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Abstract: We are concerned with the blow-up analysis of mean
field equations. It has been proven in [6] that solutions blowing-
up at the same non-degenerate blow-up set are unique. On the
other hand, the authors in [18] show that solutions with a degen-
erate blow-up set are in general non-unique. In this paper we first
prove that evenly symmetric solutions on an arbitrary flat torus
with a degenerate two-point blow-up set are unique. In the sec-
ond part of the paper we complete the analysis by proving the
existence of such blow-up solutions using a Lyapunov-Schmidt re-
duction method. Moreover, we deduce that all evenly symmetric
blow-up solutions come from one-point blow-up solutions of the
mean field equation on a “half” torus.
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1. Introduction

In this paper, we consider the mean field equation on a flat torus T := C/Zω1+
Zω2, i.e.,

∆u+ ρ

(
eu∫
T
eu
− 1

|T |

)
= 0, (1.1)∫

T

eu = 1, (1.2)

where ρ is a real parameter, Im ω2

ω1
> 0 and |T | denotes the total area of the torus.

For convenience, in this paper we always assume that |T | = 1.
In the past decade there has been an extensive study of the mean field equation

on a general compact Riemann surface M without boundary:

∆Mu+ ρ

(
heu∫
M
heu
− 1

|M |

)
= 0, (1.3)

where ∆M denotes the corresponding Laplace-Beltrami operator on (M, g), h ∈
C∞(M) is a non-negative potential function and |M | is the total area of the surface
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M . To simplify our notation, we shall always assume |M | = 1. Equation (1.3) and
its counterpart on bounded planar domains arise in several areas of mathematics
and physics and there are by now many results concerning existence ([2, 15, 9, 10, 11,
24, 29, 30, 41, 42]), uniqueness of solutions ([4, 12, 13, 14, 26, 47, 48, 49, 60, 67]) and
blow-up analysis ([3, 5, 16, 17, 19, 28, 31, 57, 58]). On one hand, they are derived
as a mean field limit in the statistical mechanics description of two dimensional tur-
bulent Euler flows ([20, 21]) and selfgravitating systems ([54, 56, 74]). On the other
hand, (1.3) is related to conformal metrics on surfaces with or without conical singu-
larities ([55, 71]) and to gauge field theories ([75]) possibly coupled with Einstein’s
general relativity ([33, 63, 70]). Recently they have attracted a lot of attention from
the analytical point of view due to the close connection to the Chern-Simons-Higgs
theory. The relativistic Abelian Chern-Simons gauge field theory was proposed by
Jackiw and Weinberg [53] and Hong et al. [52] independently to investigate the
physics of high temperature super-conductivity. The energy minimizers of these
models satisfy self-dual equations while the Bogomol’nyi-type system of first-order
differential equations could be reduced to a single second-order elliptic equation:

∆u+
1

ε2
eu(1− eu) = 4π

N∑
i=1

δqi in R2, (1.4)

where δqi denotes the dirac measure at qi. Equation (1.4) can be considered on flat
tori or on the entire R2. Tarantello in [68] showed that one type of solutions to
(1.4) converge to the solution of a mean field equation of type (1.3) after subtracting
2 log ε and a combination of the Green’s function at the singular source qj when the
Chern-Simons coupling constant ε tends to 0. Latterly, Lin and Yan in [61] proved
the local uniqueness of the blow-up solutions to (1.4). More recently that argument
has been used by Bartolucci, Lee together with our third and fourth authors in [6]
to establish the local uniqueness of the blow-up solutions to (1.3).
To state our main result we need some definitions first. Let h(x) be a non-negative
smooth function which vanishes only at a finite number of points and let ~p =
(p1, · · · , pm) ∈Mm be such that

{p1, · · · , pm} ∩ {x ∈M | h(x) = 0} = ∅.

We set

G∗i (x) = 8πR(x, pi) + 8π
∑
j 6=i

G(x, pj), i = 1, · · · ,m, (1.5)

where G(x, y) is the Green’s function:

−∆MG(x, y) = δy − 1 in M,

∫
M

G(x, y)dH2(y) = 0,

and R(x, y) denotes its regular part. We define

l(~p) =

m∑
i=1

[∆M log h(pi) + 8πm−K(pi)]h(pi)e
G∗i (pi), (1.6)

where K(x) stands for the Gaussian curvature at x ∈ M . Next, we will denote by
VM (q, r) the pre image of the Euclidean ball of radius r, B(q, r) ⊂ R2, in a suitably
defined isothermal coordinates system. For the case m ≥ 2 we fix a sufficiently small
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constant r0 ∈ (0, 1
2 ) and a family of open sets Mj satisfying Ml ∩Mi = ∅ if l 6= i,⋃m

i=1M j = M , VM (pi, 2r0) ⊂Mi, i = 1, · · · ,m. Then let us set

D(~p) = lim
r→0

m∑
i=1

h(pi)e
G∗i (pi)

(∫
Mi\VM (pi,ri)

eΦi(x,~p)dH2(x)− π

r2
i

)
, (1.7)

where M1 = M if m = 1, ri = r
√

8h(pi)eG
∗
i (pi) and

Φi(x, ~p) =

m∑
l=1

8πG(x, pl)−G∗i (pi) + log

(
h(x)

h(pi)

)
. (1.8)

For (x1, · · · , xm) ∈M × · · · ×M we define

fm(x1, · · · , xm) =

m∑
i=1

[log (h(xi)) + 4πR(xi, xi)] + 4π
∑
i 6=j

G(xi, xj). (1.9)

If a sequence of solutions of (1.3) is not uniformly bounded from above, then it is
well known that (see [57]), passing to a subsequence if necessary, it holds,

ρn
eun∫

M

eun
⇀ 8π

m∑
i=1

δpi , ρn → 8πm, as n→ +∞,

weakly in the sense of measures in M , for some m ∈ N. The points {p1, · · · , pm}
are said to be the blow-up points ([19]). From [28, 62] we know that the blow-up
points are critical points of fm(x1, · · · , xm). Then, Bartolucci et al. [6] proved the
following theorem.

Theorem A. ([6]) Let u
(1)
n and u

(2)
n be two sequences of solutions to (1.3) with

ρ
(1)
n = ρ

(2)
n = ρn and blowing-up at the points pj, for j = 1, · · · ,m, where ~p =

(p1, · · · , pm) is a non-degenerate critical point of fm, i.e.

det(D2
Mfm(~p)) 6= 0. (1.10)

Assume that either,

(1) l(~p) 6= 0, or,
(2) l(~p) = 0 and D(~p) 6= 0.

Then there exists an integer constant N0 sufficiently large such that u
(1)
n = u

(2)
n for

all n ≥ N0.

A natural question is whether the assumptions of the latter theorem are nec-
essary or not. It turns out that if we drop the non-degeneracy condition (1.10) the
uniqueness property does not hold anymore in general, as the authors in [18] ex-
hibit multiple one-peak solutions blowing-up at a degenerate critical point of f1 on
a bounded domain. On the contrary, we will prove that evenly symmetric solutions
on a flat torus with h ≡ 1 and with a degenerate two-point blow-up set are unique.

