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The statistical properties of the subgrid energy transfers of homogeneous small-scale dynamo are
investigated during the kinematic, nonlinear and statistically saturated stages. We carry out an
a priori analysis of data obtained from an ensemble of direct numerical simulations on 5123 grid
points and at unity magnetic Prandtl number. In order to provide guidance for subgrid-scale (SGS)
modelling of different types of energy transfer that occur in magnetohydrodynamic dynamos, we
consider the SGS stress tensors originating from inertial dynamics, Lorentz force and the magnetic
induction separately. We find that all SGS energy transfers display some degree of intermittency
as quantified by the scale-dependence of their respective probability density functions. Concerning
the inertial dynamics, a depletion of intermittency occurs in presence of a saturated dynamo.

I. INTRODUCTION

All turbulent flows are characterized by spatially
and temporally chaotic evolutions on a wide range of
scales and frequencies [1]. As a result, direct numerical
simulations (DNS) approaches are still not practical to
study many turbulent flows occurring in nature and in
engineering applications. The control parameter is given
by the Reynolds number, ReL = UL/ν a dimensionless
measure of the relative importance of advective and
viscous terms in the Navier-Stokes equations (NSE),
where U denotes the rms velocity fluctuations at the
energy injection scale, L. It is possible to estimate
that in homogeneous and isotropic turbulent flows the

number of active degrees of freedom grows as Re
9/4
L [2],

leading to extremely demanding numerical resources
already for moderate turbulent intensities.
To overcome the problem, numerical tools based on a
modeling of small-scale turbulent fluctuations are often
introduced, and called large eddy simulations (LES).
This technique is based on filtering out the small-scale
interactions and replacing them with subgrid-scale
(SGS) models [3–5].
The demand for LES is increasing for magnetohydro-
dynamic (MHD) problems, too, as e.g. in heliophysical
and astrophysical applications [6] and in the context of
liquid metal MHD. Furthermore, the LES technique is a
useful alternative to spectral approaches in theoretical
analyses of interscale energy transfer [7], in particular
with a view towards applications in wall-bounded (i.e.
liquid metal) flows. In MHD-LES, the small-scale non-
linear magnetic interactions and the velocity/magnetic
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correlations have to be replaced with SGS models, too.
This introduces additional complexity to the MHD-LES
method [7, 8], leading to different modeling approaches
[9–18]. As in LES of nonconducting fluids, the success of
a given model is usually assessed in terms of reproducing
mean profiles of large scale quantities. However, it
is more and more clear that SGS velocity fluctuations
are characterized by extreme events with magnitudes
comparable to that of the large-scale velocity root
mean squares. Departure from Gaussian distribution
becomes larger and larger by decreasing the scales where
velocity and/or magnetic fluctuations are evaluated, a
phenomenon known as intermittency [1, 19, 20]. As a
result, due to their statistical relevance and intensity,
extreme events cannot be neglected when modeling
SGS dynamics [21, 22]. Intermittency and anomalous
scaling have attracted the attention of several studies
on MHD turbulence [23–30], with particular interest
in high Reynolds number astrophysical applications,
e.g. solar wind [31–34]. The development of SGS
models which are sophisticated enough to capture
extreme events, and therefore provide a more faithful
representation of turbulent dynamics, requires a detailed
analysis of SGS quantities. A-priori studies of DNS
data provide a first test-bed from where to extract
the necessary information. The aim is to analyse the
SGS correlations of the original fields and understand
what the key features are that must be modeled. To
our knowledge, there are very few a-priori studies for
the MHD-LES formulation [8, 17, 35][36], all of which
concerning statistically stationary nonlinear dynamos
and without any focus on intermittency. The aim of
this paper is to analyse the SGS properties of a MHD
turbulent flow at different temporal instants during the
evolution of a small-scale dynamo such as to be able to
assess both regimes, when the magnetic field is passively
advected by, or actively reacting on, the velocity field.
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M ReL Reλ ε U L ν T kmaxηu

512 889 164 0.14 0.61 1.0 0.0007 1.7 1.3

TABLE I: Description of the statistically stationary hydrody-
namic simulation used as an initial condition for the velocity
fields in the dynamo runs. M denotes the number of grid
points in each Cartesian coordinate, ReL the integral-scale
Reynolds number, Reλ the Reynolds number with respect to
the Taylor microscale, ε the total dissipation rate, U the rms
velocity, L the integral length scale of the turbulence, ν the
kinematic viscosity, T = L/U the large-eddy turnover time,
kmax the largest resolved wave number and ηu the Kolmogorov
microscale. All observables are time averaged.

In particular, we perform a systematic analysis of the
different components of the SGS total energy transfer.
We first split it in two sub-channels, involving velocity
or magnetic temporal dynamics only and we analyse
the mutual scale-by-scale energy exchanges. Second, we
further decompose the kinetic SGS energy component
into two contributions, one coming from the advection
and one from the Lorentz force.
Furthermore, we also apply a formulation of the filtered
fields, based on an exact projection on a finite number of
Fourier modes (P-LES) [22] that disentangles the signal
due to the coupling between resolved and unresolved
scales from that due to interactions between resolved
fields only.

The main results of this study are:
(i) The SGS energy transfer shows some degree of inter-
mittency in all evolutionary stages of the dynamo. Its
component coming from the Lorentz force becomes suc-
cessively more intermittent while that originating from
hydrodynamics shows decreased intermittency.
(ii) In terms of guidance for LES modelling, we find
that dissipative models should be well suited for the SGS
stresses connected with the Lorentz force, while not being
suitable for those coming from purely inertial dynamics.

