loop to the establishment of the pathological
state, is still a matter of debate. What is known is that S-
nitrosylation at Cys658 in PINK1 inhibits PINK1 kinase activity
and, in turn, compromises mitophagy and viability of PD
cellular models (Oh et al., 2017). Likewise, Parkin S-nitrosylation
has been proposed to affect Parkin E3-ligase activity, thereby
causing accumulation of misfolded proteins and damaged
mitochondria (Chung et al., 2004; Yao et al., 2004; Nakamura
and Lipton, 2013; Ozawa et al., 2013). Based on these lines of
evidence, it is conceivable that S-nitrosylation negatively affects
TRAP1—and, in turn, mitochondrial homeostasis, metabolism,
and apoptosis—at different levels, acting both directly (at
Cys501) and indirectly (through the inhibition of its upstream
regulator PINK1, or Parkin). Whatever the mechanism is, the
hypothesis that TRAP1 S-nitrosylation plays any role in neuronal
injury distinctive of PD and—at least in principle—in other
neurodegenerative diseases is realistic and claims for further
investigations, e.g., to identify TRAP1 clients downstream of
PINK1 and understand their regulation following PINK1 and
TRAP1 S-nitrosylation.

Cancer
By several reasons, cancer can be considered another age-
related disease. Aging is, indeed, a major risk factor in cancer
development. Former studies, aimed at investigating the role of
TRAP1 in cancer, highlighted that it is overexpressed in several
tumor tissues (if compared with peer non-tumor counterparts)
and suggested that this phenomenon was linked to TRAP1 ability
to rewire metabolism and favor the “Warburg effect” (Sciacovelli
et al., 2013; Masgras et al., 2017a,b; Matassa et al., 2018). These
assumptions have been redefined in the last few years as: i) some
tumors are not fully glycolytic but, depending on environmental
availability of nutrients, can interchangeably use OXPHOS to
sustain their accelerated growth, and ii) TRAP1 has been found
differentially expressed in different tumors—and in different
stages within the same tumor—in order to adjust metabolism to
tumor cell needs (Matassa et al., 2018).

A context-dependent effect in cancer is common also to
S-nitrosylation, with NO being considered a “Janus faced”
molecule in tumorigenesis, due to its ability to both promote
or inhibit cancer cell growth (Di Giacomo et al., 2012).

From this angle, TRAP1 nitrosylation at Cys501 can play the
role of tuner of TRAP1 oncogenic role. Structurally, Cys501
is placed close to Ser511 and Ser568, which are the two
residues indicated as preferential targets of phosphorylation
by the extracellular signal-regulated kinase 1 and 2 (ERK1/2)
(Masgras et al., 2017a). ERK1/2 binding and phosphorylation
stimulate the formation of TRAP1/SDH multimeric complex
and enhance the inhibitory activity of TRAP1 on SDH (Masgras
et al., 2017a), thereby positively contributing to the TRAP1-
induced metabolic reprogramming of cancer cells. Based on
this evidence, it is reasonable to hypothesize that S-nitrosylation
might interfere with ERK1/2-mediated phosphorylation, or,
vice versa, phosphorylation impedes Cys501 accessibility to the
solvent, and its propensity to be modified by NO.Whatever is the
direction of this interplay, it is plausible that Cys501 nitrosylation
and Ser511/568 phosphorylation are two mutually exclusive
posttranslational modifications of TRAP1. How much this cross
talk impacts TRAP1 allosteric regulation and its capability to act
as a metabolic hub rather than its antioxidant or anti-apoptotic
roles still wait to find answer. Nevertheless, given the effects of
S-nitrosylation on TRAP1 oncogenic properties, the use of NO
donors can be hypothesized as useful approaches in combined
treatments aimed at selectively killing chemoresistant tumors
where TRAP1 is overexpressed and contributes to apoptosis
resistance (Costantino et al., 2009).

