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Introduction

The clinical laboratory as a source of the bottleneck of the 
health care system throughput has been a long-time issue.1,2 
In this regard, clinicians have always been hindered by the 
poor predictability of the laboratory process, an aspect they 
mostly rely on in critical care. However, the advent of total 
laboratory automation (TLA) has progressively changed 
this situation, and published research has proven the mod-
ern automated laboratory not only to no longer be a bottle-
neck in throughput but also to promote the overall efficiency 
and quality of health care.3–5

The advantage of automation over the human operator with 
respect to repetitive tasks typical of laboratory processing is 
utterly simple to understand: automation is faster, more precise, 
tireless, and can carry out several different actions in parallel. 
However, automation is a kind of “one-track-mind” operator, 
whose output is rigid and cannot adapt to particular ongoing 
changes or momentary needs. Although this makes the auto-
mated output stable enough to support high-throughput 
processing, it strongly limits flexibility, thereby making the 
intervention of the human operator still necessary.

One of the most peculiar tasks of laboratory testing is 
sample dilution, which is necessary whenever the amount 

of analyte in the sample exceeds the linear range of the 
assay. It is noteworthy that samples are always assayed 
undiluted first, so that the gain of information about dilution 
always happens at the expense of a testing cycle. Considering 
that dilutions are always set at precise intervals (e.g., 2-fold, 
5-fold, 10-fold, etc.), a result for a highly concentrated ana-
lyte is produced through an iterative procedure, which 
wastes as many tests as the dilutions necessary to achieve 
the final results.
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However, in some situations, the human operator can 
arbitrarily decide to dilute the sample without first testing it. 
For instance, this can happen when starting from a predi-
luted sample is necessary to deliver a critical result in time, 
and the information available leads to the supposition that 
the sample most probably will exceed the analytical range. 
Nonetheless, such a method of approaching sample man-
agement relies on the possibility of gathering and properly 
integrating some useful information such as the medical 
condition of the patient, the last result available, and the 
time elapsed from the previous assay with respect to the 
analyte’s half-life.

That is, an automated system cannot do this by itself and 
necessarily relies on the heuristics of the human operator to 
overcome such a limitation because of its mechanical 
nature. However, the operator’s heuristics can sometimes 
be false and may rely on the support of automatic logic.6,7 
The aim of this work is to show how it is possible to improve 
the management of the sample dilution such that TLA is 
capable of inferring whether to predilute a sample before 
assaying it. To show the relevance of our findings with 
respect to laboratory timeliness, we used an artificial neural 
network (ANN) based on the Multilayer Perceptron (MLP) 
to model the data regarding the cardiac troponin I (CTNI) 
test ordered by hospital departments.

Materials and Methods

Laboratory Setup and CTNI Assay

The automated laboratory setup consisted of a 24 m long 
linear single-track FlexLab conveyor belt (Inpeco, Lugano, 
Switzerland), with an online bulked input module for auto-
mated check-in, an input/output module for sample sorting, 
two centrifuges, a tube decapper, an automated specimen 
aliquoter, and a tube sealer. The clinical chemistry lineout 
was represented by three Siemens Vista 1500 (Siemens 
Healthcare, Milan, Italy), one of which was dedicated to 
urgent (STAT) testing. The middleware Nemo (Inpeco) was 
used for process control and results validation.

The CTNI test was performed with the Siemens immu-
nochemical CTNI test (Siemens Healthcare) according to 
the manufacturer’s instructions. In particular, the assay 
range was up to 40 ng/mL, and the run time was 10 min. 
With respect to the sample processing, samples were 
assayed undiluted at first and then were automatically 
diluted fivefold by the chemistry analyzer using the sample 
aliquot stored internally. If this dilution also failed to give a 
result in the range, the sample tube was retrieved from the 
storage by the operator, which proceeded with a 10-fold 
manual dilution using the appropriate diluent provided with 
the kit. If this second dilution also failed to provide a result 
in the range, a result of >400 ng/mL was reported for the 
assay.

Data

The core laboratory information system (LIS; ModuLab 
version 2.2.07, Systelab Technologies S.A., Barcelona, 
Spain) of the Tor Vergata University Hospital of Rome was 
queried for STAT CTNI tests ordered between May 1, 2014, 
and May 1, 2015, by both emergency department (ED) and 
other hospital departments (non–emergency department 
[NED]). Raw data were formatted and filtered using an 
Excel spreadsheet (Microsoft, Redmond, WA) to obtain the 
quantitative and qualitative variables.