Theorem 1.1. Let u
(1)
n and u

(2)
n be two sequences of solutions to (1.1)-(1.2) with

ρ
(1)
n = ρ

(2)
n = ρn blowing-up at p1 = ~0 and at p2 = ω1

2 or ω2

2 or ω1+ω2

2 . Assume that

u
(i)
n is evenly symmetric, i.e. u

(i)
n (z) = u

(i)
n (−z) for all n and i = 1, 2. Then, there

exists an N0 sufficiently large such that u
(1)
n = u

(2)
n for all n ≥ N0.
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We point out that in the latter setting we have l(~p) = 32πeG
∗
1(p1) 6= 0, see

also the explicit expression of the Green function and its regular part in (2.5) and
(2.6), respectively. On the other hand, the blow-up set (p1, p2) is a degenerate
critical point of f2 defined in (1.9) due to the translation invariance. We exploit
the ideas developed in [6] and [61] and take advantage of the evenly symmetric
property to bypass the non-degeneracy assumption and also significantly simplify
the highly non-trivial and technical original proofs. More precisely, assuming by

contradiction the existence of two distinct blow-up solutions u
(i)
n of (1.4) we consider

their normalized difference

ξn =
u

(1)
n − u(2)

n

‖u(1)
n − u(2)

n ‖L∞(M)

.

The starting point in analyzing ξn relies on the description of the blow-up solutions
carried out by Chen and Lin in [28]. Moreover, we exploit the evenly symmetric
property to deduce an estimate on the distance between the local maximum point
and the blow-up point. The latter estimate will be crucially used in all the forthcom-
ing arguments. Next, one can show that after a suitable scaling, ξn converges to an
entire solution ξ(x) of the linearized problem associated to the Liouville equation:

∆v + ev = 0 in R2. (1.11)

Solutions of (1.11) with finite mass are completely classified by Chen and Li [34]
and take the following form:

v(z) = vµ,a(z) = log

(
8eµ

(1 + eµ|z − a|2)2

)
, µ ∈ R, a = (a1, a2) ∈ R2. (1.12)

Baraket and Pacard in [1] showed that the kernel of the linearized operator at v0,0

L(φ) = ∆φ+
8

(1 + |z|2)2
φ (1.13)

is spanned by three functions:

ϕ0(z) =
1− |z|2

|z|2 + 1
=
∂vµ,a
∂µ

∣∣∣∣
(µ,a)=(0,0)

,

ϕ1(z) =
z1

|z|2 + 1
= −1

4

∂vµ,a
∂a1

∣∣∣∣
(µ,a)=(0,0)

, ϕ2(z) =
z2

|z|2 + 1
= −1

4

∂vµ,a
∂a2

∣∣∣∣
(µ,a)=(0,0)

.

Thus, we have

ξ(z) =

2∑
i=0

biϕi(z) (1.14)

for some constants bi ∈ R. The idea is then to use suitable Pohozaev identities to
prove that bi = 0 for each i. In particular, the evenly symmetric property is crucially
used to guarantee that the elements of the kernel corresponding to the translation
invariance vanishes. Finally, after showing that ξ 6≡ 0 one gets a contradiction and

thus necessarily u
(1)
n ≡ u(2)

n .

Let us conclude this part by giving some comments on the recent study of
the local uniqueness property. It turns out that one can also derive such property
for the spike solution of Schrödinger equation. In [72], Wei showed that the single
interior spike solution of a singularly perturbed semilinear Neumann problem is
locally unique at a non-degenerate peak point. Stimulated by the works of Wei [72]
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and Cao, Noussair and Yan [23], various authors have contributed many papers to
this subject, see, e.g., [22, 40, 45, 50, 51, 73].

In the second part of the paper we complete the analysis by proving the ex-
istence of such evenly symmetric blow-up solutions using a Lyapunov-Schmidt re-
duction method.

Theorem 1.2. Let ε ∈ (0, ε0) for some ε0 > 0 small enough and let ρ = 16π + ε.

Let p1 = ~0 and p2 = ω1

2 or ω2

2 or ω1+ω2

2 . Then, for each ε there exist a λ > 0 and
a solution uλ to equation (1.1) such that

ε = (32π + o(1))λe−λ,

uλ(pi)→ +∞ for i = 1, 2, uλ(x)→ −∞ for all x ∈ T \ {p1, p2}
as ε→ 0, and

uλ(z) = uλ(−z).
Moreover, we have

ρ∫
T
euλ

euλ → 8π(δp1 + δp2) in a sense of measure, as ε→ 0.

Motivated by the computation of the topological degree, Chen and Lin in
[29] constructed blowing-up solutions under the assumption on fm in (1.9) being
a Morse function (see also [44] for a generalization of the latter result under a
weaker assumption on the critical points of fm being “stable”). However, as already
pointed out the function fm is not a Morse function in our setting. We adopt the
strategy introduced by Cheng, the second and third author of the present paper
in [37] where rectangular tori are considered to prove Theorem 1.2. In particular,
we will extend the latter argument to general flat tori. We start by constructing
an approximate blowing-up solution to (1.1). Then, we study the solvability of the
linearized operator in a suitable functional setting. Finally, we reduce the problem
to the one-dimensional problem of finding the appropriate scale of the bubbles.

Based on the local uniqueness of blow-up solutions, we can further show that
the evenly symmetric two-point blow-up solutions are one-point blow-up solutions
of the mean field equation on a “half” torus. Indeed, it is not difficult to see that
vλ(x) = uλ(x+p2) is also an evenly symmetric solution of (1.1) which also blows-up
at p1, p2 (p1 = 0 and p2 is one of the half periods). By Theorem 1.1, we get

uλ(z) = uλ(z + p2).

In particular, taking p2 = ω1

2 , the solution we build becomes the solution to (1.1) on

a flat torus T 1
2

:= R2/Zω1

2 +Zω2 which blows-up at the origin. Similar phenomena

can be observed for other choices of p2. In conclusion we have the following result:

Corollary 1.3. All evenly symmetric two-point blow-up solutions of (1.1) form
one-point blow-up solutions of the mean field equation on a “half” torus.

As a byproduct of Corollary 1.3, we actually establish that blow-up can always
occur on an arbitrary flat torus as ρ converges to any multiple of 8π despite the
degeneracy nature of the problem. One can build solutions by gluing many copies of
one-point blow-up solutions constructed in this paper together. We would also like
to mention Struwe and Tarantello’s result [66] on the existence of two-dimensional
non-trivial solutions if ρ ∈ (8π, λ1(T )) where λ1(T ) is the first eigenvalue of −∆
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on T and Ricciardi and Tarantello’s result [64] on the existence of one-dimensional
solutions if ρ > λ1(T ). We comment further that our result implies the existence of
two-dimensional non-trivial solutions at least for ρ close to and beyond 8πm even
if λ1(T ) ≤ 8π where m is any positive integer.

The paper is organized as follows. In Section 2 we revisit some a priori es-
timates of blow-up solutions proved in [28] by Chen and Lin and we present an
estimate on the distance between the local maximum point and the blow-up point.
In Section 3 we provide the proof of the uniqueness property stated in Theorem 1.1.
Finally, in Section 4 we construct blowing-up solutions and prove Theorem 1.2.

2. Preliminaries

In this section we recall some a priori estimates obtained by Chen and Lin
in [28] for blow-up solutions of (1.1). Suppose that un is a sequence of blow-up
solutions of (1.1)-(1.2) which blow up at p1 and p2, i.e.

∆un + ρn (eun − 1) = 0 in T,

∫
T

eun = 1, (2.1)

where ρn → 16π as n→∞. Let

λn = max
T

un, (2.2)

and

λn,i = max
B(pi,δ)

un = un(xn,i) for i = 1, 2, (2.3)

where δ > 0 is a small fixed constant and B(pi, δ) denotes a geodesic ball of radius
δ on T centered at pi. We recall that M1 and M2 are two open sets dividing T into
two disjoint parts and pi ∈Mi for i = 1, 2. Furthermore, r0 is chosen as right after
(1.6) to guarantee that B(pi, 2r0) ⊂Mi for i = 1, 2.