Is TRAP1 an Epigenetic Modulator of Aging
and Aging-Related Diseases via
S-Nitrosylation?
As previously described, TRAP1-mediated inhibition of SDH
generates an accumulation of succinate that modulates HIF1
transcriptional activity. This phenomenon depends on the
inhibitory effects that succinate exerts on α-ketoglutarate-
dependent dioxygenases, a group of enzymes that hydroxylate
different substrates, i.e., HIF1α (Laukka et al., 2016). This family
of enzymes also includes several epigenetic regulators, such as
histone demethylases and 5-methylcytosine (5meC) hydroxylases
[also referred to as ten-eleven translocation (TET) proteins]
(Xiao et al., 2012). Epigenetic modifications, such as those
induced by alterations of TETs, have been included in the
hallmarks of aging (López-Otín et al., 2013). Concerning this
aspect, we have recently discovered a functional association
between TET1 and GSNOR expression (Rizza and Filomeni,
2018; Rizza et al., 2018), with both proteins decreasing
during aging. However, many aspects, mostly those aimed
at understanding i) if the relationship between TET1 and
GSNOR is biunivocal and regulated by a feedback loop; ii) how
TET1/GSNOR signaling axis is initiated; iii) how it is fueled
and kept sustained during life span, remain still unanswered.
In regard to this, TRAP1 could represent the missing link
underlying the close relationship between TET1 and GSNOR
in aging. Namely, by affecting SDH activity, TRAP1 decrease
by S-nitrosylation could result in a disbalance of succinate-to-
fumarate ratio, which, consequently, i) inhibits TET1 activity,
ii) leads to an increase in CpG island methylation in several
promoters, and iii) causes a decrease of protein expression (as,
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FIGURE 1 | Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a metabolic hub linking S-nitrosylation to aging. (Right) S-nitrosylation is a posttranslational

modification induced by nitric oxide (NO). It regulates the activity, localization, stability, and functions of a series of cysteine (SH)-containing proteins that, upon reaction

with NO, become nitrosylated (S-nitrosothiols, or SNOs). Protein S-nitrosylation extent does not only depend on the rate of NO synthesis by NO synthase (NOS), but it

is also controlled by the ability of a class of enzymes (denitrosylases) to catalyze the SNO-to-SH reduction. S-nitrosoglutathione reductase (GSNOR) is a well-known

and, probably, the best characterized example of denitrosylase so far identified. However, it does not directly react with protein-SNOs. Actually, GSNOR catalyzes the

reduction of S-nitrosoglutathione (GSNO) to glutathione (GSH). GSNO levels are in equilibrium with protein-SNOs through a spontaneous exchange reaction called

trans-nitrosylation; therefore, by controlling GSNO levels, GSNOR indirectly regulates the extent of protein S-nitrosylation. (Left) It has been recently reported that

TRAP1 undergoes S-nitrosylation, this impacting its stability. Inside the mitochondrion, TRAP1 antagonizes PTP opening and downregulates OXPHOS through

(Continued)
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FIGURE 1 | the inhibition of Complexes II and IV of the electron transport chain (ETC), both these events preventing cytochrome c (CytC) release and apoptosis.

However, when S-nitrosylated at Cys501, TRAP1 activity decreases, this probably inducing its degradation by the proteasome with a consequent increase in

apoptosis susceptibility and Complex II activity. It can be speculated that this condition might result in a disbalance of succinate-to-fumarate ratio (i.e., an

accumulation of fumarate levels), which can impact ten-eleven translocation (TET)1-dependent epigenetic activity and, in turn, produce a hyper-methylation of CpG

islands in the promoter of several genes. Recently, it has been reported that ADH5 (the gene coding for GSNOR) is among those genes which are epigenetically

controlled by TET1, and its silencing contributes to cell senescence and mammalian aging. In this scenario, a new role of TRAP1 as an epigenetic factor of aging can

be hypothesized, with S-nitrosylation acting as a modulatory event of this loop of regulation.

indeed, observed for GSNOR). Therefore, consistent with the
establishment of a positive feedback loop, S-nitrosylation could
target TRAP1 and keep TET1 inactive to initiate and sustain
epigenetic silencing of GSNOR expression (Figure 1).

CONCLUDING REMARKS

Oxidative damage to cells and tissues has always been considered
amajor cause of aging. Being themain ROS production site inside
the cells, mitochondria are usually indicated as the principal
source of oxidative stress, with their dysfunction being causative
of (or at least contributing to) aging and age-related diseases
(Akbari et al., 2019).

Recently, it has been proposed that S-nitrosylation plays
a role in the onset of aging. Several mitochondrial proteins
found to be associated to neurodegeneration (e.g., Drp1,
PINK1, Parkin) are, indeed, target of S-nitrosylation, and recent
findings about the deleterious effects of GSNOR deficiency
on mitochondrial functions and mammalian longevity further
support these observations (Rizza et al., 2018). In this scenario,
TRAP1 modulation by excessive S-nitrosylation could represent
a new regulatory mechanism involved in aging and age-
related pathophysiology, other than a means to reprogram
cell metabolism.

In this Opinion, we have attempted to provide food
for thought and elaborate on the potential impact of

TRAP1 S-nitrosylation in mitochondrial physiology, with
relevance to aging and age-related diseases (e.g., cancer and

neurodegeneration), which are, de facto, pathological states
associated with mitochondrial dysfunctions.
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