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HIGH-FREQUENCY ASYMPTOTICS FOR LIPSCHITZ–KILLING
CURVATURES OF EXCURSION SETS ON THE SPHERE

BY DOMENICO MARINUCCI1 AND SREEKAR VADLAMANI

University of Rome Tor Vergata and TIFR-CAM

In this paper, we shall be concerned with geometric functionals and
excursion probabilities for some nonlinear transforms evaluated on Fourier
components of spherical random fields. In particular, we consider both ran-
dom spherical harmonics and their smoothed averages, which can be viewed
as random wavelet coefficients in the continuous case. For such fields, we
consider smoothed polynomial transforms; we focus on the geometry of
their excursion sets, and we study their asymptotic behaviour, in the high-
frequency sense. We focus on the analysis of Euler–Poincaré characteristics,
which can be exploited to derive extremely accurate estimates for excursion
probabilities. The present analysis is motivated by the investigation of asym-
metries and anisotropies in cosmological data. The statistics we focus on are
also suitable to deal with spherical random fields which can only be partially
observed, the canonical example being provided by the masking effect of the
Milky Way on Cosmic Microwave Background (CMB) radiation data.

1. Introduction.

1.1. Motivations and general framework. In this paper, we shall be concerned
with geometric functionals and excursion probabilities for some nonlinear trans-
forms evaluated on Fourier components of spherical random fields. More pre-
cisely, let {T (x), x ∈ S2} denote a Gaussian, zero-mean isotropic spherical random
field, that is, for some probability space (�,�,P ) the application T (x,ω) →R is
{B(S2) × �} measurable, where B(S2) denotes the Borel σ -algebra on the sphere,
and by isotropy we mean as usual that for all rotation g ∈ SO(3), the field {T (x)}
has the same law as {T g(x) := T (gx)}. It is well known that the following repre-
sentation holds in the mean square sense (see, e.g., [32–34]):

T (x) =∑
�m

a�mY�m(x) =∑
�

T�(x), T�(x) =
�∑

m=−�

a�mY�m(x),(1)

where {Y�m(·)} denotes the family of spherical harmonics, and {a�m} the array
of random spherical harmonic coefficients, which satisfy Ea�ma�′m′ = C�δ

�′
� δm′

m ;
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here, δb
a is the Kronecker delta function, and the sequence {C�} represents the

angular power spectrum of the field. As pointed out in [35], under isotropy
the sequence C� necessarily satisfies

∑
�

(2�+1)
4π

C� = ET 2 < ∞ and the random
field T (x) is mean square continuous. Under the slightly stronger assumption∑

�≥L(2� + 1)C� ≤ O(log−2 L), the field can be shown to be a.s. continuous, an
assumption that we shall exploit heavily below.

Our attention will be focused on the Fourier components {T�(x)}, which repre-
sent random eigenfunctions of the spherical Laplacian:

�S2T� = −�(� + 1)T�, � = 1,2, . . . .

A lot of recent work has been focused on the characterization of geometric features
for {T�}, under Gaussianity assumptions; for instance, [58, 59] studied the asymp-
totic behaviour of the nodal domains, proving an earlier conjecture by Berry on the
variance of (functionals of) the zero sets of T�. In an earlier contribution, [14] had
focused on the Defect or signed area, that is, the difference between the positive
and negative regions; a central limit theorem for these statistics and more gen-
eral nonlinear transforms of Fourier components was recently established by [37].
These studies have been motivated, for instance, by the analysis of so-called Quan-
tum Chaos (see again [14]), where the behaviour of random eigenfunctions is
taken as an approximation for the asymptotics in deterministic case, under com-
plex boundary conditions. More often, spherical eigenfunctions emerge naturally
from the analysis of the Fourier components of spherical random fields, as in (1).
In the latter circumstances, several functionals of T� assume a great practical im-
portance: to mention a couple, the squared norm of T� provides an unbiased sample
estimate for the angular power spectrum C�,

E

{∫
S2

T 2
� (x) dx

}
= (2� + 1)C�,

while higher-order power lead to estimates of the so-called polyspectra, which
have a great importance in the analysis of non-Gaussianity (see, e.g., [34]).

The previous discussion shows that the analysis of nonlinear functionals of {T�}
may have a great importance for statistical applications, especially in the frame-
work of cosmological data analysis. In this area, a number of papers have searched
for deviations of geometric functionals from the expected behaviour under Gaus-
sianity. For instance, the so-called Minkowski functionals have been widely used
as tools to probe non-Gaussianity of the field T (x); see [38] and the references
therein. On the sphere, Minkowski functionals correspond to the area, the bound-
ary length and the Euler–Poincaré characteristic of excursion sets, and up to con-
stants they correspond to the Lipschitz–Killing curvatures we shall consider in this
paper; see [5], page 144. Many other works have also focused on local deviations
from the Gaussianity assumption, mainly exploiting the properties of integrated
higher order moments (polyspectra); see [46, 49].
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In general, the works aimed at the analysis of local phenomena are often based
upon wavelets-like constructions, rather than standard Fourier analysis. The as-
trophysical literature on these issues is vast; see, for instance, [40, 50] and the
references therein. Indeed, the double localization properties of wavelets (in real
and harmonic domain) turn out usually to be extremely useful when handling real
data.

In this paper, we shall focus on sequence of spherical random fields which can
be viewed as averaged forms of the spherical eigenfunctions, for example,

βj (x) =∑
�

b

(
�

Bj

)
T�(x), j = 1,2,3 . . .

for b(·) a weight function whose properties we shall discuss immediately. The
fields {βj (x)} can indeed be viewed as a representation of the coefficients from a
continuous wavelet transform from T (x), at scale j . More precisely, consider the
kernel


j

(〈x, y〉) :=∑
�

b

(
�

Bj

)
2� + 1

4π
P�

(〈x, y〉)

= ∑
�

b

(
�

Bj

) �∑
m=−�

Y�m(x)Y �m(y).

Assuming that b(·) is smooth (e.g., C∞), compactly supported in [B−1,B], and
satisfying the partition of unity property

∑
j b2( �

Bj ) = 1, for all � > B , where B

is a fixed “bandwidth” parameter s.t. B > 1. Then 
j(〈x, y〉) can be viewed as a
continuous version of the needlet transform, which was introduced by Narcowich
et al. in [41], and considered from the point of view of statistics and cosmologi-
cal data analysis by many subsequent authors, starting from [10, 36, 47]. In this
framework, the following localization property is now well known (see, e.g., [41],
Theorem 3.5., [26], Lemma 4.1 or [34], Proposition 10.5): for all M ∈ N, there
exists a constant CM (independent of j ) such that∣∣
j

(〈x, y〉)∣∣≤ CMB2j

{1 + Bjd(x, y)}M ,(2)

where d(x, y) = arccos(〈x, y〉) is the usual geodesic distance on the sphere.
Hence, the needlet field

βj (x) =
∫
S2


j

(〈x, y〉)T (y) dy

=
∫
S2

∑
�m

b

(
�

Bj

)
Y�m(x)Y �m(y)

∑
�′m′

a�′m′Y�′m′(y) dy(3)

=∑
�m

∑
�′m′

b

(
�

Bj

)
a�′m′Y�m(x)δ�′

� δm′
m =∑

�

b

(
�

Bj

)
T�(x)
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is then only locally determined, that is, for Bj large enough its value depends
only on the behaviour of T (y) in a neighbourhood of x. This is a very important
property, for instance, when dealing with spherical random fields which can only
be partially observed, the canonical example being provided by the masking effect
of the Milky Way on Cosmic Microwave Background (CMB) radiation.

It is hence very natural to produce out of {βj (x)} nonlinear statistics of great
practical relevance. To provide a concrete example, a widely disputed theme in
CMB data analysis concerns the existence of asymmetries in the angular power
spectrum; it has been indeed often suggested that the angular power {C�} may
exhibit different behaviour for different subsets of the sky, at least over some mul-
tipole range; see, for instance, [28, 46]. It is readily seen that

E
{
β2

j (x)
}=∑

�

b

(
�

Bj

)
2� + 1

4π
C�,

which hence suggests a natural “local” estimator for a binned form of the an-
gular power spectrum (note that the right-hand side does not depend on x, as a
consequence of isotropy). More precisely, it is natural to consider some form of
averaging and introduce the process∫

S2
K
(〈z, x〉)β2

j (x) dx, z ∈ S2,(4)

where K(〈·, ·〉) is some kernel function whose properties we will discuss below;
for instance, should we consider the behaviour of the angular power spectrum on
the northern and southern hemisphere, we might focus on z = N,S, where N,S

denote, respectively, the North and South Poles (compare [12, 28, 46, 48] and the
references therein). In the rest of this paper, we shall be concerned with centred
and normalized versions of (4), that is, processes of the form

gj ;q(z) :=
∫
S2

K
(〈z, x〉)Hq

(
βj (x)√
Eβ2

j (x)

)
dx,(5)

where Hq(·) is the Hermite polynomial of qth order; for instance, for q = 3 these
processes could be exploited to investigate local variation in Gaussian and non-
Gaussian features (see [49] and below for more discussion and details).