This paper is organized as follows: We begin in section
II with a description of the DNS dataset. In section III,
we introduce the P-LES formulation for MHD. Section
IV presents the results from the a-priori analysis of the
statistical properties of the SGS energy transfers. We
summarize and discuss our results in section V.

II. DESCRIPTION OF THE DATASET

The data for the a priori study is generated through
DNSs of the three-dimensional incompressible MHD
equations

∂tu + (u · ∇)u = −∇p+ (∇× b)× b + ν∆u + f , (1)

∂tb = ∇× (u× b) + η∆b, (2)

∇ · u = 0, ∇ · b = 0, (3)

where u is the velocity field, b the magnetic field in
Alfvén units, p the pressure divided by the density, ν
the kinematic viscosity, η the magnetic resistivity, and
f an external mechanical force which is solenoidal at all
times. The density has been set to unity for convenience.

Equations (1)-(3) are solved numerically on the pe-
riodic domain V = [0, 2π]3 using the pseudospectral
method [37] with full dealiasing by the 2/3rds rule [38].
An ensemble of 10 runs is generated, where the initial
velocity field configurations are obtained from a statisti-
cally stationary hydrodynamic DNS on 5123 grid points
by sampling in intervals of one large-eddy turnover time
T = L/U , where U is the rms velocity and L the inte-
gral scale of the turbulence. The mechanical force f is
a Gaussian-distributed and delta-in-time correlated ran-
dom process acting at wavenumbers 1 ≤ k ≤ 2.5 with
a flat spectrum and without injection of kinetic helicity.
The magnetic seed fields are randomly generated with a
Gaussian distribution and concentrated at wavenumber
ks = 40. Details of the stationary hydrodynamic simula-
tion are summarized in table I.

The time evolution of the kinetic and magnetic energies
per unit volume

Eu(t) =
1

2

〈
|u(x, t)|2

〉
V,N
≡
〈

1

2|V |

∫
dx |u(x, t)|2

〉

N

,

(4)

Eb(t) =
1

2

〈
|b(x, t)|2

〉
V,N
≡
〈

1

2|V |

∫
dx |b(x, t)|2

〉

N

,

(5)

where the subscript N denotes an ensemble average over
N = 10 realisations, and the total energy for the ensem-
ble are shown in Fig. 1(a). From the time evolution of
Eb, which is also shown on a linear-logarithmic scale in
the inset, it can be seen that the simulation can be di-
vided in three stages. First, during the kinematic stage
(I), the magnetic field grows exponentially. During that
stage the Lorentz force in Eq. (1) is negligible and the
evolution equations are linear in the magnetic field. The
exponential growth phase ends once the Lorentz force is
large enough such that the back-reaction of the magnetic
field on the flow needs to be taken into account. This
is the nonlinear, unsteady, stage (II) of the evolution,
during which Eb continues to increase sub-exponentially
[39, 40]. Finally, Eb is approaching a statistically sta-
tionary state. That is, it enters the saturated stage (III)
which at unity magnetic Prandtl number and sufficiently
large Re is characterized by the ratios of the dissipation
rates εb/(εu+εb) ' 0.7 and energies Eb/(Eu+Eb) ' 0.25
[41–44]. Our data in stage (III) is consistent with these
ratios, as can be seen from the values listed in table II,
where a summary of the dynamo runs in the kinematic
(I), nonlinear (II) and saturated (III) stages is provided.
The SGS energy transfers will be studied during stages
(I)-(III), with each stage analysed separately.
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ReL Reλ Pm εu εb U L B Lb η kmaxηu kmaxηb tS/T

(I) 811 161 1 0.099 2.6 · 10−3 0.59 0.97 0.020 0.092 0.0007 1.3 3.2 8.8

(II) 851 208 1 0.057 0.056 0.58 1.0 0.13 0.15 0.0007 1.5 1.5 17.6

(III) 870 211 1 0.032 0.076 0.51 1.2 0.25 0.29 0.0007 1.7 1.4 32.3

TABLE II: Summary of the dynamo simulations during kinematic (I), nonlinear (II) and saturated stages (III). ReL denotes
the integral-scale Reynolds number, Reλ the Reynolds number with respect to the Taylor microscale, Pm the magnetic Prandtl
number, εu the kinetic dissipation rate, εb the magnetic dissipation rate, U the rms velocity, L the integral length scale of the
turbulence, B the rms of the magnetic field, Lb the magnetic integral length scale, η the resistivity, kmax the largest resolved
wavenumber, ηu and ηb are the kinetic and magnetic Kolmogorov microscales, respectively, and tS is the sampling time of each
evolutionary stage of the dynamo. All observables are ensemble-averaged over an ensemble of 10 simulations.
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FIG. 1: Panel (a): Time evolution of the kinetic energy
Eu, the magnetic energy Eb and the total energy Eu + Eb
with time measured in units of large-eddy turnover time T
(see table 1). The inset shows the evolution Eb on a linear-
logarithmic scale to highlight its initial exponential growth
phase. The different stages of dynamo evolution are indicated
by arrows: (I): kinematic stage, (II) nonlinear stage, (III)
saturated stage. Panel (b): Kinetic energy spectra Eu(k)
(dashed) and magnetic energy spectra Eb(k) (solid) measured
at t/T = 8.8 in stage (I), at t/T = 17.6 in stage (II) and at
t/T = 32.3 in stage (III).