Remark 2.1. To simplify our notation, since T is a flat torus we shall treat x ∈ T
as a point in R2. Then, the notation B(p, δ) stands for the set of points x ∈ T with
d(x, p) < δ, where the metric is the one inherited from the Euclidean metric of R2,
i.e.

d(x, y) := min
z∈{z|z=y+Zω1+Zω2}

|x− z|.

Let us introduce the Green’s function G(x, y) of −∆ on T ,

−∆xG(x, y) = δy(x)− 1 in T,

∫
T

G(x, y)dx = 0 for all y ∈ T. (2.4)

In particular, we have the explicit formula of G(x, y) in terms of doubly periodic
functions (see [35]):

G(x, y) = G(z) := Im

(
|z|2 − ω̄1z

2/ω1

2(ω1ω̄2 − ω̄1ω2)
− z

2ω1
+

ω2

12ω1

)
− 1

2π

∣∣∣∣ log

(
1− e

(
z

ω1

)) ∣∣∣∣
− 1

2π
log

∣∣∣∣ ∞∏
n=1

(
1− e

(
nω2 + z

ω1

))(
1− e

(
nω2 − z
ω1

)) ∣∣∣∣,
(2.5)

where z = x− y and x, y, z are numbers in the complex plane; |T | = Im ω̄1ω2 = 1.
It is easy to verify that G(z) = G(−z). In particular, Chen, Lin and Wang in [32]
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showed that G(z) is evenly symmetric about both axes if T is a rectangular torus,
i.e. G(z) = G(−z) = G(z̄). We also define the regular part of the Green’s function:

R(x, y) = R(z) := G(x, y) +
1

2π
log (d(x, y)), (2.6)

where d(x, y) is defined in the Remark 2.1.

Let Un,i be the standard bubble at xn,i, i.e.

Un,i(x) = log

(
eλn,i

(1 + ρn
8 e

λn,i(d(x, xn,i))2)2

)
, i = 1, 2. (2.7)

Chen and Lin in [28] obtained some sharp estimates on the error term ηn,i, which
is defined as follows

ηn,i(x) = un(x)− Un,i(x)− (G∗i (x)−G∗i (xn,i)), x ∈ B(xn,i, δ). (2.8)

For x ∈ B(xn,i, δ), they proved

ηn,i(x) = − 128π

ρn
e−λn,i [log (Rn,i|x− xn,i|+ 2)]

2

+O
(
log (Rn,i|x− xn,i|+ 2)e−λn,i

)
+O

(
λn,ie

−λn,i
)

= O(λ2
n,ie
−λn,i), i = 1, 2,

(2.9)

where Rn,i =
√
ρneλn,i/8. It has also been proved in [57] that there are constants

c > 0 and cδ > 0 such that,

|λn − λn,i| ≤ c for i = 1, 2, |un(x) + λn| ≤ cδ for x ∈ T \
2⋃
i=1

B(pi, δ). (2.10)

More precisely, see [28, Section 3], we have

eλn,ieG
∗
i (xn,i) = eλn,1eG

∗
1(xn,1)

(
1 +O

(
e−

λn,1
2

))
, i = 1, 2. (2.11)

In particular, see [28, Theorem 1.4], the following estimate holds,

λn,i +

∫
T

un(x)dx+ 2 log
(ρn

8

)
+G∗i (xn,i)

= −32π

ρn
λ2
n,ie
−λn,i +O

(
λn,ie

−λn,i
)
, i = 1, 2.

(2.12)

Notice that in [28, Lemma 5.5], the Pohozaev identity is used to derive that

∇G∗i
∣∣
x=xn,i

= O
(
λn,ie

−λn,i
)
, i = 1, 2. (2.13)

Together with the non-degeneracy assumption on the critical point ~p, Bartolucci et
al. [6] concluded that

|xn,i − pi| = O(λn,ie
−λn,i), i = 1, 2. (2.14)

However, in our case, the critical point ~p = (p1, p2) where p2 − p1 is one of three
half-periods (namely ω1/2, ω2/2 and ω1+ω2

2 ) is a degenerate critical point of G(x, y).
Thus, we need a different way to get the above estimate on the distance between the
local maximum point and the blow-up point. By imposing the symmetry condition
on un, we are able to show that (2.14) holds in our setting as well.
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Proposition 2.2. Suppose that {un} is a sequence of blow-up solutions of (2.1),
satisfying ρn → 16π+ and un(z) = un(−z). Then {un} blows-up at two points
p1 = 0 and p2 which is any half-period. Furthermore, if xn,i, i = 1, 2 is the local
maximum point as defined in (2.3), then we have

d(xn,i, pi) = O(λn,ie
−λn,i).

Proof. Ma and Wei in [62] proved that the blow-up points (p1, · · · , pm) of solutions
to the corresponding Dirichlet problem of mean field type must be a critical point of
the m-vortex Hamiltonian fm, and they also pointed out that the same conclusion
would also hold for (1.3). Chen and Lin in [28, Estimate B] obtained a similar
conclusion in the manifold setting by using the Pohozaev identity. Therefore, the
only possible two-point blow-up would happen at the critical points of G(x, y). By
assumption of the symmetry of solutions, the blow-up points must be one of the
three cases stated in Theorem 2.2.

Then, it suffices to prove the estimate on d(xn,i, pi), i = 1, 2. Without loss of
generality, let us consider the case i = 1. By (2.8), we can write u(x) = Un,1(x) +
G∗1(x) − G∗1(xn,1) + ηn,1(x) for x ∈ B(xn,1, δ). Since xn,1 → 0, we are always
able to choose n sufficiently large such that −xn,1 ∈ B(xn,1, δ). Thus, using the
fact that u(xn,1) = u(−xn,1) together with (2.9) and (2.13), we conclude that
|xn,1| = O

(
λn,1e

−λn,1
)
. Note that G∗1 is a smooth function. �

Remark 2.3. Recently, Chen, Kuo, Lin and Wang in [36] showed that G(z) might
have an extra pair of “non-trivial” critical points other than the three half periods
points for a class of flat tori. Moreover, the “non-trivial” critical points are always
non-degenerate. Based on these observations, one should be able to construct two
distinct families of blow-up solutions which are not evenly symmetric. It is also
possible to prove “local uniqueness” for solutions that blow-up at the origin and one
of the “non-trivial” critical points.

Let us define the local masses corresponding to the blow-up of un at pi, i = 1, 2:

ρn,i = ρn

∫
B(pi,δ)

eundx, i = 1, 2. (2.15)

We have the following estimate on ρn,i, i = 1, 2, see [28, Section 3]

ρn,i − 8π = 16πλn,ie
−λn,i +O

(
e−λn,i

)
, i = 1, 2. (2.16)

For the total mass, see [28, Theorem 1.1], we have

ρn − 16π = 16π

2∑
i=1

λn,ie
−λn,i +O(e−λn,i) =

λn,1e
−λn,1

eG
∗
1(p1)

l(~p) +O
(
e−λn,1

)
, (2.17)

where l(~p) is the quantity defined in (1.6). In particular, we recall l(~p) = 32πeG
∗
1(p1) 6=

0. We would like to remark that a more refined estimate involving D(~q) on the total
mass has been derived in [6, Theorem 1.3] which is crucial in the case where l(~p)
vanishes.