1.2. Main result. The purpose of this paper is to study the asymptotic be-
haviour for the expected value of the Euler characteristic and other geometric func-
tionals for the excursion regions of sequences of fields such as {gj ;q(·)}, and to ex-
ploit these results to obtain excursion probabilities in non-Gaussian circumstances.
Indeed, on one hand these geometric functionals are of interest by themselves, as
they provide the basis for implementing goodness-of-fit tests (compare [38]); on
the other hand, they provide the clue for approximations of the excursion proba-
bilities for {gj ;q(·)}, by means of some weak convergence results we shall estab-
lish, in combination with some now classical arguments described in detail in the
monograph [5].
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It is important to stress that our results are obtained under a setting which is
quite different from usual. In particular, the asymptotic theory is investigated in the
high frequency sense, for example, assuming that a single realization of a spherical
random field is observed at higher and higher resolution as more and more refined
experiments are implemented. This is the setting adopted in [34]; see also [7, 51]
for the related framework of fixed-domain asymptotics.

Due to the nature of high-frequency asymptotics, we cannot expect the finite-
dimensional distributions of the processes we focus on to converge. This will re-
quire a more general notion of weak convergence, as developed, for instance, by
[21, 23]. By means of this, we shall indeed show how to evaluate asymptotically
valid excursion probabilities, which provide a natural solution for hypothesis test-
ing problems. Indeed, the main result of the paper, Theorem 20, provides a very
explicit bound for the excursion probabilities of non-Gaussian fields such as (5),
for example,

lim sup
j→∞

∣∣∣Pr
{

sup
x∈S2

g̃j ;q(x) > u
}

− {2(1 − �(u)
)+ 2uφ(u)λj ;q

}∣∣∣
(6)

≤ exp
(
−αu2

2

)
,

where g̃j ;q(x) has been normalized to have unit variance, φ(·),�(·) denote stan-
dard Gaussian density and distribution function, α > 1 is some constant and the
parameters λj ;q have analytic expressions in terms of generalized convolutions of
angular power spectra; see (32), (27). See also [42] for some related results on
the distribution of maxima of approximate Gaussian random fields; note, however,
that our approach is quite different from theirs and the tools we use allow us to get
much stronger results in terms of the uniform estimates.

1.3. Plan of the paper. The plan of the paper is as follows: In Section 2, we
review some background results on random fields and geometry, mainly referring
to the now classical monograph [5]. Section 3 specializes these results to spherical
random fields, for which some background theory is also provided, and provides
some simple evaluations for Lipschitz–Killing curvatures related to excursion sets
for harmonic components of such fields. More interesting Gaussian subordinated
fields are considered in Section 4, where some detailed computations for covari-
ances in general Gaussian subordinated circumstances are also provided. Section 5
provides the main convergence results, that is, shows how the distribution of these
random elements are asymptotically proximal (in the sense of [21]) to those of
a Gaussian sequence with the same covariances. This result is then exploited in
Section 6, to provide the proof of (6). A number of possible applications on real
cosmological data sets are discussed throughout the paper.
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2. Background: Random fields and geometry. This section is devoted to re-
call basic integral geometric concepts, to state the Gaussian kinematic fundamen-
tal formula, and to discuss its application in evaluating the excursion probabilities.
This theory has been developed in a series of fundamental papers by R. J. Adler,
J. E. Taylor and coauthors (see [1, 4, 16, 52–54]), and it is summarized in the
monographs [5, 6] which are our main references in this Section (see also [8, 9]
for a different approach, and [2, 3, 18, 55] for some further developments in this
area; applications to the sphere have also been considered very recently by [17,
19]).

2.1. Lipschitz–Killing curvatures and Gaussian Minkowski functionals. There
are a number of ways to define Lipschitz–Killing curvatures, but perhaps the
easiest is via the so-called tube formula, which, in its original form is due to
Hotelling [29] and Weyl [57]. To state the tube formula, let M be an m-dimensional
smooth subset of Rn such that ∂M is a C2 manifold endowed with the canonical
Riemannian structure on R

n. The tube of radius ρ around M is defined as

Tube(M,ρ) = {
x ∈ R

n :d(x,M) ≤ ρ
}
,(7)

where

d(x,M) = inf
y∈M

‖x − y‖.(8)

Then according to Weyl’s tube formula (see [5]), the Lebesgue volume of this
constructed tube, for small enough ρ, is given by

λn

(
Tube(M,ρ)

)= m∑
j=0

ρn−jωn−jLj (M),(9)

where ωj is the volume of the j -dimensional unit ball and Lj (M) is the j th-
Lipschitz–Killing curvature (LKC) of M . A little more analysis shows that
Lm(M) = Hm(M), the m-dimensional Hausdorff measure of M , and that L0(M)

is the Euler–Poincaré characteristic of M . Although the remaining LKCs have less
transparent interpretations, it is easy to see that they satisfy simple scaling relation-
ships, in that Lj (αM) = αjLj (M) for all 1 ≤ j ≤ m, where αM = {x ∈ R

n :x =
αy for some y ∈ M}. Furthermore, despite the fact that defining the Lj via (9) in-
volves the embedding of M in R

n, the Lj (M) are actually intrinsic, and so are
independent of the ambient space.

Apart from their appearance in the tube formula (9), there are a number of other
ways in which to define the LKCs. One such (nonintrinsic) way which signifies the
dependence of the LKCs on the Riemannian metric is through the shape operator.
Let M be an m-dimensional C2 manifold embedded in R

n; then

Lk(M)
(10)

= Kn,m,k

∫
M

∫
S(NxM)

Tr
(
S(m−k)

ν

)
1NxM(−ν)Hn−m−1(dν)Hm−1(dx),
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where, Kn,m,k = 1
(m−k)!

�((n−k)/2)

(2π)(n−k)/2 , and S(NxM) denotes a sphere in the normal
space NxM of M at the point x ∈ M .

Closely related to the LKCs are set functionals called the Gaussian Minkowski
functionals (GMFs), which are defined via a Gaussian tube formula. Consider
the Gaussian measure, γn(dx) = (2π)−n/2e−‖x‖2/2 dx, instead of the standard
Lebesgue measure in (9); the Gaussian tube formula is then given by

γn

(
(M,ρ)

)=∑
k≥0

ρk

k! M
γn

k (M),(11)

where the coefficients Mγn

k (M)’s are the GMFs (for technical details, we refer the
reader to [5]). We note that these set functionals, like their counterparts in (9) can
be expressed as integrals over the manifold and its normal space (cf. [5]).

2.2. Excursion probabilities and the Gaussian kinematic fundamental formula.
A classical problem in stochastic processes is to compute the excursion probability
or the suprema probability

P
(

sup
x∈M

f (x) ≥ u
)
,

where, as before, f is a random field defined on the parameter space M . In the
case when f happens to be a centered Gaussian field with constant variance σ 2

defined on M , a piecewise smooth manifold, then by the arguments set forth in
Chapter 14 of [5], we have that∣∣∣P { sup

x∈M

f (x) ≤ u
}

−E
{
L0
(
Au(f ;M)

)}∣∣∣< O

(
exp

(
−αu2

2σ 2

))
,(12)

where L0(Au(f ;M)) is, as defined earlier, the Euler–Poincaré characteristic of
the excursion set Au(f ;M) = {x ∈ M :f (x) ≥ u}, and α > 1 is a constant, which
depends on the field f and can be determined (see Theorem 14.3.3 of [5]).

At first sight, from (12) it may appear that we may have to deal with a hard task,
for example, that of evaluating E{L0(Au(f ;M))}. This task, however, is greatly
simplified due to the Gaussian kinematic fundamental formula (Gaussian-KFF)
(see Theorems 15.9.4–15.9.5 in [5]), which states that, for a smooth M ⊂ R

N

E
(
Lf

i

(
Au(f,M)

))
=

dim(M)−i∑
�=0

(
i + �

�

)
�(i/2 + 1)�(�/2 + 1)

�((i + �)/2 + 1)
(2π)−�/2Lf

i+�(M)Mγ
�

([u,∞)
)
,

for example, in the special case of the Euler characteristic (i = 0)

E
{
Lf

0

(
Au(f ;M)

)}=
dim(M)∑

j=0

(2π)−j/2Lf
j (M)Mγ

j

([u,∞)
)
,(13)
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where Lf
j (M) is the j th LKC of M with respect to the induced metric gf given

by

gf
x (Yx,Zx) = E

{
Yf (x) · Zf (x)

}
,

for Xx,Yx ∈ TxM , the tangent space at x ∈ M . The Gaussian kinematic funda-
mental formula will play a crucial role in all the developments to follow in the
subsequent sections.

3. Spherical Gaussian fields. In this section, we shall start from some simple
results on the evaluation of the expected values of Lipschitz–Killing curvatures for
sequences of spherical Gaussian processes. These results will be rather straight-
forward applications of the Gaussian kinematic fundamental formula (13), and are
collected here for completeness and as a bridge toward the more complicated case
of nonlocal transforms of Gaussian subordinated processes, to be considered later.