Quantitative variables were the time from the previous 
sample and the value of the previous sample, whereas the 
binary qualitative variables were the actual dilution status (1 = 
diluted, 0 = no), the ordering department (1 = cardiological 
intensive care unit [CICU], 0 = other), and the presence of a 
cardiac event/surgery in the patient (1 = yes, 0 = no). In par-
ticular, the actual dilution status refers to a generic dilution and 
does not distinguish between the “first” in-line 5-fold or the 
second off-line 10-fold dilution performed in our laboratory.

Statistical Analysis

A first qualitative and descriptive analysis was performed to 
gather information on the frequency of diluted samples, with 
respect to the ordering department and the dilution level. A 
further descriptive analysis was performed to compute the 
median and 90th turnaround time (TAT) and the outlier per-
centage (TAT-OP) at 60 min with respect to the level of dilu-
tion and the ordering department. All of the calculations were 
performed with an Excel 2010 spreadsheet (Microsoft).

The main analysis was conducted by using an ANN to 
infer the generic dilution status of the incoming sample on 
the basis of some information available through the LIS.8 To 
simulate this process, we used the MLP-ANN implemented 
in SPSS 20.0 (IBM Corp., Armonk, NY) running on a desk-
top personal computer, providing the necessary information 
to build the inferring model (inputs) through the qualitative 
and quantitative variables described previously.9 In particu-
lar, using the actual dilution status variable as the target of 
inference (or output), the synaptic nodes and connections 
within the MLP-ANN were built through an in-line proce-
dure with the gradient descent method, which iteratively 
updates the weights of the synaptic connections after every 
single training session.10 In this regard, the data set was ran-
domly partitioned into 70% for training and the remaining 
30% for testing the MLP-ANN network in order to achieve 
the minimum inference error with respect to the output. 
Concerning the model architecture, the choice of the best one 
was achieved through automatic selection, constraining at 
five the maximum number of allowed units in the hidden 
layer, which is the neurons layer that integrates the different 
inputs to produce the output. The goodness of classificatory/
discriminatory power was provided by receiver-operating 
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characteristic (ROC) curve analysis. The relative importance 
(or strength of association) of a specific explanatory variable 
with respect to a specific response variable was determined 
according to the algorithm formerly proposed by Garson.11 
The result of this analysis is an absolute value that ranges 
from 0 (no importance) to 1 (maximum importance), along 
with a normalized score, which gives the relative importance 
of the inputs considered in the model.

Results

Frequency and the Dilution Level

A total of 30,923 CTNI test orders were retrieved. Of these, 
46.0% were from the ED and 54.0% from NED. The STAT 

samples were 99.9% of the ED and 80.5% of NED. The 
amount of samples that required dilution for completion 
was 2.9%, of which 92% were from NED and 8% from the 
ED. Of the samples with dilution, 11.8% were a first sample 
and 88.2% were a second or successive sample; of all the 
samples submitted, 85.9% required one dilution, whereas 
14.1% required a second dilution. The samples requiring 
one dilution were 77.8% of the ED and 86.5% of NED. 
With respect to the ordering department, the Cardiology and 
Interventional Cardiology generated 25.6% of all NED 
orders, followed by the 19% from the CICU belonging to 
the same department. However, 20.7% of the CICU sam-
ples required at least one dilution, which corresponded to 
the 79.8% of all the NED samples requiring dilution. The 
results are detailed in Table 1.

TAT of Diluted Samples

For the ED samples, the median TAT of the undiluted sam-
ples was 39.0 min, which increased to 53.0 min after a first 
dilution, reaching up to 89 min for the second dilution. It is 
noteworthy that the TAT-OP passed from 12.4% of undi-
luted samples to 75% of samples diluted twice.

For NED samples, the median TAT of the undiluted sam-
ples was 48 min, which increased to 60 min after a first 
dilution, reaching up to 113 min for the second dilution. For 
undiluted samples, the TAT-OP was 29.5%, whereas it 
topped 96.0% for the samples diluted twice. The results are 
detailed in Table 2.