We will also need the asymptotic behaviour of un outside the union of the balls
B(pi, δ), i = 1, 2. In particular, we consider the “outer” error defined as follows

ωn(x) = un(x)−
2∑
i=1

ρn,iG(x, xn,i)−
∫
T

undx. (2.18)
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It is already proved in [28, Estimate A] that

ωn = O(e−λn/2) in C1
(
T \

2⋃
i=1

B(pi, δ)
)
. (2.19)

3. Uniqueness of Blow-up Solutions

In this section we will prove Theorem 1.1 by contradiction. Suppose that (2.1)

has two distinct solutions u
(1)
n and u

(2)
n which blow-up at pi, i = 1, 2. Let us use

x
(`)
n,i, λ

(`)
n , λ

(`)
n,i, U

(`)
n,i , η

(`)
n,i, R

(`)
n,i, ρ

(`)
n,i and ω

(`)
n to denote xn,i, λn, λn,i, Un,i, ηn,i,

Rn,i, ρn,i, ωn, as defined in Section 2, corresponding to u
(`)
n , ` = 1, 2, respectively.

As in [6, 61] we consider the normalized difference of the two solutions

ξn(x) =
u

(1)
n (x)− u(2)

n (x)

‖u(1)
n − u(2)

n ‖L∞(T )

. (3.1)

Roughly speaking, our aim is to show that the projections of ξn, n→ +∞, on the
three kernel functions (introduced in (1.14)) of the linearized operator (1.13) are
zero and then derive a contradiction by showing that ξn 6≡ 0, n → +∞. The plan
is the following:

(1) study the asymptotic behavior of ξn inside and outside the blow-up disks,
(2) use a suitable Pohozaev identity to show the projection of ξn on the radial

part kernel vanishes,
(3) exploit the evenly symmetric property to show the projections of ξn on the

kernels related to translations are zero and finally prove Theorem 1.1.

3.1. Some Useful Estimates. We start by studying the asymptotic behavior
of ξn. This part follows closely [6] jointly with Proposition 2.2, so we skip the
computations and refer the reader to [6] for full details.

Lemma 3.1. ([6]) There exists a constant C > 0 such that

|λ(1)
n,i − λ

(2)
n,i| ≤ C

(
1

λ
(1)
n,1

+
1

λ
(2)
n,1

)
, i = 1, 2. (3.2)

Moreover,

‖u(1)
n − u(2)

n ‖L∞(T ) = O

(
|λ(1)
n,1 − λ

(2)
n,1|+

2∑
`=1

λ
(`)
n,1e

−
λ
(`)
n,1
2

)
. (3.3)

It is easy to see that ξn satisfies

∆ξn + f∗n(x) = ∆ξn + ρncn(x)ξn(x) = 0, (3.4)

where

f∗n(x) =
ρn

‖u(1)
n − u(2)

n ‖L∞(T )

(
eu

(1)
n (x) − eu

(2)
n (x)

)
, (3.5)

and

cn(x) =
eu

(1)
n (x) − eu(2)

n (x)

u
(1)
n (x)− u(2)

n (x)
= eu

(1)
n

(
1 +O(‖u(1)

n − u(2)
n ‖L∞(T ))

)
. (3.6)
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Next, in the following lemma we give the description of ξn both inside the
bubbling disc B(pi, δ), i = 1, 2, and the asymptotic behavior ξn away from the
blow-up points pi, i = 1, 2.

Lemma 3.2. ([6]) Let

ξn,i(z) = ξn

(
e−

λ
(1)
n,i
2 z + x

(1)
n,i

)
, |z| < δe−

λ
(1)
n,i
2 , i = 1, 2,

then there exist constants bi,0, bi,1, bi,2 such that

ξn,i(z)→ bi,0ψi,0(z) + bi,1ψi,1(z) + bi,2ψi,2(z)

in Cloc(R2), where

ψi,0(z) =
1− 2π|z|2

1 + 2π|z|2
, ψi,1(z) =

√
2πz1

1 + 2π|z|2
, ψi,2(z) =

√
2πz2

1 + 2π|z|2
.

Furthermore b1,0 = b2,0 = b0 for some constant b0, and

ξn(x) = −b0 + o(1), ∀x ∈ T \
2⋃
i=1

B(pi, e
−
λ
(1)
n,i
2 R),

for some R > 0 sufficiently large.

For the proof of Lemma 3.1 and Lemma 3.2, we refer the readers to [6, Lemma
3.1-Lemma 3.4].

3.2. Radial part kernel. We prove here that the projection of ξn on the radial
part kernel vanishes. Since by Lemma 3.2 we have b1,0 = b2,0 = b0, we need to
show that b0 = 0. Then, for i = 1, 2, let

φn,i(y) =
ρn
2

(
R(x

(1)
n,i, y)−R(x

(1)
n,i, x

(1)
n,i) +G(x

(1)
n,l , y)−G(x

(1)
n,l , x

(1)
n,i)
)
, (3.7)

where l 6= i, and

v
(`)
n,i(y) = u(`)

n (y)− φn,i(y), ` = 1, 2. (3.8)

To show b0 = 0 we need the following Pohozaev identity from [6, Lemma 3.6].

Lemma 3.3. ([6]) For any fixed r ∈ (0, δ), we have

1

2

∫
∂B(x

(1)
n,i,r)

r〈∇(v
(1)
n,i + v

(2)
n,i),∇ξn〉 −

∫
∂B(x

(1)
n,i,r)

r〈ν,∇(v
(1)
n,i + v

(2)
n,i)〉〈ν,∇ξn〉

=

∫
∂B(x

(1)
n,i,r)

rρn

‖v(1)
n,i − v

(2)
n,i‖L∞(T )

(
ev

(1)
n,i+φn,i − ev

(2)
n,i+φn,i

)

−
∫
B(x

(1)
n,i,r)

ρn

(
ev

(1)
n,i+φn,i − ev

(2)
n,i+φn,i

)
‖v(1)
n,i − v

(2)
n,i‖L∞(T̃ )

(
2 + 〈∇φn,i, x− x(1)

n,i〉
)
.

(3.9)
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Next, we can follow the computations in [6, Lemma 4.2-Lemma 4.3] jointly
with Proposition 2.2 to get the estimate on both sides of (3.9). For the left hand
side of (3.9), we have

LHS of (3.9) =− 4An,i −
256b0e

−λ(1)
n,1+G∗i (pi)

ρneG
∗
1(p1)

∫
Mi\B(pi,r)

eΦi(x,~p)dx

+ o(e−
λ
(1)
n,i
2

2∑
l=1

|An,l|) + o(e−λ
(1)
n,i), i = 1, 2,

(3.10)

for fixed r ∈ (0, r0), where

An,i =

∫
Mi

ρn

‖u(1)
n − u(2)

n ‖L∞(T )

(
eu

(1)
n − eu

(2)
n

)
,

Φi is defined in (1.8) and r0 is introduced after (1.6). For the right hand side of
(3.9), we have

RHS of (3.9) =− e−λ
(1)
n,1

(
128b0e

G∗i (pi)

ρneG
∗
1 (p1)

π

r2
+

512π2b0e
G∗i (pi)

ρneG
∗
1(p1)

)
− e−λ

(1)
n,1

128b0

ρneG
∗
1(p1)

∫
Mi\B(pi,ri)

eG
∗
i (pi)+Φi(x,~p)dx

− e−λ
(1)
n,1

(
λ

(1)
n,1 + log

(
ρne

G∗1(p1)

8eG
∗
i (pi)

r2

)
− 2

)
ΠeG

∗
i (pi)

+O(e−λ
(1)
n,1)(r +R−1) + o(e−λ

(1)
n,i)(log r + logR)

+O(
∑
l

|An,l|(R−1e−
λ
(1)
n,i
2 + e−λ

(1)
n,i(λ

(1)
n,i + log r)))

+ o(e−2λ
(1)
n,ir−2),

(3.11)

for any r ∈ (0, 1) and R sufficiently large. Here

Π =
512π2

(
(
∫
T
ξn)− ‖u

(1)
n −u

(2)
n ‖L∞(T )

2 (
∫
T
ξn)2

)
ρneG

∗
1(p1)

.