Note first that for a unit variance Gaussian field on the sphere f :S2 → R,
the expected value of the Euler–Poincaré characteristic of the excursion set
Au(f ;S2) = {x ∈ S2 :f (x) ≥ u} is given by

E
{
L0
(
Au

(
f,S2))}

= Lf
0

(
S2)Mγ

0

([u,∞)
)+ (2π)−1/2Lf

1

(
S2)Mγ

1

([u,∞)
)

+ (2π)−1Lf
2

(
S2)Mγ

2

([u,∞)
)
,

for

Mγ
0

([u,∞)
)= ∫ ∞

u
φ(x) dx, Mγ

j

([u,∞)
)= Hj−1(u)φ(u),

where φ(·) denotes the density of a real valued standard normal random variable,
and Hj(u) denotes the Hermite polynomials,

Hj(u) = (−1)j
(
φ(u)

)−1 dj

duj
φ(u) and H−1(u) = 1 − �(u),

while Lf
k (S2) are the usual Lipschitz–Killing curvatures, under the induced Gaus-

sian metric, that is,

Lf
k

(
S2) := (−2π)−(2−k)/2

2

∫
S2

Tr
(
R(N−k)/2)Volgf ;

here, R is the Riemannian curvature tensor and Volgf is the volume form, under
the induced Gaussian metric, given by

gf (X,Y ) := E{Xf · Yf } = XYE
(
f 2).

We recall that L0(M) is a topological invariant and does not depend on the
metric; in particular, L0(S

2) ≡ 2. Moreover, because the sphere is an (even-) 2-
dimensional manifold, Lf

1 (S2) is identically zero.
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As mentioned before, we start from some very simple result on the Fourier
components and wavelets transforms of Gaussian fields, for example, the expected
value of the Euler–Poincaré characteristic for two forms of harmonic components,
namely

T�(x) =
�∑

m=−�

a�mY�m(x) and βj (x) =∑
�

b

(
�

Bj

)
T�(x),

the first representing a Fourier component at the multipole �, the second a field of
continuous needlet/wavelet coefficients at scale j . We normalize these processes
to unit variance by taking

T̃�(x) = T�(x)√
((2� + 1)/(4π))C�

and

β̃j (x) = βj (x)√∑
� b2(�/Bj )((2� + 1)/(4π))C�

.

We start reporting some simple results on Lipschitz–Killing curvatures of excur-
sion sets generated by spherical Gaussian fields (see [38] and the references therein
for related expressions on R

2 from an astrophysical point of view). These results
are straightforward consequences of equation (13).

LEMMA 1. We have

Lβ̃j

2

(
S2)= 4π

∑
� b2(�/Bj )(2� + 1)C�(�(� + 1)/2)∑

� b2(�/Bj )(2� + 1)C�

.

PROOF. Recall first that, in standard spherical coordinates,

P�

(〈x, y〉)= P�

(
sinϑx sinϑy cos(φx − φy) + cosϑx cosϑy

)
.

Some simple algebra then yields

∂2

∂ϑx ∂ϑy

P�

(〈x, y〉)∣∣∣∣
x=y

= ∂2

sinϑx sinϑy∂φx ∂φy

P�

(〈x, y〉)∣∣∣∣
x=y

= P ′
�(1)

and
∂2

sinϑx∂ϑy ∂φx

P�

(〈x, y〉)∣∣∣∣
x=y

= 0.

The geometric meaning of the latter result is that the process is still isotropic under
the new transformation, whence the derivatives along the two directions are still
independent. As a consequence, writing E{β̃j (x)β̃j (y)} =: �j (x, y) we have

∂2�j(x, y)

∂ϑx ∂ϑy

∣∣∣∣
x=y

= ∂2�j (x, y)

sinϑx sinϑy∂φx ∂φy

∣∣∣∣
x=y

=
∑

� b2(�/Bj )C�((2� + 1)/(4π))P ′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�
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and

∂2�j(x, y)

sinϑx∂ϑy ∂φx

∣∣∣∣
x=y

= 0.

We thus have that

Lβ̃j

2

(
S2)

=
∫
S2

⎧⎪⎪⎪⎨⎪⎪⎪⎩det

⎡⎢⎢⎢⎣
∂2�j (x, y)

∂ϑx ∂ϑy

∣∣∣∣
x=y

∂2�j (x, y)

sinϑx∂φx ∂ϑy

∣∣∣∣
x=y

∂2�j (x, y)

sinϑy∂φy ∂ϑx

∣∣∣∣
x=y

∂2�j (x, y)

sinϑx sinϑy∂φx ∂φy

∣∣∣∣
x=y

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/2

sinϑ dϑ dφ

= 4π

∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

.

Now recall that P ′
�(1) = �(�+1)

2 , whence the claim is established. �

REMARK 2. Note that since the random field βj is an isotropic Gaussian ran-
dom field, the Lipschitz–Killing curvatures of S2 under the metric induced by the
field βj are given by

Lβ̃j

i

(
S2)= λ

i/2
j Li

(
S2),

where Li (S
2) is the ith LKC under the usual Euclidean metric, and λj is the second

spectral moment of β̃j (cf. [5]). This result is true for all isotropic and unit variance
Gaussian random fields.

The second auxiliary result that we shall need follows immediately from The-
orem 13.2.1 in [5], specialized to isotropic spherical random fields with unit vari-
ance. Analogous expressions have been given (among many other results) in the
two recent papers [17, 19]. The computations are straightforward and we report
them only for completeness.

LEMMA 3. For the Gaussian isotropic field β̃j :S2 → R, such that Eβ̃j = 0,
Eβ̃2

j = 1, β̃j ∈ C2(S2) almost surely, we have that

E
{
L0
(
Au

(
β̃j (x), S2))}

(14)

= 2
{
1 − �(u)

}+ 4π

{∑
� b2(�/Bj )C�((2� + 1)/(4π))P ′

�(1)∑
� b2(�/Bj )C�((2� + 1)/(4π))

}
ue−u2/2√

(2π)3
,

E
{
L1
(
Au

(
β̃j (x), S2))}

(15)

= π

{∑
� b2(�/Bj )C�((2� + 1)/(4π))P ′

�(1)∑
� b2(�/Bj )C�((2� + 1)/(4π))

}1/2

e−u2/2,
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and finally

E
{
L2
(
Au

(
β̃j (x), S2))}= {

1 − �(u)
}
4π.(16)

PROOF. We start by recalling that, from Theorem 13.2.1 in [5],

E
{
Li

(
Au

(
β̃j (x), S2))}=

dim(S2)−i∑
�=0

[
i + �

�

]
λ�/2ρ�(u)Li+�

(
S2),

where [
i + �

�

]
:=
(

i + �

�

)
ωi+�

ωiω�

, ωi = πi/2

�(i/2 + 1)
,

ρ�(u) = (2π)−�/2Mγ
�

([u,∞)
)= (2π)−(�+1)/2H�−1(u)e−u2/2,

so that

ρ0(u) = (2π)−1/2
√

2π
(
1 − �(u)

)
eu2/2e−u2/2 = (

1 − �(u)
)
,

ρ1(u) = 1

2π
e−u2/2, ρ2(u) = 1√

(2π)3
ue−u2/2.

Here,

λ = Eβ2
j ;ϑ = Eβ2

j ;φ, βj ;ϑ = ∂

∂ϑ
βj (ϑ,φ),

βj ;φ = ∂

sinϑ∂φ
βj (ϑ,φ),

E
{
β̃2

j ;ϑ
}= ∂2

∂ϑ2E
{
β̃2

j

}=
∑

� b2(�/Bj )C�((2� + 1)/(4π))P ′
�(1)∑

� b2(�/Bj )C�((2� + 1)/(4π))
,

whence

E
{
L0
(
Au

(
β̃j (x), S2))}

= 2
{
1 − �(u)

}+ 4π

{∑
� b2(�/Bj )C�((2� + 1)/(4π))P ′

�(1)∑
� b2(�/Bj )C�((2� + 1)/(4π))

}
ue−u2/2√

(2π)3
.

Also,

E
{
L1
(
Au

(
β̃j (x), S2))}= π

{∑
� b2(�/Bj )C�((2� + 1)/(4π))P ′

�(1)∑
� b2(�/Bj )C�((2� + 1)/(4π))

}1/2

e−u2/2.

Finally,

E
{
L2
(
Au

(
β̃j (x), S2))}= ρ0(u)L2

(
S2)= {

1 − �(u)
}
4π,

which completes the proof. �

In the case of spherical eigenfunctions, the previous lemma takes the following
simpler form; the proof is entirely analogous, and hence omitted.
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COROLLARY 4. For the field {T�(·)}, we have that

E
{
L0
(
Au

(
T̃�(·), S2))}= 2

{
1 − �(u)

}+ �(� + 1)

2

ue−u2/2√
(2π)3

4π,

(17)

E
{
L1
(
Au

(
T̃�(·), S2))}= π

{
�(� + 1)

2

}1/2

e−u2/2

and

E
{
L2
(
Au

(
T̃�(·), S2))}= 4π × {

1 − �(u)
}
.