Inference of Sample Dilution Status

The valid entries for ANN building were 16,105. The best 
MLP-ANN consisted of a three-layer network, with a single 
hidden layer of two elements (Fig. 1). The hidden layer activa-
tion function, which delivers the input activating the elements 
in this layer, was the hyperbolic tangent, whereas the output 
layer activation function, which activates the layer giving the 
final inference, was the normalized exponential (Softmax) 
function. With respect to classification, the training set cor-
rectly classified 100% of samples not requiring dilution and 
86.4% requiring dilution. In the testing data set, these results 

Table 1.  Order Statistics.a

CTNI orders 30,923
  From ED 46.0%
  From NED 54.0%
STAT samples 27,661
  Of ED 99.9%
  Of NED 80.5%
Samples with dilution 895 (2.9%)
  From ED 8.0%
  From NED 92.0%
  First sample 11.8%
  Second/successive samples 88.2%
  With one dilution 85.9%
  With second dilution 14.1%
Samples with one dilution 769
  Of ED 77.8%
  Of NED 86.5%
Ordering department (Top five)
  Cardiology and intervention 25.6%
  CICU 19.0%
  Intensive care 17.9%
  Cardiac surgery 11.9%
  Short-time observation 7.0%

aOrder statistics for cardiac troponin I test. ED = emergency 
department; NED = non–emergency departments; CICU = cardiological 
intensive care unit.

Table 2.  TAT of CTNI Test (May 2014–May 2015).a

No Dilution With First Dilution With Second Dilution

  ED NED ED NED ED NED

MEDIAN (min) 39.0 48.0 53.0 60.0 89.0 113.0
90th percentile (min) 64.0 93.0 79.0 102.0 111.8 173.6
TAT-OP (%) 12.4 29.5 31.7 48.9 75.0 96.0

aTAT of cardiac troponin I test (CTNI) with respect to dilution and ordering department. TAT-OP = Outlier Percentage of TAT, in this case with 
respect to reporting within 60 min; ED = emergency department; NED = non–emergency department.
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were 100% and 86.2%, respectively. Therefore, the discrimi-
natory power of this classificatory/inferring model corre-
sponded to an area under the ROC curve of 0.992 (99.2%). It 
must be remarked that the inclusion of the variable accounting 
for the previous sample value restricted the inference only to 
second or successive samples.

With respect to the importance of the MLP-ANN inputs, 
the cardiac event/surgery was the most relevant with an 
absolute value of 0.422, followed by the value of the previ-
ous sample with 0.330, the time from the previous sample 
with 0.220, and finally the ordering department with 0.028 
(Fig. 2).

Discussion

Managing the sample dilution with adequate efficiency can 
be crucial considering the constraints due to the STAT time-
liness. Anticipating the need for dilution is thus mandatory 
to make the laboratory able to effectively fulfill the require-
ments of critical care. In this article, we have shown that the 
implementation of an ANN can be used to enable the TLA 
to decide whether or not to predilute the sample.

The architecture we have presented herein can be con-
sidered very simple and basic with respect to the complex-
ity that MLP-ANN can reach, in that it accounts for a binary 
outcome, just four inputs and a single hidden layer with 
only two integrating neurons. Notwithstanding that, this 
model was shown to reach a discriminatory power of 99.2%, 

which resulted in 100% of correctly recognized samples for 
no predilution and 86.2% of samples for predilution. In this 
regard, it must be said that our model was intentionally con-
strained to a very simple architecture for the ease of repre-
sentation, and this happened at the expense of two major 
limitations, in that the inference referred to a “generic” dilu-
tion status and excluded any first samples submitted. 
However, if we consider what the frequency was of differ-
ent dilutions in our 1-y CTNI data set (Table 1) and their 
TAT (Table 2), just applying this basic ANN and starting 
with the fivefold dilution, we would have significantly 
reduced the TAT of up to 80% of all the CTNI orders requir-
ing a dilution. Notably, if we consider the TAT-OP, such an 
intervention would have doubled the amount of results 
delivered within the 60 min limit. Thus, although our data 
set comprised a very small number of samples with dilu-
tion, and also taking into consideration that the ANN we 
built was constrained to a very simple structure, we can 
regard these results as satisfactory with respect to our aim. 
Therefore, there are some issues that deserve a broader dis-
cussion regarding methodology and the possible impact on 
the automated clinical laboratory.

First, the use of classificatory algorithms to infer or screen 
the nature of a sample by automated equipment is not a com-
pletely new concept.12 There are several different approaches 
that can be undertaken to classify and infer the class attribu-
tion, among which the most known are the logistic regres-
sion and the decision trees. Logistic regression has gained 