With (3.10) and (3.11), we are now able to show b0 = 0.

Lemma 3.4. It holds b0 = b1,0 = b2,0 = 0.

Proof. By (3.9)-(3.11), together with (2.10) and (2.12), we have

− 4An,i +O(e−
λ
(1)
n,1
2

2∑
l=1

|An,l|) + o(e−λ
(1)
n,1)

= −2An,i +O(λ
(1)
n,ie
−λ(1)

n,i) +O(r−2e−λ
(1)
n,i) + o(e−λ

(1)
n,i logR),

which implies that

An,i = o(e−
λ
(1)
n,1
2 ), i = 1, 2. (3.12)
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For any r > 0, let ri = r
√

8eG
∗
i (pi), i = 1, 2. For each point pi, we choose r = ri in

(3.9). By (3.9)-(3.12), we have

2∑
i=1

[
−4An,i −

256b0e
−λ(1)

n,1+G∗i (pi)

ρneG
∗
1(p1)

∫
Mi\B(pi,ri)

eΦi(x,~p)dx

]

=

2∑
i=1

[
−e−λ

(1)
n,1

(
128b0e

G∗i (pi)

ρneG
∗
1(p1)

π

r2
i

+
512π2b0e

G∗i (pi)

ρneG
∗
1(p1)

)
− e−λ

(1)
n,1

128b0

ρneG
∗
1(p1)

∫
Mi\B(pi,ri)

eG
∗
i (pi)+Φi(x,~p)dx

−e−λ
(1)
n,1

(
λ

(1)
n,1 + log

(
ρne

G∗1(p1)

8eG
∗
i (pi)

r2
i

)
− 2

)
ΠeG

∗
i (pi)

]
+ o(e−λ

(1)
n,1(r−2 + logR+ log r)) +O(e−λ

(1)
n,1(r +R−1)),

(3.13)

for any r ∈ (0, 1), R > 1 sufficiently large. Then using the fact that An,1+An,2 = 0,
we deduce that

− 256b0e
−λ(1)

n,1

ρneG
∗
1(p1)

2∑
i=1

eG
∗
i (pi)

∫
Mi\B(pi,ri)

eΦi(x,~p)dx

= −e−λ
(1)
n,1

128b0

ρneG
∗
1(p1)

2∑
i=1

eG
∗
i (pi)

π

r2
i

− e−λ
(1)
n,1

32πb0l(~p)

ρneG
∗
1(p1)

− e−λ
(1)
n,1

128b0

ρneG
∗
1(p1)

2∑
i=1

eG
∗
i (pi)

∫
Mi\B(pi,ri)

eΦi(y,~p)dy

− e−λ
(1)
n,1

Π

16π
l(~p)

(
λ

(1)
n,1 + log(ρne

G∗1(p1)r2)− 2
)

+ o(e−λ
(1)
n,1(r−2 + logR+ log r)) +O(e−λ

(1)
n,1(r +R−1)).

(3.14)

By Lemma 3.2, we have
∫
T
ξn = −b0 + o(1). We divide (3.14) by λ

(1)
n,1e

−λ(1)
n,1 and

derive that l(~p)b0 = o(1). Therefore, we conclude that b0 = 0 since l(~p) 6= 0. �

3.3. The conclusion. We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1. We already know that the projections on the radial part
kernel are zero, i.e. bi,0 = 0 for i = 1, 2, see Lemma 3.4. Let us show now that
the projections bi,k, i, k = 1, 2, on the kernel related to translations are zero. Using

the fact that both u
(1)
n and u

(2)
n are evenly symmetric, we can see that u

(1)
n (x+ p2)

and u
(2)
n (x+p2) are also evenly symmetric. As a consequence, the projection of the

normalized difference on the kernel related to translations vanishes automatically,
i.e.

bi,k = 0, i, k = 1, 2. (3.15)

We will conclude now by showing that ξn 6≡ 0, n→ +∞. Let x∗n be a maximum
point of ξn, then we have

|ξn(x∗n)| = 1. (3.16)
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Therefore, by Lemma 3.2 and Lemma 3.4, we find that limn→∞ x∗n = pi for some i.
Moreover, in view of Lemma 3.4 and the fact that bi,k = 0 for k = 1, 2, we deduce
that

lim
n→∞

e
λ
(1)
n,i
2 sn =∞, (3.17)

where sn = |x∗n − x
(1)
n,i|. We set ξ̃n(x) = ξn(snx+ x

(1)
n,i), then (2.9) and (3.4) imply

that ξ̃n satisfies

∆ξ̃n + ρns
2
ncn(snx+ x

(1)
n,i)ξ̃n = ∆ξ̃n +

ρns
2
ne
λ
(1)
n,1(1 +O(sn|x|) + o(1))

(1 + ρn
8 e

λ
(1)
n,1s2

n|x|2)2
ξ̃n.

On the other hand, we have∣∣∣∣ξ̃n
(
x∗n − x

(1)
n,i

sn

)∣∣∣∣ = |ξn(x∗n)| = 1. (3.18)

In view of (3.17) and |ξ̃n| ≤ 1, we see that if ξ̃n → ξ̃0 on any compact subset

of R2 \ {0}, then ∆ξ̃0 = 0 in R2 \ {0}. Since ξ̃0 is also bounded, then we can

conclude that ξ̃0 is smooth and harmonic on entire R2. Hence ξ̃0 is a constant.

Since
|x∗n−x

(1)
n,i|

sn
= 1 and in view of (3.18), we obtain that either ξ̃0 = 1 or ξ̃0 = −1.

In particular, we have that |ξ̃n| ≥ 1
2 for sn ≤ |x− x(1)

n,i| ≤ 2sn, which contradicts to

the second conclusion of Lemma 3.2 because of the facts that limn→∞ e
λ
(1)
n,i
2 sn =∞,

limn→∞ sn = 0 and b0 = bj,0 = 0. This finishes the proof of Theorem 1.2. �

4. Existence of Blow-up Solutions

In this section we will use a Lyapunov-type reduction method to construct
blow-up solutions to (1.1). Since the proof of Theorem 1.2 follows along the same
line as the arguments used in [46, Theorem 2.1] and [37, Theorem 2.3], we shall
give the key steps and refer the readers to the above two papers for details.

4.1. Approximate Solution. We start with an approximate solution of the equa-
tion (1.1) and obtain some estimates of this approximate solution. Let R0 > 0 be
a small fixed number and η be a cut-off function such that

η(s) =

{
1 for s ≤ 1,

0 for s ≥ 2,
0 ≤ η(x) ≤ 1, |η′(s)| ≤ 2.