The kinetic and the magnetic energy spectra

Eu(k, t) =
1

2

〈∫

|k|=k
|ûk(t)|2 dk

〉

N

, (6)

Eb(k, t) =
1

2

〈∫

|k|=k
|b̂k(t)|2 dk

〉

N

, (7)

are shown in Fig. 1(b) for different instances in time cor-
responding to stages (I)-(III) as specified in table II. The
kinetic energy spectrum is dominated by the forcing in
the interval 1 ≤ k ≤ 2.5. During the kinematic stage, an
inertial subrange with Kolmogorov scaling can be identi-
fied, as indicated in the figure by the straight solid line.
During stages (II) and (III) we observe a steepening of
Eu(k) at successively smaller wavenumbers. The mag-
netic energy spectrum grows self-similarly during stage
(I) which is typical for a small-scale dynamo [40, 45, 46].
In the saturated stage (III), the magnetic energy ex-
ceeds the kinetic energy at the small scales while the
large scales remain essentially hydrodynamic and forcing-
dominated. A crossover-wavenumber k∗ can be identified
where Eu(k∗) = Eb(k

∗), in the present dataset k∗ = 9.
Since the peak of the saturated magnetic energy spec-
trum depends on the forcing scale [46], the equipartition
scale we measure will also not be universal, that is, it
should depend on the forcing.

III. P-LES FORMULATION FOR MHD

The governing equations are derived by applying a fil-
tering operation to the MHD equations [7–9, 47], with
the filtered component h of a function h defined as

h(x, t) ≡
∫

V

dyG (x− y)h(y, t) =
∑

k∈Z3

Ĝ(k)ĥ(k, t)eikx,

(8)

where G is the filter function and ·̂ denotes the Fourier
transform. Applying this filtering operation to Eqs. (1)
and (2), we obtain the filtered momentum and induction
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equations given here in tensor notation

∂tui = −∂j
(
uiuj − bibj + τ Iij − τMij + pδij

)
+ ν∂jjui + f i,

(9)

∂tbi = −∂j
(
biuj − uibj + τ bij

)
+ η∂jjbi, (10)

where a summation over repeated indices is implied, and
with

τ Iij = uiuj − uiuj , (11)

τMij = bibj − bibj , (12)

τ bij = biuj − biuj − (uibj − uibj), (13)

where τ Iij is the inertial SGS tensor, τMij the Maxwell

SGS tensor, and τ bij the SGS tensor originating from the
electromotive force in Eq. (2). It consists of two SGS-
stresses which are related to each other by transposition.
They are associated with different dynamics, that is with

advection, (u·∇)b, in case of biuj−biuj or dynamo action
through magnetic field-line stretching, (b · ∇)u, in case

of uibj −uibj . However, as they have a common physical
origin, the electric field E = u × b, we do not consider
them separately.

Equations (9)-(10) are obtained by using solenoidal-
ity of both fields, the linearity of the filtering operator
and including the terms which can be written as a gra-
dient into the pressure gradient. As usual, the equations
are not closed in terms of the resolved fields only, due
to the fact that the SGS stress tensors depend on the
product of two unresolved fields. Equations (9)-(10) dif-
fer from those usually given in the MHD literature on
LES [7–9] through the additional filtering of products of
two resolved fields. In conjunction with a projector fil-
ter, the latter ensures that after introducing SGS models,
Eqs. (9) and (10) can be evolved on a finite computa-
tional grid [22, 48], which can seen by supposing that G
in Eq. (8) is a Galerkin projector on a finite number of
Fourier modes [22]. In what follows, we consider G to
be a projector and Eqs. (9)-(13) are referred to as the
P-LES formulation.

The P-LES formulation has the further advantage that,
unlike in the usual LES formulation, the SGS energy
transfers based on the P-SGS tensors defined in Eqs. (11)-
(13) do not contain couplings between the resolved fields
[22]. The latter is very important for the evaluation of
backscatter in a priori analyses of SGS energy transfers,
since residual couplings between the resolved fields can
be wrongly interpreted as backscatter events. We will
come back to this point in Secs. III A and IV A.

Finally, we point out that care must be taken in a-
posteriori studies of MHD LES concerning p since it con-
tains the magnetic SGS pressure term, which is not closed
in terms of the resolved magnetic field. As such, a closure
of Eq. (12) would lead to two models for the magnetic
pressure term: an explicit one coming from the choice of

model and an implicit one from the solution of the Pois-
son equation. However, the magnetic pressure term does
not affect the global energy transfers and is thus not of
direct relevance to the present a-priori study.

A. The resolved-scale energy transfer

Neglecting viscous, Joule dissipation and forcing terms,
the P-LES kinetic and magnetic energy evolution equa-
tions read

∂t
1

2
uiui + ∂jA

u
j = −Πu + (∂jui)(uiuj)− (∂jui)(bibj),

(14)

∂t
1

2
bibi + ∂jA

b
j = −Πb + (∂jbi)(biuj)− (∂jbi)(uibj),

(15)

where Auj = ui(uiuj − bibj + pδij + τ Iij − τMij ) and Abj =

bi(biuj − uibj + τ bij) result in flux terms that redistribute
the energies in space and vanish under spatial averaging:
〈∂jAuj 〉V = 〈∂jAbj〉V = 0 . The P-SGS energy transfers

Πu and Πb are defined as

Πu = ΠI −ΠM = (∂jui)τ
I
ij − (∂jui)τ

M
ij , (16)