Figure 1.  Neural interpretation 
diagram. The architecture of the 
Multilayer Perceptron–artificial 
neural network is graphically 
shown. The first layer (left side) 
comprises inputs, the middle 
layer is the so-called hidden layer, 
and the last layer (right side) is 
the output layer, which gives the 
classification outcome. Solid lines 
are the neural connections, whose 
thickness represents the weight, 
whereas the color provides the sign 
of the effect (gray for positive and 
black for negative). Therefore, the 
more a neural connection is thick, 
the more it is positively associated 
with the node in the layer if gray or 
negatively associated if black.
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popularity as it allows one to extend the usual regression 
framework to the classification issue. Therefore, it is easier to 
understand because of its output relying on coefficients with 
a straightforward interpretation in terms of odds. On the other 
hand, decision trees have the great advantage of an immedi-
ate visualization of the decisional path, which makes them 
very familiar to the researcher regardless to any specific 
background. Moreover, decisional trees can be trained, which 
means that the more they experience data, the more they can 
improve performance. Although less immediate and easy to 
visualize, ANNs conjugate the possibility of extending the 
framework of regression to classification issues, with the 
benefit of a greater efficiency in dealing with complex rela-
tionships and the possibility of being trained.13,14 Growing an 
ANN algorithm means enriching the number of connections 
and neurons within its architecture. Although it can be invit-
ing and helpful to undertake an analysis of complex models, 
it must be carefully managed for the risk of an overgrowth of 
the model itself. Indeed, a preliminary simulation we per-
formed showed, for the purpose of discriminating between 
the 5-fold and 10-fold predilution, that the ANN required a 
hidden layer with up to four neurons (Suppl. Fig. S1). An 
attempt we successively made to improve the classificatory 
performance through the introduction of a further input that 
delivered the STAT status caused the hidden layer to grow up 
to six neurons (Suppl. Fig. S2). On this basis, we can specu-
late that inferring the predilution for an unprecedented sam-
ple or patient would require the introduction of a quite larger 
number of input variables, making nodes and connections 
grow exponentially. Moreover, most of these inputs would be 

necessarily provided by the medical staff that is in charge of 
the patient, thus conditioning the inference reliability to an 
information that is not under the control of the laboratory and 
directly available through the LIS. We may suppose that 
interfacing the LIS with the hospital information system 
could greatly improve the ANN accessioning this informa-
tion, but although this is not impossible, it would be consider-
ably more complicated for achieving a real-time inference.

Our work also shows that communication between wards 
and laboratories can provide a determinant contribution to 
improving the overall efficiency of health care. Most often, 
the laboratory is addressed as the cause of missed timeliness 
in patient management, with the clinician expecting TAT 
considerably shorter than what is realistically achievable.1 
It is noteworthy that the cardiac event/surgery variable was 
shown to be the most relevant input for the model, on which 
the largest part of the reliability of inference relied (Fig. 2). 
It is remarkable that such an input was among those we pre-
viously recognized as laying outside laboratory control 
rather than depending on the faculty of the medical staff to 
make it available by filling an appropriate field within the 
order entry. In this regard, an MLP-ANN built with the 
same basic architecture and the binary output, but without 
the information of the cardiac event or surgery, produced a 
correct inference for only 64.3% of the samples necessitat-
ing a predilution (Suppl. Fig. S3). To achieve a satisfying 
model building, we had to recover this information mostly 
retrospectively, which limited the extension of the data set 
to a single year. Our work suggests that adding such simple 
information to the order entry (e.g., through flagging an 

Figure 2.  Input relevance 
diagram. The bar chart shows 
the absolute (bottom line) and 
normalized (relative) importance 
of neuronal inputs (models 
predictors). The absolute 
importance represents the effect 
produced by the predictor on the 
result outcome and, in turn, the 
weight the information it delivers 
has in the decisional outcome.
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appropriate checkbox to activate the order) would provide 
clinicians with the means to contribute to the laboratory ser-
vice’s efficiency.

Finally, we address the actual impact of this approach with 
respect to timeliness in test reporting. Our statistics (Table 1) 
have shown that the amount of CTNI samples requiring dilu-
tion for completion is considerably small at less than 3% in a 
year. However, this raw number does not show the criticality 
that lies behind each of these samples. Indeed, it can be seen 
that almost all of the samples with dilution belong to a small 
number of patients who are experiencing a major event such 
as cardiac surgery or infarction. In the case of CICU patients, 
almost all the samples from the same patient required at least 
one dilution, which caused a relevant systematic delay in the 
test reporting. If we take into consideration the statistics on 
TAT (Table 2), we can see that for certain patients, it was 
almost impossible to perform reliable monitoring, regardless 
of the efforts made to accurately assay the CTNI.2 Therefore, 
although few, the samples requiring dilution are burdened by 
patient safety, and thus the efforts spent in their regard would 
greatly contribute to improving laboratory proficiency with 
respect to critical care.

Conclusions

TLA is effective in improving the handling of critical sam-
ples if supported by an ANN that recognizes concentrated 
samples prior to their assay. Such a system can be imple-
mented in the automation middleware and can help to sen-
sibly reduce the TAT of critical orders delayed by the 
operation required to retrieve, dilute, and retest the sample.
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