Let

ηt,a(x) = η

(
d(x, a)

t

)
, ∀a ∈ T and t > 0. (4.1)

Given ε ∈ (0, ε0), for later purposes we choose λ > 0 such that

16πλe−λ < ε < 64πλe−λ, (4.2)

or equivalently,

λ1(ε) < λ < λ2(ε), (4.3)

where

16πλ1(ε)e−λ1(ε) = ε and 64πλ2(ε)e−λ2(ε) = ε.
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Since our ansatz will resemble a bubble function around each blow-up point we
start by letting wλ,i be the solution of the following localized equation:

−∆wλ,i =
16πeλ

(1 + 2πeλ(d(x, pi))2)2
ηR0,pi −m0,

∫
T

wλ,i = 0, (4.4)

where

m0 =

∫
T

16πeλ

(1 + 2πeλ(d(x, pi))2)2
ηR0,pidx = 8π +O(e−λ), i = 1, 2, (4.5)

where we used the fact that |T | = 1.

In order to have a good approximation we need the following estimates. Let
us calculate the value of wλ,i(pi), i = 1, 2:

wλ,i(pi) =

∫
T

G(pi, y)

[
16πeλ

(1 + 2πeλ|y|2)2
ηR0,pi −m0

]
dy

=

∫
B(0,R0)

[
− 1

2π
log |y|+R(0, y)

]
16πeλ

(1 + 2πeλ|y|2)2
dy +O(e−λ)

=

∫
B(0, e

λ
2 R0)

[
λ

4π
− 1

2π
log |z|+R(0, e−

λ
2 z)

]
16πdz

(1 + 2π|z|2)2
+O(e−λ)

=

∫
B(0, e

λ
2 R0)

[
λ

4π
− 1

2π
log |z|+R(0, 0)

]
16πdz

(1 + 2π|z|2)2

+ e−λ
∫
B(0, e

λ
2 R0)

4π|z|2

(1 + 2π|z|2)2
dz +O(e−λ)

= 2λ+ 2 log (2π) + 8πR(0, 0) + λe−λ +O(e−λ).

(4.6)
We can also estimate the value of wλ,i near pi:

wλ,i(pi + e−
λ
2 z)− wλ,i(pi)

=

∫
T

[
G(pi + e−

λ
2 z, y)−G(pi, y)

] 16πeλ

(1 + 2πeλ|y − pi|2)2
ηR0,pidy

=

∫
B(0, e

λ
2 R0)

− 1

2π
[log |z − z′| − log |z′|] 16πdz′

(1 + 2π|z′|2)2

+

∫
B(0, e

λ
2 R0)

[
R
(
e
λ
2 (z′ − z)

)
−R

(
e
λ
2 z′
)] 16πdz′

(1 + 2π|z′|2)2
+O

(
e−

3
2λ|z|

)
= log

(
1

(1 + 2π|z|2)2

)
+ e−λQ(z1, z2) +O

(
e−

3
2λ|z|3

)
+O

(
λe−

3
2λ|z|

)
(4.7)

for |z| < e
λ
2R0, where Q(z1, z2) is a quadratic form depending only on ∇2R(z)|z=0

with the property ∆Q = 8π. Note here we use the fact that ∆R = 1. For |z| ≥
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2e
λ
2R0, i.e., d(x, pi) ≥ 2R0, we have

wλ,i(x) = wλ,i(pi + e−
λ
2 z) =

∫
T

G(x, x′)
16πeλ

(1 + 2πeλ|x′ − pi|2)2
ηR0,pidx

′

=

∫
B(0, e

λ
2 R0)

G(x, pi + e−
λ
2 z′)

16πdz′

(1 + 2π|z′|2)2
+O(e−λ)

=

∫
B(0, e

λ
2 R0)

[
G(pi − x) + e−

λ
2∇G(pi − x) · z′ + e−λ

|z′|2

4

]
16πdz′

(1 + 2π|z′|2)2
+O(e−λ)

= 8πG(pi − x) + πe−λ
∫ e

λ
2 R0

0

8πr3

(1 + 2πr2)2
dr +O(e−λ)

= 8πG(pi − x) + λe−λ +O(e−λ),

(4.8)

Letting wλ = −λ+log ( 4
π )−8πR(0)−8πG(p1, p2) we are now ready to provide

an ansatz for the solution of (1.1)

wλ =

2∑
i=1

wλ,i + wλ. (4.9)

Combining (4.6)-(4.8), we obtain the following lemma concerning the asymptotic
behavior of wλ near the blow-up points p1 and p2:

Lemma 4.1. For z ∈ B(0, e
λ
2R0), we have

wλ(pi + e−
λ
2 z) = log

(
16πeλ

(1 + 2π|z|2)2

)
+ e−λQ(z1, z2) + 4πe−λz∇2G(p1 − p2)zT

+ 2λe−λ +O(e−
3λ
2 |z|3) +O(λe−

3λ
2 |z|) +O(e−λ).

While for x away from the blow-up points,

Lemma 4.2. For x ∈ T \ (B(p1, R0) ∪B(p2, R0)), we have

wλ(x) = − λ+ log (4/π)− 8πR(0)− 8πG(p1 − p2)

+ 8π

2∑
i=1

G(pi − x) + 2λe−λ +O(e−λ).

Finally, we need to estimate the approximate solution in the neck region. It
turns out that we can estimate wλ and ewλ when R0 < d(x, pk) < 2R0 by comparing
wλ with a function constructed by gluing the inner approximation and the outer
approximation by using the cut-off function ηλα for some α ∈ (0, 1). It is readily
checked that the “error” term could be controlled, please see [46, Lemma 3.1] for
more details.

By using Lemmas 4.1, 4.2 and [46, Lemma 3.1] we can now estimate ewλ . We
have

ewλ ≤
2∑
i=1

16πeλ

(1 + 2πeλ(d(x, pi))2)2
[1 + θλ(x)] (4.10)



16 D. BARTOLUCCI, C. GUI, Y. HU, A. JEVNIKAR, AND W. YANG

where θλ has the property that for some constant C > 0,

|θλ(x)| ≤ Ce−λ2
2∑
i=1

[e
λ
2 d(x, pi) + 1].

More precisely, when |z| ≤ R0e
λ
2 , we have

ewλ(pi+e
−λ

2 z) =
16πeλ

(1 + 2π|z|2)2
[1 + e−λQ(z1, z2) + 4πe−λz∇2G(p1 − p2)zT

+ 2λe−λ +O(e−
3λ
2 |z|3) +O(λe−

3λ
2 |z|) +O(e−λ)].

(4.11)

When d(x, pi) ≥ R0 for i = 1, 2, we have

ewλ(x) = O(e−λ). (4.12)

Finally, by exploiting (4.2), (4.11) and (4.12), we can follow the same computations
in [37, Lemma 3.3] to obtain the estimate of the error of the ansatz.

Lemma 4.3. ([37]) Let Sρ(u) = ∆u+ ρ
(

eu∫
T
eu
− 1
)

. Then there exists a constant

C > 0 such that

|Sρ(wλ(pi+ e−
λ
2 z))| ≤ C

[
λe−λ +

λ

(1 + 2π|z|2)2
+

|z|2

(1 + 2π|z|2)2

]
for |z| < e

λ
2R0,

and
|Sρ(wλ)(x)| ≤ Cλe−λ for x ∈ T \ (B(p1, R0) ∪B(p2, R0)).

Furthermore, we have that Sρ(wλ) is evenly symmetric.