Πb = (∂jbi)τ
b
ij , (17)

where ΠI = −(∂jui)τ
I
ij is the inertial SGS energy trans-

fer, ΠM = −(∂jui)τ
M
ij the Maxwell SGS energy transfer

and Πb the SGS energy transfer associated with the elec-
tromotive force. Equations (14) and (15) contain four

extra terms: (∂jui)(uiuj), (∂jui)(bibj), (∂jbi)(biuj) and

(∂jbi)(uibj). Using ∇·u = 0, ∇·b = 0 and the projector

property Ĝ2 = Ĝ, it can be shown that
〈
(∂jui)(uiuj)

〉
V

= 0 , (18)
〈

(∂jbi)(biuj)
〉
V

= 0 , (19)

and 〈
(∂jui)(bibj)

〉
V

= −
〈

(∂jbi)(uibj)
〉
V
, (20)

hence they do not contribute to the global total energy
balance. Furthermore, it is easy to verify that out of

the four terms only (∂jui)(bibj) is Galilean invariant.
Galilean invariance is important to prevent the occur-
rence of unphysical fluctuations in the measured SGS
energy transfer [22, 49, 50]. This problem can be solved
by adding and subtracting energy transfers originating
from the Leonard stress components for each SGS ten-
sor [9, 51] in Eqs. (14) and (15). The Leonard stresses
are defined as

τ I,Lij = uiuj − uiuj , (21)

τM,L
ij = bibj − bibj , (22)

τ b,Lij = biuj − biuj − (uibj − uibj), (23)
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which give rise to the following energy transfer terms

Πu,L = ΠI,L −ΠM,L = (∂jui)τ
I,L
ij − (∂jui)τ

M,L
ij , (24)

Πb,L = (∂jbi)τ
b,L
ij . (25)

Including the Leonard terms in Eqs. (14) and (15) results
in

∂t
1

2
(ujuj) + ∂j

(
Auj + uiτ

u,L
ij

)

= −Πu −Πu,L − (∂jui)(bibj), (26)

∂t
1

2

(
bjbj

)
+ ∂j

(
Abj + uiτ

b,L
ij

)

= −Πb −Πb,L + (∂jui)(bibj). (27)

Now all terms in the resolved energy evolution equations
are Galilean invariant.

It is important to remark that the Leonard SGS transfers
vanish under spatial averaging, i.e. they do not alter the
global balances. Furthermore, they couple only the re-
solved fields, hence they cannot be associated with trans-
fers between resolved and SGS quantities. Therefore the
LES formulation differs from the P-LES formulation in
a fundamental way: All SGS-tensors in the LES formu-
lation are the sum of the respective P-SGS and Leonard

tensors, e. g. τ I,LES
ij = τ Iij + τ I,Lij , and the correspond-

ing SGS energy transfers of the LES formulation contain
the contribution from the Leonard stresses. That is, the
SGS energy transfers in the LES formulation have con-
tributions from interactions between the resolved fields
[22]. We will come back to this point in the context of
backscatter in Sec. IV A and in the Appendix.

Finally, the term (∂jui)(bibj) occurs in Eqs. (26) and
(27) with opposite sign. Since it is closed in terms of
the resolved fields and exchanges kinetic and magnetic
energy, (∂jui)(bibj) has been named resolved-scale con-
version term [7]. It is positive if kinetic energy is con-
verted to magnetic energy and negative vice versa. With
Πu = ΠI−ΠM and Πb we now have key benchmark quan-
tities to study the properties of the different SGS energy
transfers. Furthermore, as the total energy is conserved
in the absence of forcing and dissipation, the total SGS
energy transfer is also a quantity of interest. We define
the resolved total energy transfer Π through the resolved-
scale total energy balance

∂t
1

2
(uiui) + ∂t

1

2

(
bibi
)

+ ∂j
(
Aj + uiτ

L
ij

)

= −Π−ΠL (28)

where Aj = Auj +Abj , τ
L
ij = τu,Lij + τ b,Lij , Π = Πu+Πb and

ΠL = Πu,L + Πb,L. Figure 2 gives a schematic overview
of the different SGS energy transfers.

FIG. 2: A schematic representation of the energy transfer
between the resolved-scale energies and the SGS energy. The
exchange between magnetic and kinetic energies at the re-
solved scales is carried by the resolved-scale conversion term
(∂jui)bibj . According to Eqs. (26) and (27), the exchange
of energy between resolved scales and SGS follows different
channels, Πb couples the resolved-scale magnetic energy to
the SGS and combines the physical processes of advection
of magnetic energy and magnetic field line stretching, while
Πu transfers kinetic energy between resolved scales and SGS.
The latter itself has two components, an inertial channel ΠI

which is due to vortex-stretching and advection and a mag-
netic channel ΠM originating from the Lorentz force. During
the kinematic stage of the dynamo, ΠM is negligible compared
to ΠI .

IV. A PRIORI ANALYSIS OF THE SGS
ENERGY TRANSFERS

The a priori analysis of the statistical properties of
the SGS energy transfers is carried out using a sharp
spectral cut-off filter, which is defined through its action
on a generic function h

h(x, t) ≡
∑

|k|<kc

ĥ(k, t)eikx, (29)

where kc is the cut-off wavenumber, which corresponds
to the configuration-space filter width ∆ = π/kc.
Although sharp projectors produce Gibbs oscillations
in configuration space [52] resulting in SGS stress
tensors [53] that are not positive-definite, they have
the advantage to create a clear distinction between
resolved and unresolved scales and to allow all terms
in the equations (9)-(10) to evolve on the same Fourier
subspace for all times. Moreover, for nonconducting
flows, a good agreement between the statistics of the
SGS energy transfer obtained from a sharp cutoff and
Gaussian filter was found [22], suggesting that effects
specific to Galerkin projection have only a subleading
effect at the level of the energy evolution equations.