REMARK 5. Using the differential geometric definition of the Lipschitz–
Killing curvatures, it is easy to observe that

2E
{
L1(Au

(
T̃�(·), S2))}= E

{
len(∂Au

(
T̃�(·), S2))},

where len(∂Au(T̃�(·), S2)) is the usual length of the boundary region of the
excursion set, in the usual Hausdorff sense, which can also be expressed as
L1(∂Au(T�(·), S2)). Hence,

E
{
len
(
∂Au

(
T̃�(·), S2))}= 2π

{
�(� + 1)

2

}1/2

e−u2/2,

which for u = 0 fits with well-known results on the expected value of nodal lines
for random spherical eigenfunctions (see [59] and the references therein). Likewise

E
{
len
(
∂Au

(
β̃j (·), S2))}

(18)

= 2π

{∑
� b2(�/Bj )C�((2� + 1)/(4π))P ′

�(1)∑
� b2(�/Bj )C�((2� + 1)/(4π))

}1/2

e−u2/2.

These formulae can be made more explicit by setting a specific form for the be-
haviour of the angular power spectrum {C�} and the weighting kernel b(·), see [25]
for numerical results under conditions of astrophysical interest.

4. Gaussian subordinated fields.

4.1. Local transforms of βj (·). For statistical applications, it is often more in-
teresting to consider nonlinear transforms of random fields. For instance, in a CMB
related environment a lot of efforts have been spent to investigate local fluctuations
of angular power spectra; to this aim, moving averages of squared wavelet/needlet
coefficients are usually computed; see, for instance, [46] and the references therein.
Our purpose here is to derive some rigorous results on the behaviour of these statis-
tics.
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To this aim, let us consider first the simple squared field

H2j (x) := H2
(
β̃j (x)

)= β2
j (x)

σ 2
βj

− 1,

σ 2
βj

:=∑
�

b2
(

�

Bj

)
C�

2� + 1

4π
= Eβ2

j (x).

The expected value of Lipschitz–Killing curvatures for the excursion regions of
such fields is easily derived, indeed by the general Gaussian kinematic formula we
have, for u ≥ −1

E
{
Lβ̃j

0

(
Au

(
H2;S2))}

=
2∑

k=0

(2π)−k/2Lβ̃j

k

(
S2)MN

k

(
(−∞,−√

u + 1) ∪ (
√

u + 1,∞)
)

=
2∑

k=0

(2π)−k/2Lβ̃j

k

(
S2)2MN

k

(
(
√

u + 1,∞)
)

= 4
(
1 − �(

√
u + 1)

)
+ 1

2π

∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

L2
(
S2)e−(u+1)/2

√
2π

2
√

u + 1.

Likewise

E
{
Lβ̃j

1

(
Au

(
H2;S2))}

=
1∑

k=0

(2π)−k/2
[
k + 1

k

]
Lβ̃j

k+1

(
S2)MN

k

(
(−∞,−√

u + 1) ∪ (
√

u + 1,∞)
)

= Lβ̃j

1

(
S2)MN

0
(
(−∞,−√

u + 1) ∪ (
√

u + 1,∞)
)

+ (2π)−1/2 π

2
Lβ̃j

2

(
S2)MN

1
(
(−∞,−√

u + 1) ∪ (
√

u + 1,∞)
)

= (2π)−1/2 π

2

(
4π ×

∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

)
2
e−(u+1)/2

√
2π

= 2π

(∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

)
e−(u+1)/2,

which implies for the Euclidean LKC

E
{
L1
(
Au

(
H2;S2))}= 2π

{∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

}1/2

e−(u+1)/2
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and, therefore,

E
{
L1
(
∂Au

(
H2;S2))}= 4π

{∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

}1/2

e−(u+1)/2.

Finally,

E
{
Lβ̃j

2

(
Au

(
H2;S2))}

= Lβ̃j

2

(
S2)MN

0
(
(−∞,−√

u + 1) ∪ (
√

u + 1,∞)
)

= 4π

{∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

}
2
(
1 − �(

√
u + 1)

)
entailing a Euclidean LKC

E
{
L2
(
Au

(
H2;S2))}= 4π × 2

(
1 − �(

√
u + 1)

)
.

It should be noted that the tail decay for the Euler characteristic and the bound-
ary length is much slower than in the Gaussian case. This is consistent with the
elementary fact that polynomial transforms shift angular power spectra at higher
frequencies, hence yielding a rougher path behaviour. Likewise, for cubic trans-
forms we have

E
{
Lβ̃j

0

(
Au

(
β̃3

j (x);S2))}
= 2

(
1 − �

( 3
√

u
))

+ 1

2π

∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

L2
(
S2)e−( 3√u)2/2

√
2π

3
√

u,

E
{
Lβ̃j

1

(
Au

(
β̃3

j (x);S2))}
= π

(∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

)
e−( 3√u)2/2,

E
{
L1
(
∂Au

(
β̃3

j (x);S2))}
= 2π

{∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

}1/2

e−( 3√u)2/2,

and finally

E
{
Lβ̃j

2

(
Au

(
β̃3

j (x);S2))}
= 4π

{∑
� b2(�/Bj )((2� + 1)/(4π))C�P

′
�(1)∑

� b2(�/Bj )((2� + 1)/(4π))C�

}
2
(
1 − �

( 3
√

u
))
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entailing an expected value for the excursion area given by

E
{
L2
(
Au

(
β̃3

j (x);S2))}= 4π
(
1 − �

(
3
√

u
))

.

Similar results could be easily derived for higher order polynomial transforms;
numerical evidence and astrophysical applications can be found in [25]. However,
as motivated above we believe it is much more important to focus on transforms
that entail some form of local averaging, as these are likely to be more relevant for
practitioners. To this issue, we devote the rest of this section and a large part of the
paper.

4.2. Nonlocal transforms of βj (·). We now consider the case of smoothed
nonlinear functionals. We are interested, for instance, in studying the LKCs for
local estimates of the angular power spectrum, which as mentioned before have
already found many important applications in a CMB related framework. To this
aim, we introduce, for every x ∈ S2,

gj ;q(x) :=
∫
S2

K
(〈x, y〉)Hq

(
β̃j (y)

)
dy;(19)

throughout the sequel, we shall assume that the following finite-order expansion
holds:

K(u) =
LK∑
�=1

2� + 1

4π
κ(�)P�(u) some fixed LK ∈ N, u ∈ [−1,1].(20)

Here, as before we write Hq(·) for the Hermite polynomials. For q = 1, we just
get the smoothed Gaussian process

gj (x) := gj ;1(x) =
∫
S2

K
(〈x, y〉)β̃j (y) dy.(21)

The practical importance of the analysis of fields such as gj ;q(·) can be motivated
as follows. A crucial topic when dealing with cosmological data is the analysis of
isotropy properties. For instance, in a CMB related framework a large amount of
work has focused on the possible existence of asymmetries in the behaviour of an-
gular power spectra or bispectra across different hemispheres (see, e.g., [46, 49]).
In these papers, powers of wavelet coefficients at some frequencies j are averaged
over different hemispheres to investigate the existence of asymmetries/anisotropies
in the CMB distribution; some evidence has been reported, for instance, for power
asymmetries with respect to the Milky Way plane for frequencies corresponding
to angular scales of a few degrees (such effects are related in the cosmological lit-
erature to widely debated anomalies known as the Cold Spot and the Axis of Evil;
see [12, 48] and the references therein). To investigate these anomalies, statistics
which can be viewed as discretized versions of supx∈S2 gj ;q(x) have been evalu-
ated; their significance is typically tested against Monte Carlo simulations, under
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the null of isotropy. Our results below will provide the first rigorous derivation of
asymptotic properties in this settings.

Our first lemma is an immediate application of spherical Fourier analysis tech-
niques.