We conclude this subsection by considering the energy of the approximate
solution wλ. Indeed, it is known that equation (1.1) has a variational structure,
i.e., any critical point of the energy functional

Jρ(u) =
1

2

∫
T

|∇u|2 − ρ log

(∫
T

eu
)

+ ρ

∫
T

u (4.13)

corresponds to a solution of (1.1). Again by (4.2), (4.11) and (4.12) and by direct
computations as in [37, Lemma 3.4] we can obtain the following expansion on the
energy of the approximate solution wλ.

Lemma 4.4. ([37]) The energy of wλ is

Jρ(wλ) = − 64π2[R(0) +G(p1 − p2)]− 16π log (2π)− 16π − ελ

− 32πλe−λ − ε [2 log (2π)− 8πR(0)− 8πG(p1 − p2)] +O(e−λ).

4.2. The Linearized Operator. In this subsection, we shall establish the solvabil-
ity theory for the linearized operator of Sρ under suitable orthogonality condition.
Let us introduce the operator

L(u) = ∆u+
ρ∫

T
ewλ

ewλu. (4.14)

Observe that

S′ρ(wλ)(u) = L
(
u−

∫
T
ewλu∫
T
ewλ

)
. (4.15)

Let
L(u) = e−λL(u). (4.16)
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If we shift the blow-up point pi to the center and rescale the torus T to Tλ by the

factor e−
λ
2 , then formally the operator L converges to the operator L̃ in R2:

L̃(u) = ∆zu+
16π

(1 + 2π|z|2)2
u, (4.17)

where z = e
λ
2 (x−pi). We point out that the operator L̃ can be obtained by lineariz-

ing the Liouville equation ∆u+eu = 0 at the radial solution v(z) = log
(

16π
(1+2π|z|2)2

)
.

A key fact that we are going to exploit is the non-degeneracy of v modulo the in-
variance of the Liouville equation under dilations and translations, i.e.,

ζ 7→ v(z − ζ), s 7→ v(sz) + 2 log s.

Thus, we let

ψ0(z) =
∂

∂s
[v(sz) + 2 log s]

∣∣
s=1

,

ψk(z) =
∂

∂ζj
v(z − ζ)

∣∣
ζ=0

, k = 1, 2.
(4.18)

Here ψk’s coincide with ψi,k’s defined in Lemma 3.2. It is shown in [1] that the

only bounded solutions of L̃(u) = 0 in R2 are precisely the linear combinations of

ψk, k = 0, 1, 2. With a little abuse of notation, let ψi,k := ψk(e
λ
2 (x− pi)) denote a

function on Tλ for i = 1, 2 and k = 0, 1, 2.

Next, we introduce the functional setting for the problem. To this end, we
start by letting η̃R be the following cut-off function:

η̃R(s) =

{
1 for s ≤ R,
0 for s ≥ R+ 1,

0 ≤ η̃R ≤ 1, |η̃′R(s)| ≤ 2.

Let η̃R,p = η̃R(|z − p|). We also write p′i to denote e
λ
2 pi. Then, we set

L∞e (Tλ) =
{
u ∈ L∞(Tλ) | u(z) = u(−z)

}
.

We introduce the following norms

‖ψ‖∞ = sup
z∈Tλ

|ψ|, ‖ψ‖∗ = sup
z∈Tλ

 2∑
j=1

(1 + d(z, p′j))
−3 + e−λ

−1

|ψ(z)|.

The choice of the latter norms is motivated by the construction of suitable barrier
functions in the proof of some uniform estimates, see Step 2 in Lemma 4.5. Let

C =
{
u ∈ L∞e (Tλ) | ‖u‖∗ <∞

}
,

and

C∗ =
{
u ∈ L∞e (Tλ) | u ⊥ ψi,0η̃R1,p′i

, i = 1, 2
}
,

where R1 > 0 is a large but fixed number. We notice here that the orthogonality
condition in the definition of C∗ is only taken with respect to the elements of the
approximate kernel generated by dilations. However, it is not difficult to see that the
elements in C∗ are also perpendicular to the approximate kernel that are generated
by translations, i.e.,

u ⊥ ψi,kη̃R1,p′i
, ∀i = 1, 2, k = 0, 1, 2, u ∈ C∗.
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The main goal in this subsection is to prove a solvability result and an a priori
estimate (uniform in λ) concerning the operator L given in (4.16) in the functional
settings defined above under suitable orthogonality conditions. To this end, let us
start with the following uniform a priori estimate for an auxiliary problem with the
additional orthogonality conditions of φ under translations.

Lemma 4.5. Let h ∈ C ∩ Cα(Tλ). Then, there exist λ0, C > 0 such that for any
λ > λ0 and any φ ∈ C∗ such that

L(φ) = h in Tλ,

∫
Tλ

η̃R1,p′i
ψi,kφ = 0, ∀i = 1, 2, k = 0, 1, 2, (4.19)

it holds

‖φ‖∞ ≤ C‖h‖∗.

Proof. The proof follows the strategy first introduced by del Pino, Kowalczyk and
Musso in [39] in dealing with a singularly perturbed Liouville-type equation on
a bounded domain with Dirichlet boundary condition. The argument was then
suitably adapted to the flat torus case in [37] so we will state just the main steps
referring to [37, Lemma 4.2] for a detailed proof.

The proof is obtained by contradiction assuming that there exist sequences
λn → +∞, hn with ‖hn‖∗ → 0 and φn with ‖φn‖∞ = 1 satisfying (4.19). The
contradiction is obtained after the following steps.

Step 1. The first step is to construct a positive supersolution V in order to
show that the operator L satisfies the maximum principle on the torus outside the
bubbling disks T̃λ = Tλ\∪2

i=1B(p′i, R
′
2), for R′2 > 0 sufficiently large, i.e. if L(u) ≤ 0

in T̃λ and u ≥ 0 on ∂T̃λ, then u ≥ 0 in T̃λ. This is done by defining a suitable

projection of the radial solution f0(r) = r2−1
r2+1 in R2 of

∆f0 +
8

(1 + r2)2
f0 = 0,

to a function space on Tλ in order to satisfy the periodic boundary conditions.

Step 2. The second step is to prove that there exists a constant C > 0 such that
if L(φ) = h in Tλ, then

‖φ‖∞ ≤ C[‖φ‖in + ‖h‖∗],
where ‖·‖in denotes the “inner” norm of a function on Tλ in the bubbling disks, i.e.

‖φ‖in = sup
∪2
j=1B(p′j ,R

′
2)

|φ|.

One can use suitable barrier functions in T̃λ jointly with the maximum principle of
Step 1 to derive the above claim.

Step 3. In the final step we will employ a convergence argument to finally deduce
a contradiction. By assumptions and by Step 2 we get ‖φn‖in ≥ δ > 0. Therefore,
one can see that φn in a bubbling disk locally converge to a bounded non-zero
solution of

L̃(φ̂) = 0

given in (4.17). Hence, φ̂ is a linear combination of ψk, k = 0, 1, 2, defined in

(4.18). On the other hand, the orthogonal conditions on φn imply φ̂ ≡ 0, yielding
a contradiction. �
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We can now prove the solvability and a priori estimate of the following problem
(4.20).

Proposition 4.6. Let h ∈ C. Then, there exist λ0, C > 0, such that for all λ > λ0,
there exist a unique φ ∈ C∗ and numbers ci, i = 1, 2 such that

L(φ) = h+

2∑
i=1

ciη̃R1,p′i
ψi,0 in Tλ. (4.20)

Moreover, if h ∈ Cα(Tλ), then

‖φ‖∞ ≤ C‖h‖∗. (4.21)

Proof. We start by proving the a priori estimate (4.21). One can apply Lemma 4.5
to get

‖φ‖∞ ≤ C

[
‖h‖∗ +

2∑
i=1

|ci|

]
.