In what follows, we study the mean (here, mean refers
to the combined spatial and ensemble average) P-SGS
energy transfers and their spatial fluctuations for differ-
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FIG. 3: The mean total SGS energy transfer 〈Π〉V,N normal-
ized with the total dissipation ε versus the cutoff wavenum-
ber kc at the kinematic (I), nonlinear (II) and stationary (III)
stages.

ent kc. The fluctuations are investigated through the
probability density functions (pdfs) of the respective P-
SGS energy transfers. In order to quantify the departure
from Gaussianity at different scales, it is customary to
evaluate the flatness Fx of the standardized pdfs,

Fx(kc) = 〈x4〉/〈x2〉2 ∼ kζc ,

as a function of the cutoff wavenumber, where x rep-
resents the different contributions of the P-SGS energy
transfer. Since the Leonard stresses do not provide in-
formation relevant to modelling, we summarize results
specific to the Leonard stresses in the Appendix, which
is referenced in the text where necessary.
We begin with Π, and subsequently increase the level of
detail by first splitting Π into Πu and Πb, followed by the
decomposition of Πu into ΠI and ΠM . Note that Πb is not
decomposed any further, because the stress tensors asso-
ciated with the advection and field-line stretching terms
in the induction equation originate both from the elec-
tric field and are related to each other by transposition,
as discussed in Sec. III. As such, a single LES model term
should be used in the induction equation.

A. The total SGS energy transfer

Figure 3 presents 〈Π〉V,N as function of kc at three dif-
ferent instants during the time evolution which are repre-
sentative of the three stages (I)-(III). Since Π is obtained
using a spectral cut-off projector, its mean value equals
the total energy flux in Fourier space across the cut-off
wavenumber kc = π/∆, see [22, 54]. As can be seen from
Fig. 3, 〈Π〉V,N > 0, which is representative of a mean
total energy transfer from large scales to small scales.
Furthermore, we find that 〈Π〉V,N does not change sig-
nificantly during the different evolutionary stages of the
dynamo, which implies that the exchange of kinetic and

magnetic energy proceeds in a way that leaves the total
scale-by-scale transfer unaffected. We will come back to
this point in further detail when assessing the decom-
posed SGS energy transfers.

Since 〈Π〉V,N > 0, it can be expected that the pdf of
Π is positively skewed such that events leading to a for-
ward transfer of total energy across the filter scale are
more likely than backscatter events. This is indeed the
case as shown by the standardized pdf of Π in Fig. 4(a) at
kc = 20 for stages (I)-(III). Apart from more pronounced
tails occurring in stage (II), the standardized pdfs are
remarkably similar. However, while the pdf of Π is posi-
tive skewed at all stages, the pdf of ΠL is symmetric (see
Fig. 12 in Appendix ). Hence, by measuring Π = Π +ΠL

as the total SGS energy transfer, the residual transfer
amongst the resolved scales carried by the Leonard com-
ponent could lead to the conclusion of backscatter events
being more frequent than they actually are.

In Fig.4(b) we show the flatness of Π, (F
Π

), as a func-
tion of the cut-off wavenumber kc. From this analysis
we can see that the flatness shows a similar power-law
behavior in the inertial range 2 ≤ kc ≤ 30 during all
stages in the evolution. The flatness scaling exponent
ζ = 0.55±0.05, see inset of Fig. 4(b), has been measured
by a least-squares fit and its error has been estimated
by varying the fitting interval within the inertial range
2 ≤ kc ≤ 30. A small temporal variability of the flat-
ness is observed only in the dissipative range where it
is also found to increase exponentially suggesting strong
deviation from Gaussianity at all times. From both the
pdfs and flatness analysis it follows that the statistical
properties of Π are conserved during the temporal evo-
lution. Fig. 4(c) presents the pdfs of Π at a fixed time
during the non-linear stage (II) at three different cut-off
wavenumbers kc = 8, kc = 20 and kc = 70. As can
be seen from Figs. 1(b) and (3), kc = 8 and kc = 20
correspond to the beginning and the end of the inertial
range, respectively, while kc = 70 lies in the dissipative
range. From the comparison of the three standardized
pdfs in Fig.4(c) we can clearly observe the presence of
intermittency in the statistics of Π through an increas-
ing departure from Gaussianity at successively smaller
scales. The same information can be extracted by the
power-law behavior of the flatness over the inertial range
of scales which also shows the intermittent properties of
the SGS energy transfer in MHD turbulence. It is inter-
esting to note that the value of ζ measured from the data
is in agreement with the prediction of the She-Leveque
model [55]. Indeed, from the scaling estimate,

〈|Π|n〉 = O
(
∆ζ3n−n

)
,

[22, 56] and from the She-Leveque values of the exponents
for n=2: ζ6 ∼ 1.77 and n=4: ζ12 ∼ 1.94 (note that there
is a typo in the value of ζ12 reported in ref. [22]), we
obtain for the flatness the She-Leveque prediction ζ

SL
∼

0.6.
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B. Kinetic and magnetic SGS energy transfers

As discussed in Sec. III, Π can be further decomposed
into Πu and Πb. Furthermore, the resolved-scale con-
version term, (∂jui)bibj , in Eqs. (26) and (27), which
cancels out in Eq. (28) for the total resolved-scale en-
ergy, must also be measured. It contains information on
the scale-dependence of the conversion of kinetic to mag-
netic energy, an assessment of which is essential in order
to provide guidance for SGS models of MHD dynamos.
The averages 〈Πu〉V,N ,