LEMMA 6. The field gj (x) is zero-mean, finite variance and isotropic, with
covariance function

E
{
gj (x1)gj (x2)

}= 1

σ 2
βj

∑
�

b2
(

�

Bj

)
κ2(�)

2� + 1

4π
C�P�

(〈x1, x2〉).
PROOF. Note first that

E
{
gj (x1)gj (x2)

}
= 1

σ 2
βj

{∫
S2×S2

K
(〈x1, y1〉)K(〈x2, y2〉)E{βj (y1)βj (y2)

}
dy1 dy2

}

= 1

σ 2
βj

∫
S2×S2

K
(〈x1, y1〉)K(〈x2, y2〉)∑

�

b2
(

�

Bj

)
2� + 1

4π
C�P�

(〈y1, y2〉).
Recall the reproducing kernel formula (see, e.g., [34], pages 248–249)∫

S2
P�

(〈x1, y1〉)P�

(〈y1, y2〉)dy1 = 4π

2� + 1
P�

(〈x1, y2〉),∫
S2

P�1

(〈x1, y1〉)P�2

(〈y1, y2〉)dy1 = 0, �1 �= �2,

whence∫
S2×S2

K
(〈x1, y1〉)K(〈x2, y2〉)∑

�

b2
(

�

Bj

)
2� + 1

4π
C�P�

(〈y1, y2〉)
=
∫
S2×S2

∑
�1

2�1 + 1

4π
κ(�1)P�1

(〈x1, y1〉)∑
�2

2�2 + 1

4π
κ(�2)P�2

(〈x2, y2〉)
×∑

�

b2
(

�

Bj

)
2� + 1

4π
C�P�

(〈y1, y2〉)dy1 dy2

=
∫
S2

∑
�

b2
(

�

Bj

)
2� + 1

4π
C�

∑
�1

κ(�1)
∑
�2

2�2 + 1

4π
κ(�2)P�2

(〈x2, y2〉)
×
∫
S2

2�1 + 1

4π
P�1

(〈x1, y1〉)P�

(〈y1, y2〉)dy1 dy2

=∑
�

b2
(

�

Bj

)
κ(�)

2� + 1

4π
C�

∑
�2

2�2 + 1

4π
κ(�2)
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×
∫
S2

P�2

(〈x2, y2〉)P�

(〈x1, y2〉)dy2

=∑
�

b2
(

�

Bj

)
κ2(�)

2� + 1

4π
C�P�

(〈x1, x2〉),
as claimed. �

The derivation of analogous results in the case of q ≥ 2 requires more work and
extra notation. In particular, we shall need the Wigner’s 3j coefficients, which are
defined by [for m1 + m2 + m3 = 0, see [56], expression (8.2.1.5)](

�1 �2 �3

m1 m2 m3

)

:= (−1)�1+m1
√

2�3 + 1
[
(�1 + �2 − �3)!(�1 − �2 + �3)!(�1 − �2 + �3)!

(�1 + �2 + �3 + 1)!
]1/2

×
[

(�3 + m3)!(�3 − m3)!
(�1 + m1)!(�1 − m1)!(�2 + m2)!(�2 − m2)!

]1/2

×∑
z

(−1)z(�2 + �3 + m1 − z)!(�1 − m1 + z)!
z!(�2 + �3 − �1 − z)!(�3 + m3 − z)!(�1 − �2 − m3 + z)! ,

where the summation runs over all z’s such that the factorials are nonnegative. This
expression becomes somewhat neater for m1 = m2 = m3 = 0, where we have(

�1 �2 �3

0 0 0

)
(22)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for �1 + �2 + �3 odd,

(−1)(�1+�2−�3)/2

× [(�1 + �2 + �3)/2]!
[(�1 + �2 − �3)/2]![(�1 − �2 + �3)/2]![(−�1 + �2 + �3)/2]!

×
{

(�1 + �2 − �3)!(�1 − �2 + �3)!(−�1 + �2 + �3)!
(�1 + �2 + �3 + 1)!

}1/2

,

for �1 + �2 + �3 even.

It is occasionally more convenient to focus on Clebsch–Gordan coefficients, which
are related to the Wigner’s by a simple change of normalization, for example,

C
�3m3
�1m1�2m2

:= (−1)�3−m3√
2�3 + 1

(
�1 �2 �3

m1 m2 −m3

)
.(23)

Wigner’s 3j coefficients are elements of unitary matrices which intertwine alter-
native reducible representations of the group of rotations SO(3), and because of
this emerge naturally in the evaluation of multiple integrals of spherical harmonics
(see Section 3.5.2 of [34]) . As a consequence, they also appear in the covariances
of nonlinear transforms; for q = 2, we have indeed
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LEMMA 7. The field gj ;2(x) is zero-mean, finite variance and isotropic, with
covariance function

E
{
gj ;2(x1)gj ;2(x2)

}
= 2

σ 4
βj

∑
�

κ2(�)
2� + 1

4π

∑
�1�2

b2
(

�1

Bj

)
b2
(

�2

Bj

)

× (2�1 + 1)(2�2 + 1)

4π

× C�1C�2

(
� �1 �2

0 0 0

)2

P�

(〈x1, x2〉).
PROOF. Note first that

E
{
gj ;2(x1)gj ;2(x2)

}
= E

{∫
S2

K
(〈x1, y1〉)H2

(
β̃j (y1)

)
dy1

∫
S2

K
(〈x2, y2〉)H2

(
β̃j (y2)

)
dy2

}
=
∫
S2×S2

K
(〈x1, y1〉)K(〈x2, y2〉)E{H2

(
β̃j (y1)

)
H2
(
β̃j (y2)

)}
dy1 dy2

= 2

σ 4
βj

∫
S2×S2

K
(〈x1, y1〉)K(〈x2, y2〉)

×
{∑

�

b2
(

�

Bj

)
2� + 1

4π
C�P�

(〈y1, y2〉)}2

dy1 dy2

= 2

σ 4
βj

∫
S2×S2

∑
�1

2�1 + 1

4π
κ(�1)P�1

(〈x1, y1〉)∑
�2

2�2 + 1

4π
κ(�2)P�2

(〈x2, y2〉)
×∑

�3�4

b2
(

�3

Bj

)
b2
(

�4

Bj

)
2�3 + 1

4π

2�4 + 1

4π

× C�3C�4P�3

(〈y1, y2〉)P�4

(〈y1, y2〉)dy1 dy2,

where in the third step we have used the covariance formula for Hermite polyno-
mials in zero-mean, unit variance Gaussian variables (see, e.g., [34], Remark 4.10)

E
{
Hq(X)Hq ′(Y )

}= δq ′
q q!{EXY }q,(24)

which in this case yields

E
{
H2
(
β̃j (y1)

)
H2
(
β̃j (y2)

)}= 2

σ 4
βj

{∑
�

b2
(

�

Bj

)
2� + 1

4π
C�P�

(〈y1, y2〉)}2

.



480 D. MARINUCCI AND S. VADLAMANI

Now recall that∫
S2

P�1

(〈x1, y1〉)P�3

(〈y1, y2〉)P�4

(〈y1, y2〉)dy1

= (4π)3

(2�1 + 1)(2�3 + 1)(2�4 + 1)

×
∫
S2

∑
m1m3m4

Y�1m1(y1)Y �1m1(x1)Y�3m3(y1)Y �3m3(y2)

× Y�4m4(y1)Y �4m4(y2) dy1

=
(

(4π)5

(2�1 + 1)(2�3 + 1)(2�4 + 1)

)1/2

× ∑
m1m3m4

(
�1 �3 �4

m1 m3 m4

)(
�1 �3 �4

0 0 0

)
× Y �1m1(x1)Y �3m3(y2)Y �4m4(y2).

Likewise∫
S2

P�2

(〈x2, y2〉)Y �3m3(y2)Y �4m4(y2) dy2

= 4π

2�2 + 1

∫
S2

∑
m2

Y �2m2(y2)Y�2m2(x2)Y �3m3(y2)Y �4m4(y2) dy2

=
√

(4π)(2�3 + 1)(2�4 + 1)

2�2 + 1

×∑
m2

(
�2 �3 �4

m2 m3 m4

)(
�2 �3 �4

0 0 0

)
Y�2m2(x2).

Using the orthonormality properties of Wigner’s 3j coefficients (see again [34],
Chapter 3.5), we have∑

m3m4

(
�1 �3 �4

m1 m3 m4

)(
�2 �3 �4

m2 m3 m4

)
= δ

m2
m1 δ

�2
�1

(2�1 + 1)
,

whence we get

E
{
gj ;2(x1)gj ;2(x2)

}
= 2

σ 4
βj

∑
�

κ2(�)
2� + 1

4π

×∑
�1�2

b2
(

�1

Bj

)
b2
(

�2

Bj

)

× (2�1 + 1)(2�2 + 1)

4π
C�1C�2

(
� �1 �2

0 0 0

)2

P�

(〈x1, x2〉),
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as claimed. As a special case, the variance is provided by

Eg2
j ;2(x) = 2

σ 4
βj

∑
�

κ2(�)
2� + 1

4π

×∑
�1�2

b2
(

�1

Bj

)
b2
(

�2

Bj

)

× (2�1 + 1)(2�2 + 1)

4π
C�1C�2

(
� �1 �2

0 0 0

)2

. �

REMARK 8. Since the field {gj ;2(·)} has finite-variance and it is isotropic, it
admits itself a spectral representation. Indeed, it is a simple computation to show
that the corresponding angular power spectrum is provided by

C�;j,2 := 2

σ 4
βj

κ2(�)
∑
�1�2

b2
(

�1

Bj

)
b2
(

�2

Bj

)
(2�1 + 1)(2�2 + 1)

4π

(25)

× C�1C�2

(
� �1 �2

0 0 0

)2

,

for � = 1,2, . . . . This result will have a great relevance for the practical implemen-
tation of the findings in the next sections.