We can reason exactly as in [37, Proposition 4.1] and after multiplying the equation
(4.20) by the test function η̃R′3,p′iψi,0, R′3 > 0 sufficiently large, derive |ci| ≤ C‖h‖∗.
Thus, (4.21) holds true.

The existence of a solution to (4.20) follows from the Fredholm alternative since
we know that equation (4.20) has a unique solution if and only if the associated
homogeneous problem (i.e. with h ≡ 0) has only the trivial solution. By the a
priori estimate we conclude that this is the case and the proof is concluded. �

Finally, we can reason as in the proof of Proposition 4.6 and deduce the fol-
lowing main result of this subsection, in which one more orthogonal condition to φ
is imposed, see [37, Corollary 4.3].

Proposition 4.7. ([37]) Let h ∈ C. Then, there exist λ0, C > 0, such that for all
λ > λ0, there exist a unique φ ∈ C∗ and numbers ci, i = 0, 1, 2 such that

L(φ) = h+

2∑
i=1

ciη̃R1,p′i
ψi,0 + c0 in Tλ, φ ⊥ ewλ . (4.22)

Moreover, if h ∈ Cα(Tλ), then

‖φ‖∞ ≤ C‖h‖∗.

By means of the latter result we can define a continuous linear map T : C →
L∞e (Tλ) given by

h 7→ T (h) := φ,

where φ is the unique solution of problem (4.22) obtained in Proposition 4.7.
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4.3. Finite-dimensional reduction and proof of Theorem 1.2. We are ready
to reduce the infinite dimensional problem of finding φ such that

Sρ(wλ + φ) = 0 (4.23)

to a one-dimensional problem of finding appropriate scale λ with given ρ. To this
end we first expand Sρ(wλ + φ) as

Sρ(wλ + φ) = Sρ(wλ) + L
(
φ−

∫
T
ewλφ∫
T
ewλ

)
+N(φ), (4.24)

where

N(φ) =

[
ρ∫

T
ewλ+φ

eφ − ρ∫
T
ewλ
−
(
φ−

∫
T
ewλφ∫
T
ewλ

)]
ewλ . (4.25)

Since Sρ(wλ + φ) is invariant under adding a constant to φ, we can further assume
that ∫

T

ewλφ = 0.

By slightly abuse of notation we still denote φ as a function in C∗. Moreover, we
consider problem (4.23) in the dilated coordinates, i.e. wλ, Sρ(wλ) and N(φ) are
now treated as functions on Tλ.

In order to obtain a solution to (4.23) we first exploit the solvability of the
linearized operator established in subsection 4.2 to solve the following intermediate
problem.

Lemma 4.8. There exist λ0, C > 0, such that for all λ > λ0, there exist a unique
φ ∈ C∗ and numbers ci, i = 0, 1, 2 such that

L(φ) = −e−λ [Sρ(wλ) +N(φ)] +

2∑
i=1

ciη̃R1,p′i
ψi,0 + c0 in Tλ, φ ⊥ ewλ . (4.26)

Moreover, it holds

‖φ‖∞ ≤ Ce−
λ
2 . (4.27)

Proof. Let T : C → L∞e (Tλ) be the continuous linear map defined after Proposi-
tion 4.7. Then, we rewrite (4.26) as

φ = A(φ) := T
(
−e−λ [Sρ(wλ) +N(φ)]

)
in the subspace F = {φ ∈ C∗ | φ ⊥ ewλ , ‖φ‖∞ ≤ Ce−

λ
2 }. By using Proposition 4.7

and the estimate of the error Sρ(wλ) in Lemma 4.3 it is not difficult to show that
the operator A is a contraction map in the space F . Thus, there exists a unique
fixed point which is a solution to (4.26). �

To conclude and get a solution to (4.23) we are left with showing that c0 =
c1 = c2 = 0 in (4.26). To this end, we have the following properties.

Lemma 4.9. Let φ and ci, i = 0, 1, 2 be given as in Lemma 4.8. Then, it holds:

(1) c1 = c2 and c0 = −2e−λAc1, where A =
∫
R2 η̃R1

ψ0(z)dz.

(2) ‖∂φ∂λ‖∞ ≤ Ce
−λ2 .



BLOW-UP SOLUTIONS ON TORI 21

Proof. (1) From the invariance of problem (4.26) by the change z 7→ z+p′2 we have〈
L(φ), η̃R1,p′1

ψ1,0

〉
=
〈
L(φ), η̃R1,p′2

ψ2,0

〉
.

Moreover, integrating the equation in (4.26) on Tλ, we have

A(c1 + c2) + eλc0 = 0 (4.28)

and (1) holds true.

(2) The idea is to differentiate (4.26) with respect to λ, write

L

(
∂φ

∂λ

)
= h̃+

2∑
i=1

c̃iη̃R1,p′i
ψi,0,

for some suitable h̃, c̃i and finally exploit Proposition 4.6. We can follow the same
computations as in [37, Lemma 5.3] so we omit the details. �

Moreover, we have the following property concerning the energy functional Jρ
defined in (4.13).

Lemma 4.10. Let φ be given as in Lemma 4.8 and λ1, λ2 be as in (4.3). Then,
Jρ(wλ + φ) is a C1 function with respect to λ for λ ∈ (λ1, λ2) and hence it has a
local maximum point λ∗. Furthermore, we have

ε = (32π + o(1))λe−λ,

as ε→ 0, where ρ = 16π + ε.

Proof. We first make the following expansion

Jρ(wλ + φ) = Jρ(wλ) + 〈Sρ(wλ + θφ), φ〉,

for some θ ∈ (0, 1). Then,

Sρ(wλ + θφ) = Sρ(wλ) + θ∆φ+O(e−
λ
2 ewλ)

Exploiting ‖φ‖∞ ≤ Ce−
λ
2 , the estimate of the error Sρ(wλ) in Lemma 4.3 and

reasoning as in [37, Lemma 6.1] for the term ∆φ it is easy to show that

Jρ(wλ + φ) = Jρ(wλ) +O(e−λ).

Then, by letter estimate and by Lemma 4.4 we have

Jρ(wλ) = − 64π2[R(0) +G(p1 − p2)]− 16π log (2π)− 16π − ελ

− 32πλe−λ − ε [2 log (2π)− 8πR(0)− 8πG(p1 − p2)] +O(e−λ).

The proof of Lemma 4.10 follows then easily. �

Finally, we can prove now the main result of this section. It turns out that the
scale λ∗ given by the Lemma 4.10 is the right choice to solve the problem (4.23).

Proof of Theorem 1.2. We have to prove that for λ = λ∗, c0 = c1 = c2 = 0 in
(4.26). Since λ∗ is a critical point of Jρ(wλ + φ) we have

0 =
∂Jρ(wλ + φ)

∂λ
|λ=λ∗ =

〈
Sρ(wλ + φ),

∂(wλ + φ)

∂λ

〉
|λ=λ∗ .
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On the other hand, by using Lemma 4.9 and by direct computations as in [37,
Lemma 6.3] it is not difficult to get〈

Sρ(wλ + φ),
∂(wλ + φ)

∂λ

〉
=
(
Ce

λ
2 +O(1)

)
c1

and hence it follows c0 = c1 = c2 = 0. Thus,

Sρ(wλ∗ + φ∗) = 0

and wλ∗ + φ∗ is the desired blowing-up solution to (1.1). �
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