〈
Πb
〉
V,N

and 〈(∂jui)bibj〉V,N are

shown in Fig. 5(a-c), respectively. We first notice that
〈Πu〉V,N gets depleted towards stage (III) while

〈
Πb
〉
V,N

increases. From a comparison of the large increase
of 〈(∂jui)bibj〉V,N relative to the smaller decrease of
〈Πu〉V,N during stages (I)-(III), it follows that the growth
of the magnetic field is due to direct interactions between
u and b. The data presented in Fig. 5(a,b) also show
that both the kinetic and magnetic SGS energy trans-
fers are forward. From Fig. 5(c) it can be seen that
〈(∂jui)bibj〉V,N has an inflection point that saturates at
k∗ ≈ 20. Since the large-scale conversion term is the run-
ning integral in k of the energy transfer at k, an inflection
point in 〈(∂jui)bibj〉V,N at k∗ implies an extremum in the
energy conversion at k∗, corresponding to a saturation
length scale for the conversion of kinetic to magnetic en-

ergy. The existence of a saturation length scale implies
the breaking of inertial self-similarity and puts a natu-
ral constraint on any LES for MHD. Either we use an
extremely resolved model with kc � k∗, and we fully
resolve the dynamics leading to the non-linear dynamo
saturation, or we use kc ∼ k∗ and a very sophisticated
SGS model must be used. Certainly one cannot further
push and use kc � k∗, or a fully ad-hoc magnetic field
growth must be supplied. An in-depth investigation of
the statistical properties of the resolved-scale conversion
term would provide guidance for cases where very coarse
grids require the aforementioned ad-hoc magnetic forcing
term. A quantitative assessment of this issue also re-
quires a posteriori analyses and would constitute a useful
contribution to MHD LES.

Figure 6(a,b) presents the standardized pdfs of Πu and
Πb at kc = 20. We note that the pdfs of Πb are only
shown for stages (II) and (III), as Πb is negligible in stage
(I), because the system is dominated by magnetic field
amplification which occurs through the term (∂jui)bibj .
Although 〈Πu〉V,N and 〈Πb〉V,N are positive, that is, ki-
netic and magnetic energies are transferred downscale on
average, the pdfs of Πu and Πb develop negative tails.
The latter is particularly pronounced for Πb in stage (III),
as shown in Fig. 6(b). That is backscatter events in the
magnetic SGS energy transfer cannot be neglected for a
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the total energy dissipation rate ε versus the cutoff wavenum-
ber kc during the kinematic (I), non-linear (II) and stationary
(III) stages.

fully nonlinear dynamo. The latter implies that dissipa-
tive approaches such as the Smagorinsky closure [57] are
hardly optimal to model the SGS stresses in the induc-
tion equation. The flatness of Πu and Πb as a function
of kc is shown Figs. 6(c,d). There appears to be a slight
indication of increased intermittency in stage (III) com-
pared to stages (I) and (II) for both Πu and Πb since
the flatness becomes more scale-dependent in the iner-
tial range. As can be seen from the figures, Πb appears to
be less intermittent than Πu. However, the latter state-
ments on intermittency require further assessment using
higher-resolved datasets with a more extended inertial

range.
Visualisations of Πu and Πb obtained during stage (III)

are presented in the top panels of Fig. 7. A striking fea-
ture is the localized elongated nature of intense forward-
transfer events in Πu. Similar structures are are also
visible in Πb , and the colour-mapping suggests an in-
verse relation between Πu and Πb, where large values of
Πu are correlated with small values of Πb and vice versa.
The correlation between Πu and Πb is quantified through
their joint pdf shown in the bottom panel of Fig. 7. The
data in the figure show a tendency towards higher prob-
abilities along the axes where either Πu = 0 or Πb = 0,
which suggest a mild inverse proportionality between the
two. As will be seen later, the intense forward-transfer
events in Πu originate from the P-SGS Maxwell stresses
in Eq. (9).

C. Inertial and Maxwell SGS energy transfers

The term Πu in Eq. (9) is now further decomposed into
ΠI and ΠM , as introduced in Sec. III. Figure 8 presents〈
ΠI
〉
V,N

and
〈
−ΠM

〉
V,N

as functions of kc where the sign

convention for ΠM reflects the sign with which it occurs
in Eq. (9). During the kinematic stage (I),

〈
ΠM

〉
V,N

is

negligible and the total SGS energy transfer is carried
by
〈
ΠI
〉
V,N

. As expected 〈ΠI〉V,N gets depleted towards

stage (III) while 〈−ΠM 〉V,N increases. Both
〈
ΠI
〉
V,N

and〈
−ΠM

〉
V,N

are positive, that is, the resolved-scale kinetic

energy is transferred from large to small scales through
inertial transfer as well as through the Maxwell compo-
nent.

Figures 9 (a,b) show the standardized pdfs of ΠI and
ΠM , respectively, where we note that the pdf of ΠM

is only shown in stages (II) and (III) as it is negligible
in stage (I). During stages (II) and (III) the pdf of ΠI

changes significantly compared to its shape during stage
(I), where the inertial dynamics are approximately unaf-
fected by the magnetic field. The most striking feature
here is the development of wide tails and a much more
symmetric shape. That is, the inertial SGS energy trans-
fer fluctuates very differently in presence of a fluctuating
magnetic field as in the nonconducting case: First, the
wide tails indicate that extreme events are more likely
than in the nonconducting case. Second, the symmetric
shape implies that backscatter events in the inertial SGS
energy transfer become significant. In contrast, as can
be seen from Fig. 9 (b), the pdf of ΠM has a clear posi-
tive skewness. That is, backscatter events are much less
important than for all other SGS energy transfer com-
ponents and the contributions from the SGS Maxwell
stresses should be well approximated by a dissipative
model.