4.2.1. Higher-order transforms. The general case of nonlinear transforms
with q ≥ 3 can be dealt with analogous lines; the main difference being the appear-
ance of multiple integrals of spherical harmonics of order greater than 3, and hence
so-called higher order Gaunt integrals and convolutions of Clebsch–Gordan coef-
ficients. For brevity’s sake, we provide only the basic details; we refer to [34] for
a more detailed discussion on nonlinear transforms of Gaussian spherical harmon-
ics. Here, we simply recall the definition of the multiple Gaunt integral (see [34],
Remark 6.30 and Theorem 6.31), which is given by

G(�1,m1; . . . �q,mq;�,m) :=
∫
S2

Y�1m1(x) · · ·Y�qmq (x)Y�m(x) dσ(x),

where the coefficients G(�1,m1; . . . �q,mq;�,m) can be expressed as multiple
convolution of Wigner/Clebsch–Gordan terms (see 23),

G(�1,m1; . . . �q,mq;�,m)

= (−1)m

√
(2�1 + 1) · · · (2�q + 1)

(4π)q−1(2� + 1)

× ∑
λ1···λq−2

C
λ10
�10�20C

λ20
λ10�30 · · ·C�0

λq−20�q0

× ∑
μ1···μq−2

C
λ1μ1
�1m1�2m2

C
λ2μ2
λ1μ1�3m3

· · ·C�m
λq−2μq−2�qmq

.
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Following also [34], equation (6.40), let us introduce the shorthand notation

C
λ1···λq−2�0
�10�20···�q0 := C

λ10
�10�20C

λ20
λ10�30 · · ·C�0

λq−20�q0,

(26)
C(�1, . . . , �q, �) := ∑

λ1···λq−2

{
C

λ1···λq−2�0
�10�20···�q0

}2
.

It should be noted that, from the unitary properties of Clebsch–Gordan coefficients∑
�

C(�1, . . . , �q, �)

= ∑
λ1···λq−2

{
C

λ10
�10�20

}2 · · ·∑
�

{
C�0

λq−20�q0
}2 = · · · = 1.

LEMMA 9. For general q ≥ 3, the field gj ;q(x) is zero-mean, finite variance
and isotropic, with covariance function

E
{
gj ;q(x1)gj ;q(x2)

}
= q!

σ
2q
βj

∑
�

κ2(�)
∑

�1···�q

C(�1, . . . , �q, �)

×
[ q∏

k=1

b2
(

�k

Bj

)
2�k + 1

4π
C�k

]
P�

(〈x1, x2〉).
PROOF. We have

Eg2
j ;q(x) = E

{∫
S2

∫
S2

K
(〈x, y1〉)K(〈x, y2〉)Hq

(
β̃j (y1)

)
Hq

(
β̃j (y2)

)
dy1 dy2

}
= q!

σ
2q
βj

∫
S2

∫
S2

K
(〈x, y1〉)K(〈x, y2〉)

×
{∑

�

b2
(

�

Bj

)
2� + 1

4π
P�

(〈y1, y2〉)}q

dy1 dy2,

where we have used the covariance formula for Hermite polynomials (24). It is
convenient here to view T�(x), βj (x) as isonormal processes of the form

T�(x) =
∫
S2

√
2� + 1

4π
C�P�

(〈x, y〉)dW(y),

βj (x) = 1

σβj

∫
S2

∑
�

b

(
�

Bj

)√
2� + 1

4π
C�P�

(〈x, y〉)dW(y),
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where dW(y) denotes a Gaussian white noise measure on the sphere, whence

Hq

(
βj (x)

)
= 1

σ
q
βj

∑
�1···�q

b

(
�1

Bj

)
· · ·b

(
�q

Bj

)√√√√ q∏
i=1

{
2�i + 1

4π
C�i

}

×
∫
{S2×···×S2}′

P�1

(〈x, y1〉) · · ·P�q

(〈x, yq〉)dW(y1) · · ·dW(yq).

Here, the domain of integration excludes the “diagonals,” that is,{
S2 × · · · × S2}′ := {

(x1, . . . , xq) ∈ S2 × · · · × S2 :xi �= xj for all i �= j
}
,

and we are using the characterization of Hermite polynomials as multiple Wiener–
Itô integrals; see, for instance, Theorem 2.7.7 in [44]. We are thus led to

gj ;q(z) = 1

σ
q
βj

∫
S2

∑
�

κ(�)
2� + 1

4π
P�

(〈z, x〉)

× ∑
�1···�q

b

(
�1

Bj

)
· · ·b

(
�q

Bj

)√√√√ q∏
i=1

{
2�i + 1

4π
C�i

}

×
∫
S2×···×S2

P�1

(〈x, y1〉) · · ·
× P�q

(〈x, yq〉)dW(y1) · · ·dW(yq) dx.

Using the isometry property of stochastic integrals, it follows easily that

E
{
gj ;q(z1)gj ;q(z2)

}
= q!

σ
2q
βj

∫
S2×S2

∑
�1�2

2�1 + 1

4π
κ(�1)

2�2 + 1

4π
κ(�2)P�1

(〈z1, x1〉)P�2

(〈z2, x2〉)

× ∑
�1···�q

b2
(

�1

Bj

)
· · ·b2

(
�q

Bj

)√√√√ q∏
i=1

{
2�i + 1

4π
C�i

}

× P�1

(〈x1, x2〉) · · ·P�q

(〈x1, x2〉)dx1 dx2.

Now write

(2�1 + 1) · · · (2�q + 1)

(4π)q
P�1

(〈x1, x2〉) · · ·P�q

(〈x1, x2〉)
= ∑

m1···mq

Y�1m1(x1) · · ·Y�qmq (x1)Y �1m1(x2) · · ·Y �qmq (x2)
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so that

(2�1 + 1) · · · (2�q + 1)

(4π)q

∫
S2×S2

P�1

(〈z1, x1〉)P�2

(〈z2, x2〉)
× P�1

(〈x1, x2〉) · · ·P�q

(〈x1, x2〉)dx1 dx2

= ∑
μ1μ2

∑
m1···mq

G(�1,m1; . . . �q,mq;�1,μ1)

× G(�1,m1; . . . �q,mq;�2,μ2)

{
4π

2� + 1
Y�1μ1(z1)Y �2μ2(z2)

}
= 4π

2� + 1

∑
μ1μ2

Y�1μ1(z1)Y �2μ2(z2)δ
�2
�1

δμ2
μ1

= P�1

(〈z1, z2〉).
The general case q ≥ 3 hence yields (see also [34], Theorem 7.5 for a related
computation)

Eg2
j ;q(x)

= q!
σ

2q
βj

∑
�

κ2(�)
∑

�1···�q

C(�1, . . . , �q, �)b
2
(

�1

Bj

)
· · ·b2

(
�q

Bj

)
2�1 + 1

4π
· · ·

× 2�q + 1

4π
C�1 · · ·C�q

and

E
{
gj ;q(x)gj ;q(y)

}
= q!

σ
2q
βj

∑
�

κ2(�)
∑

�1···�q

C(�1, . . . , �q, �)b
2
(

�1

Bj

)
· · ·b2

(
�q

Bj

)

× 2�1 + 1

4π
· · · 2�q + 1

4π
C�1 · · ·C�qP�

(〈x1, x2〉),
as claimed. �

REMARK 10. It is immediately checked that the angular power spectrum of
gj ;q(y) is given by [see (26)]

C�;j,q := q!
σ

2q
βj

4π

2� + 1
κ2(�)

(27)

× ∑
�1···�q

C(�1, . . . , �q, �)

q∏
k=1

[
b2
(

�k

Bj

)
2�k + 1

4π
C�k

]
.
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As a special case, for q = 2 we recover the previous result (25)

C�;j,2 = 2!
σ 4

βj

κ2(�)
∑
�1�2

b2
(

�1

Bj

)
b2
(

�2

Bj

)
(2�1 + 1)(2�2 + 1)

4π

× C�1C�2

(
� �1 �2

0 0 0

)2

(28)

= 2!
σ 4

βj

κ2(�)
4π

2� + 1

∑
�1�2

C(�1, �2, �)b
2
(

�1

Bj

)
b2
(

�2

Bj

)

× (2�1 + 1)

4π

(2�2 + 1)

4π
C�1C�2,

because

C(�1, �2, �) = {
C�0

�10�20
}2 = (2� + 1)

(
� �1 �2

0 0 0

)2

.

5. Weak convergence. In this section, we provide our main convergence re-
sults. It must be stressed that the convergence we study here is in some sense
different from the standard theory as presented, for instance, by [13], but refers
instead to the broader notion developed by [20, 21]; see also [23], Chapter 11.

We start first from the following conditions (see, e.g., [10, 34, 39]):

CONDITION 11. The angular power spectrum has the form

C� = G(�)�−α, � = 1,2, . . . ,

where α > 2 and G :R+→R
+ is such that, for all u > 0,

0 < c0 ≤ G(·) ≤ d0,∣∣∣∣ dr

dur
G(u)

∣∣∣∣ ≤ cru
−r , r = 1,2, . . . ,M ∈ N.

CONDITION 12. The Kernel K(·) and the field {βj (·)} are such that, for all
j = 1,2,3, . . .

Var
{∫

S2
K
(〈x, y〉)Hq

(
β̃j (y)

)
dy

}
= σ 2

j B−2j for all j = 1,2, . . .

and there exist positive constants c1, c2 such that c1 ≤ σ 2
j ≤ c2 (note that the right-

hand side does not depend on x by isotropy).

These assumptions are mild and it is easy to find many physical examples
such that they are fulfilled. In particular, Condition 11 is fulfilled when G(�) =
P(�)/Q(�) and P(�),Q(�) > 0 are two positive polynomials of the same order.
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In the now dominant Bardeen’s potential model for the angular power spectrum of
the cosmic microwave background radiation (which is theoretically justified by the
so-called inflationary paradigm for the Big Bang Dynamics; see, e.g., [22, 24]) one
has C� ∼ (�(�+1))−1 for the observationally relevant range � ≤ 5×103 (the decay
becomes faster at higher multipoles, in view of the so-called Silk damping effect,
but these multipoles are far beyond observational capacity). This is clearly in good
agreement with Condition 11. On the other hand, assuming that Condition 11 holds
and taking, for instance, K(〈x, y〉) ≡ 1 [e.g., focusing on the integral of the field
{Hq(β̃j (y))}], Condition 12 has been shown to be satisfied by [15]. Indeed, it is
readily checked that {Hq(β̃j (y))} is a polynomial of finite order (the integer part
of Bq(j+1)), and we can hence consider the following heuristic argument: we have∫

S2
K
(〈x, y〉)Hq

(
β̃j (y)

)
dy =

∫
S2

Hq

(
β̃j (y)

)
dy

= ∑
k∈Xj

Hq

(
β̃j (ξjk)

)
λjk,

where {ξjk, λjk} are a set of cubature points and weights (see [11, 41]); indeed,
because the βj (·) are band-limited (polynomial) functions, this Riemann sum
approximations can be constructed to be exact (by the so-called cubature for-
mula established in [41]; see also [11] for some discussion), with weights λjk of
order � B−2j . It is now known that under Condition 11, it is possible to establish
a fundamental decorrelation inequality which will play a crucial role in our proof
below (see also [10, 31, 39]). Indeed, exploiting (24) and (2) we have that for any
M ∈ N, there exists a constant CM such that

Cov
{
Hq

(
β̃j (ξjk1)

)
,Hq

(
β̃j (ξjk2)

)}≤ CMq!
{1 + Bj d(ξjk1, ξjk2)}qM

,

entailing that the terms Hq(βj (ξjk)) can be treated as asymptotically uncorrelated,
for large j . Hence, heuristically

Var
{∑

k∈Xj

Hq

(
β̃j (ξjk)

)
λjk

}
� ∑

k∈Xj

Var
{
Hq

(
β̃j (ξjk)

)}
λ2

jk

� Cq

∑
k∈Xj

λ2
jk � CqB

−2j ,

because
∑

k∈Xj
λjk = 4π .

EXAMPLE 13. For q = 2, we obtain

Var
{∫

S2

(
β̃2

j (y) − 1
)
dy

}
= Var

{∫
S2

β̃2
j (y) dy

}
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= 1

{∑� b2(�/Bj )(2� + 1)C�}2 Var
{∫

S2

[∑
�m

b

(
�

Bj

)
a�mY�m(y)

]2

dy

}

= 1

{∑� b2(�/Bj )(2� + 1)C�}2 Var

{∑
�

b2
(

�

Bj

) �∑
m=−�

|a�m|2
}
,

where we have used (1), (3) and the ortho-normality properties of spherical har-
monics, that is, ∫

S2
Y�m(y)Y �′m′(y) dy = δ�′

� δm′
m .

Now write

Ĉ� := 1

2� + 1

�∑
m=−�

|a�m|2,

the so-called sample angular power spectrum; it is readily verified that Ĉ�/C�

obeys a chi-square law with (2� + 1) degrees of freedom, whence we obtain

Var
{∫

S2
β̃2

j (y) dy

}

= Var{∑� b2(�/Bj )(2� + 1)Ĉ�}
{∑� b2(�/Bj )(2� + 1)C�}2 =

∑
� b4(�/Bj )(2� + 1)2 Var(Ĉ�)

{∑� b2(�/Bj )(2� + 1)C�}2

= 2
∑Bj+1

�=Bj−1 b4(�/Bj )(2� + 1)C2
�

{∑� b2(�/Bj )(2� + 1)C�}2 � Bj(2−2α)

{Bj(2−α)}2 � B−2j ,

as claimed.

5.1. Finite-dimensional distributions. The general technique we shall exploit
to establish the central limit theorem is based upon sharp bounds on normalized
fourth-order cumulants. Note that, in view of results from [43], this will actu-
ally entail a stronger form of convergence, more precisely in total variation norm
(see [43]).

We start by recalling that the field {β̃j (·)} can be expressed in terms of the
isonormal Gaussian process, for example, as a stochastic integral

β̃j (y) := 1

σβj

∑
�

b

(
�

Bj

)
T�(y)

= 1

σβj

∑
�

b

(
�

Bj

)√
(2� + 1)C�

4π

∫
S2

P�

(〈y, z〉)W(dz),

where W(A) is a white noise Gaussian measure on the sphere, which satisfies

EW(A) = 0, E
{
W(A)W(B)

}=
∫
A∩B

dz for all A,B ∈ B
(
S2).



488 D. MARINUCCI AND S. VADLAMANI

It thus follows immediately that the transformed process {Hq(β̃j (·))} belongs to
the qth order Wiener chaos; see [43, 44] for more discussion and detailed defini-
tions. Let us now recall the definition of the total variation distance between the
laws of two random variables X and Z, which is given by

dTV(X,Z) = sup
A∈B(R)

∣∣Pr(W ∈ A) − Pr(X ∈ A)
∣∣.

When Z is a standard Gaussian and X is a zero-mean, unit variance random vari-
able which belongs to the qth order Wiener chaos of a Gaussian measure, the
following remarkable inequality holds for the total variation distance

dTV(X,Z) ≤
√

q − 1

3q
cum4(X);

see again [43, 44] for more discussion and a full proof.
From now on, we shall normalize the fields {gj ;q} to make them unit variance,

that is, we shall define

g̃j ;q(x) := gj ;q(x)√
Eg2

j ;q(x)
;

also, we introduce an isotropic zero-mean Gaussian process fj ;q , with the same
covariance function as that of g̃j ;q . Our next result will establish the asymptotic
convergence of the finite-dimensional distributions for g̃j ;q and fj ;q . In particular,
we have the following.

LEMMA 14. For any fixed vector (x1, . . . , xp) in S2, we have that

dTV
((

g̃j ;q(x1), . . . , g̃j ;q(xp)
)
,
(
fj ;q(x1), . . . , fj ;q(xp)

))= o(1),

as j → ∞.

PROOF. For notational simplicity, we shall focus on the univariate case. In this
case, the Nourdin–Peccati inequality [43, 44] can be restated as

dTV

(
gj ;q(x)√
Eg2

j ;q(x)
,N(0,1)

)
≤
√√√√q − 1

3q
cum4

(
gj ;q(x)√
Eg2

j ;q(x)

)
.(29)

In view of (29), for the central limit theorem to hold we shall only need to study
the limiting behaviour of the normalized fourth-order cumulant of gj ;q . Let us then
consider

cum4
{
gj ;q(x)

}
=
∫
{S2}⊗4

K
(〈x, y1〉) · · ·K(〈x, y4〉)

× cum4
{
Hq

(
β̃j (y1)

)
, . . . ,Hq

(
β̃j (y4)

)}
dy1 · · ·dy4.
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We now need to provide a bound on the cumulant inside the integral; to this aim,
we need to recall the diagram formula (see, e.g., [45], Chapter 7 or [34], Propo-
sition 4.15 for further details). In particular, fix a set of integers α1, . . . , αp; a di-
agram is a graph with α1 vertices labeled by 1, α2 vertices labeled by 2, . . . , αp

vertices labeled by p, such that each vertex has degree 1. We can view the vertices
as belonging to p different rows; the edges may connect only vertices with differ-
ent labels, that is, there are no (“flat”) edges connecting two vertices on the same
row. The set of such diagrams that are connected (i.e., such that it is not possible
to partition the rows into two subsets A and B such that no edge connect a vertex
in A with a vertex in B) is denoted by �c(α1, . . . , αp). Given a diagram γ ∈ �c,
ηik(γ ) is the number of edges between the vertices labeled by i and the vertices
labeled by k in γ . The diagram formula for Hermite polynomials states the follow-
ing; let (Z1, . . . ,Zp) be a centered Gaussian vector whose components have unit
variance, and let Hl1, . . . ,Hlp be Hermite polynomials of degrees l1, . . . , lp (≥ 1),
respectively. Then

cum
(
Hl1(Z1), . . . ,Hlp(Zp)

)= ∑
γ∈�c(l1,...,lp)

∏
1≤i≤j≤p

{
E[ZiZj ]}ηij (γ )

.