Measurements of the pdfs of ΠI + ΠI,L and ΠM+ΠM,L

during the saturated stage of a small-scale dynamo have
been reported recently [8]. By comparison of Figs. 9 (a,b)
with the left panel of Fig. 7 in Ref. [8], one observes that
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the shape of the pdfs measured in Ref. [8] is quite differ-
ent from the results found here for ΠI and ΠM . More
precisely, the pdf of ΠI + ΠI,L in Ref. [8] lacks the wide
tails seen for ΠI here, and the pdf of ΠM +ΠM,L is much
more symmetric than that presented for ΠM in Fig. 9(b).
There are two reasons for latter difference. First, the
Leonard component is included in the measurement of
the SGS energy transfer in Ref. [8] while it is not in-
cluded here. Second, the Reynolds numbers and filter
widths also differ. In Ref. [8] the the pdfs were measured
at Reλ = 75 at a filter scale coresponding to kc = 64. For
comparison, in our dataset Reλ = 211, and the pdfs in
Figs. 9 (a,b) are measured at kc = 20. Even in our simu-
lations, it can be seen from the energy spectra (Fig. 1(b))
and the mean SGS energy transfer (Fig. 3) that the dy-
namics at kc = 64 is significantly affected by viscous and
Joule dissipation. This will be even more so for lower
Reλ. In order to provide a like-for-like comparison, we
measured of the pdfs of ΠM , ΠM,L and ΠM + ΠM,L for
kc = 80, which for our data at Reλ = 211 is comparable
to kc = 64 for Reλ = 75. As can be seen in Fig. 13
in the Appendix, the pdf of ΠM,L in the viscous range is
sizeable and symmetric, such that the inclusion of ΠM,L

in the measurement of the Maxwell SGS transfer masks
the distinctive positive skewness of its PDF.

Figures 9(c,d) present the flatness of ΠI and ΠM as
functions of kc. For ΠI , the development of strongly
non-Gaussian statistics is also reflected in the flatness,
which has higher values in stage (III) compared to stages
(I) and (II). Furthermore, the flatness has a much weaker
scale-dependence during stage (III) as shown in Fig. 9(c).
This indicates a depletion of intermittency of the veloc-
ity field in presence of a saturated dynamo. Indeed, a
comparison of the pth-order scaling exponents ζp of the
velocity-field structure functions for hydrodynamic tur-
bulence [58] and for a saturated MHD dynamo [39] re-
veals differences in ζp for p > 5. According to these
results, the velocity field is less intermittent in presence
of a saturated dynamo, as observed here. Since (ΠI)p is
related to the 3pth-order velocity-field structure function
[59] the scaling properties of high-order structure func-
tions determine the behavior of the flatness of ΠI . There-
fore differences concerning intermittency between MHD
and hydrodynamic turbulence are more clearly visible in
measurements of the flatness of ΠI compared to direct
measurements of ζp. However, a quantitative assessment
of the scaling properties of the flatness of ΠI requires a
further extended scaling range. In contrast to the results
for ΠI , the flatness of ΠM shown in Fig. 9(d) retains
its scale-dependence after dynamo saturation. As can
be seen from the figure, the flatness of ΠM has a much
stronger scale dependence compared to Π. The stronger
intermittent signal in ΠM may be related to the fact that
the saturated magnetic field is much more intermittent
than the velocity field that maintains it, as shown by
measurements of scaling exponents of inertial and mag-
netic structure functions obtained from DNSs of station-
ary small-scale dynamos [39]. As in the present data, no
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mean magnetic field was present in the data analysed in
Ref. [39].

As shown in Fig. 8(a), the mean inertial interscale en-
ergy transfer is weakened in presence of a saturated dy-

namo. This partly occurs through cancellations of for-
wards and inverse transfers since backscatter events in
ΠI now occur more frequently as already discussed. Ad-
ditionally, an overall depletion of the fluctuations of ΠI
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occurs, as can be seen from the comparison of the pdfs
of ΠI and ΠM and Πu presented in Fig. 10.

The clear forward transfer of energy in stage (III) as-
sociated with the Maxwell stress is also visible in the 2D
visualisations of ΠI and ΠM presented in the top panels
of Fig. 11. Unlike ΠI , ΠM shows very intense and lo-
calized regions of forward transfer. As discussed earlier,
the pdf of ΠI becomes quite symmetric in stage (III),
indicating that positive and negative fluctuations of ΠI

occur with similar probabilities. This is also visible in
the visualisations, where we see regions of forward and
inverse transfer which are of comparable intensity. The
fluctuations of ΠI also appear to be much weaker than
those of ΠM . Finally, we find that ΠI and ΠM have a re-
lation of weak inverse proportionality as can be seen from
their joint pdf presented in the bottom panel of Fig. 11.
The latter suggests that the transfer of kinetic energy
between resolved scales and SGS is more likely to occur
separately through ΠI or ΠM rather than simultaneously
through both.
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V. CONCLUSIONS

In this paper, we investigated the different components
of the SGS energy transfer through three stages of dy-
namo evolution considering mean and fluctuating prop-
erties. We decomposed the total SGS energy transfer in
the components corresponding to either the momentum
or the induction equation, thus separating kinetic from
magnetic SGS energy transfer. The kinetic SGS energy
transfer was then further split into an inertial component
and a component originating from the Lorentz force. By

also distinguishing between the actual SGS energy trans-
fers and residual contributions from interactions amongst
the resolved scales, we got clear measurements of the fluc-
tuating individual SGS energy transfers.

Concerning the velocity field, important differences are
present between the statistical properties of the inertial
SGS energy transfer in presence of a saturated dynamo
and in the nonconducting case. First, the kinetic energy
cascade is depleted in the saturated dynamo regime, see
Figs. 8(a) and 10. Second, we find that the pdf of the
inertial SGS energy transfer becomes more symmetric
and less Gaussian than in the non-conducting case with
wider tails suggesting more extreme events also in terms
of backscatter, see Figs. 9(a) and 10. Third, we found
quantitative evidence that the flatness of the inertial SGS
energy transfer has a weaker scale dependence, which
suggests that the velocity field may be less intermittent
in presence of a saturated small-scale dynamo than in
the nonconducting case, see Fig. 9(c). This latter case
deserves a more quantitative investigation by increasing
the statistics and by extension of the involved scales.
Concerning the magnetic field, we find that the pdf of
the magnetic energy transfer is pretty symmetric in both
the nonlinear and the saturated dynamo regimes, see
Fig. 6(b). In contrast, the SGS energy transfer originat-
ing from the Maxwell stress in the momentum equation
is clearly skewed towards positive values, see Figs. 9(b)
and 10.

In terms of fundamental results on interscale energy
transfer in MHD turbulence, the filtering technique is
a useful alternative to spectral approaches. Accord-
ing to analyses of shell-to-shell transfers, magnetic and
velocity-field modes couple at disparate wave number
shells [20, 45, 60, 61], leading to nonlocal contributions
to the conversion of kinetic to magnetic energy in Fourier
space. As can be seen from Eqs. (26) and (27), the con-
version of resolved-scale kinetic to magnetic energy in-
volves resolved scales only. Although not assessed here,
the energy conversion term for the SGS energies is also
closed in terms of the SGS [7]. That is, the conversion
terms do not couple the resolved scales with the SGS.
In summary, the filtering technique shows that energy
conversion across the filter scale does not occur [7]. The
degree of locality of energy cascades is certainly affected
by the presence of large-scale fields, such as in rotating
turbulence, two-dimensional flows or in the presence of
magnetic and kinetic helicity [62], requiring further anal-
ysis of the effect of SGS closures on higher-order statistics
[63]. Hence, separate a-priori studies are required in or-
der to provide guidance for LES modeling in such cases,
as e.g for large-scale dynamos [8].

In terms of guidance for LES modelling, the symmetry
of the magnetic SGS energy transfer pdf implies that
backscatter events are important, which calls applica-
tions of dissipative models for the stresses in the induc-
tion equation into question. For the momentum equa-
tion, a similar situation occurs for the inertial SGS en-
ergy transfer in the saturated stage of the dynamo. As a
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FIG. 11: (Colour online) Top: Two-dimensional visualisations of the inertial and Maxwell SGS energy transfers ΠI (left) and
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result, while a dissipative model for the inertial stresses
may be suitable during the kinematic stage, a more so-
phisticated approach is required to adequately capture
the increased backscatter in the nonlinear and saturated
stages. On the other hand, dissipative models would be

well suited for the Maxwell stress in both nonlinear and
saturated stages. Finally, we find that the correlation
between the individual SGS energy transfers appears to
be of inverse proportionality in the saturated stage. This
holds for Πu and Πb and also for ΠI and ΠM . That is,
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the energy transfers in the different channels appear to
occur separately, which should be taken into account in
the design of more sophisticated LES models for MHD.
However, measurements of the correlations between the
different SGS energy transfers at higher Reynolds num-
bers need to be carried out in order to better quantify
the effect.
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Appendix A: Comparison between the SGS and
Leonard energy transfers

The Leonard components of the individual energy
transfer terms were defined in Eqs. (24)-(25). As men-
tioned before, the Leonard transfers do not contribute to
the SGS energy transfer as they are closed in terms of the
resolved fields. Furthermore, it can be shown that they
vanish under spatial averaging. The latter suggests that
forward and backward energy transfer should be more or
less equally likely. Figure 12 presents comparisons be-

tween the actual SGS energy transfer Π and its Leonard
component ΠL at kc = 20 and during stages (I)-(III).
As can be seen, ΠL is indeed more symmetric than Π in
all cases. This situation is also present for the Maxwell
energy transfers ΠM and ΠM,L shown in Fig. 13 for the
nonlinear and stationary stages of dynamo evolution. At
least in stage (III), a measurement of ΠM + ΠM,L in-
stead of ΠM would have resulted in a more pronounced
left tail of the pdf, leading to the consclusion of more
backscatter being present in the Maxwell SGS transfer
than there actually is. In Fig. 14 the same measure-
ments of the Maxwell energy transfers are presented at
a different cutoff closer to the dissipation range, namely
kc = 80. At this scale, all pdfs show a higher probabil-
ity to measure extreme events of energy transfer. How-
ever, the pdf of the Maxwell energy transfer ΠM remains
clearly skewed towards the right, which suggests that the
extreme events remain correlated to the direction of the
mean energy flux, even though they become more than
two orders of magnitude larger compared to the mean
value. Moreover, as already observed in Fig.12 from the
pdfs of the total energy transfer, this information is not
accessible through a measurement of the sum between
ΠM and ΠM,L, because the Leonard term is completely
symmetric and large enough to dominate the left tail of
the PDF. The same results are valid in both the nonlinear
and the stationary stage.
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