For a proof, see [45], Section 7.3. A simple application in our case then yields

cum4
{
Hq

(
β̃j (y1)

)
, . . . ,Hq

(
β̃j (y4)

)}
= ∑

γ∈�c(q,q,q,q)

∏
1≤s≤t≤4

{
E
[
β̃j (ys)β̃j (yt )

]}ηst (γ )

(30)
≤ ∑

γ∈�c(q,q,q,q)

∣∣ρj (y1, y2)
∣∣η12(γ )∣∣ρj (y2, y3)

∣∣η23(γ )∣∣ρj (y3, y4)
∣∣η34(γ )

× ∣∣ρj (y4, y1)
∣∣η41(γ )∣∣ρj (y1, y3)

∣∣η13(γ )∣∣ρj (y2, y4)
∣∣η24(γ )

,

where

ρj (y1, y2) =
∑

� b2(�/Bj )((2� + 1)/(4π))C�P�(y1, y2)∑
� b2(�/Bj )((2� + 1)/(4π))C�

≤ CM

{1 + Bjd(y1, y2)}M ,

in view of (11) and the decorrelation inequality provided by [10]; see also [31, 39].
Note that in our circumstances, the total number of “edges” satisfies

4∑
t=1

ηst (γ ) = q for all s = 1, . . . ,4 and
∑

1<s<t≤4

ηst (γ ) = 2q.

It is simple to see that for any γ ∈ �c(q, q, q, q) and any given s, there must
exist two distinct indexes t, t ′ such that ηst (γ ), ηst ′(γ ) > 0. Indeed, assume by
contradiction that this is not the case for some s; then there must exist t �= s such
that such that ηst (γ ) = q , and hence ηs′t (γ ) = 0 for all s �= s ′. It follows that γ
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cannot be connected, yielding the desired contradiction. Hence, up to a relabeling
of the indices there must necessarily exist a “spanning cycle,” that is, a sequence

η12(γ ), η23(γ ), η34(γ ), η41(γ ) > 0,

where the inequality is strict. Since the correlations are bounded by unity, it follows
that ∣∣ρj (y1, y2)

∣∣η12(γ )∣∣ρj (y2, y3)
∣∣η23(γ )∣∣ρj (y3, y4)

∣∣η34(γ )

× ∣∣ρj (y4, y1)
∣∣η41(γ )∣∣ρj (y1, y3)

∣∣η13(γ )∣∣ρj (y2, y4)
∣∣η24(γ )

≤ ∣∣ρj (y1, y2)
∣∣∣∣ρj (y2, y3)

∣∣∣∣ρj (y3, y4)
∣∣∣∣ρj (y4, y1)

∣∣.
Therefore, writing C(q) as the cardinality of set �c(q, q, q, q), which is the set of
all connected graphs of a given order, we get

cum4
{
Hq

(
β̃j (y1)

)
, . . . ,Hq

(
β̃j (y4)

)}
≤ �
{
�c(q, q, q, q)

}× ∣∣ρj (y1, y2)
∣∣∣∣ρj (y2, y3)

∣∣∣∣ρj (y3, y4)
∣∣∣∣ρj (y4, y1)

∣∣
= C(q) × ∣∣ρj (y1, y2)

∣∣∣∣ρj (y2, y3)
∣∣∣∣ρj (y3, y4)

∣∣∣∣ρj (y4, y1)
∣∣,

Thus, we have

cum4
{
gj ;q(x)

}≤ C(q)

∫
{S2}⊗4

∣∣K(〈x, y1〉) · · ·K(〈x, y4〉)∣∣∣∣ρj (y1, y2)
∣∣

× ∣∣ρj (y2, y3)
∣∣∣∣ρj (y3, y4)

∣∣∣∣ρj (y4, y1)
∣∣dy1 · · ·dy4.

Now standard computations yield∫
S2

∣∣ρ(y1, y2)
∣∣dy2 ≤

∫
S2

CM

{1 + Bjd(y1, y2)}M dy2

≤
∫
y2 : d(y1,y2)≤B−j

CM

{1 + Bjd(y1, y2)}M dy2

+
∫
y2 : d(y1,y2)≥B−j

CM

{1 + Bjd(y1, y2)}M dy2

≤ CB−2j .

Hence, ∫
{S2}⊗4

∣∣ρ(y1, y2)
∣∣∣∣ρ(y2, y3)

∣∣∣∣ρ(y3, y4)
∣∣∣∣ρ(y4, y1)

∣∣dy1 · · ·dy4

≤
∫
{S2}⊗4

∣∣ρ(y1, y2)
∣∣∣∣ρ(y2, y3)

∣∣∣∣ρ(y3, y4)
∣∣dy1 · · ·dy4 ≤ CB−6j

and

cum4
{
g̃j ;q(x)

}= O
(
B−2j ),
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entailing that for every fixed x ∈ S2,

dTV
(
g̃j ;q(x),N(0,1)

)= O
(
B−2j ),

and hence the univariate central limit theorem, as claimed. The proof in the multi-
variate case is analogous, and hence omitted for the sake of brevity. �

5.2. Tightness. We now focus on asymptotic tightness for both sequences
{gj ;q} and {fj ;q}. We shall exploit the following criterion from [30].

PROPOSITION 15 ([30]). Let gj :M → D be a sequence of stochastic pro-
cesses, where M is compact and D is complete and separable. Assume that the
finite-dimensional distributions of gj converge to the those of g, and that (tight-
ness)

lim
h→0

lim sup
j→∞

E

(
sup

d(x,y)≤h

∣∣gj (x) − gj (y)
∣∣∧ 1

)
= 0.

Then gj ⇒ g.

We are hence able to establish the following.

LEMMA 16. For every q ∈ N, the sequences {g̃j ;q} and {fj ;q} are tight.

PROOF. Write {a�m(fj ;q)} for the spherical harmonic coefficients of the fields
{fj ;q}. For any x1, x2 ∈ S2, we have

E

{
sup

d(x1,x2)≤δ

∣∣fj ;q(x1) − fj ;q(x2)
∣∣}

= E

{
sup

d(x1,x2)≤δ

∣∣∣∣∑
�m

a�m(fj ;q)
{
Y�m(x1) − Y�m(x2)

}∣∣∣∣}

≤∑
�m

{
E
∣∣a�m(fj ;q)

∣∣}{ sup
d(x1,x2)≤δ

∣∣{Y�m(x1) − Y�m(x2)
}∣∣}.

Now

sup
d(x1,x2)≤δ

∣∣{Y�m(x1) − Y�m(x2)
}∣∣≤ c�2δ

and ∑
�m

{
E
∣∣a�m(fj ;q)

∣∣}≤∑
�m

√{
E
∣∣a�m(fj ;q)

∣∣2}=∑
�

(2� + 1)
√

C�(fj ;q)

and because K(·) is compactly supported in harmonic space (and hence, again,
a finite-order polynomial)

≤
{

LK∑
�

(2� + 1)

}1/2
√√√√√LK∑

�

(2� + 1)C�(fj ;q) ≤ O(LK),



492 D. MARINUCCI AND S. VADLAMANI

whence

E

{
sup

d(x1,x2)≤δ

∣∣fj ;q(x1) − fj ;q(x2)
∣∣}≤ CL3

Kδ,

for some C > 0, uniformly over j , and thus the result follows [once again, recall
that LK is fixed by assumption (20)]. The proof for {g̃j ;q} is analogous. �

5.3. Asymptotic proximity of distributions. Our discussion above shows that
the finite-dimensional distributions of the non-Gaussian sequence of random fields
{g̃j ;q} converge to those of the Gaussian sequence {fj ;q} as j tends to infinity;
moreover, both sequences are tight. However, the finite-dimensional distributions
of neither processes converge to a well-defined limit. In view of this situation, we
need a broader notion of convergence than the one envisaged in standard treat-
ment such as [13]; this extended form of convergence is provided by the notion of
Asymptotic Proximity, or Merging, of distributions, as discussed, for instance, by
[20, 21, 23] and others.

DEFINITION 17 (Asymptotic proximity of distribution [20, 21, 23]). Let
gn, fn be two sequences of random elements in some metric space (X,ρ), pos-
sibly defined on two different probability spaces. We say that the laws of gn, fn

are asymptotically merging, or asymptotically proximal, (denoted as gn ⇒ fn) if
and only if as n → ∞ ∣∣Eh(gn) −Eh(fn)

∣∣→ 0,

for all continuous and bounded functionals h ∈ Cb(X,R).

In view of the results provided in the previous subsection, it is immediate to
establish that the sequences {g̃j ;q}, {fj ;q} are proximal. Indeed,

THEOREM 18. As j → ∞
g̃j ;q �⇒ fj ;q,

that is, for all h = h :C(S2,R) →R, h continuous and bounded, we have∣∣Eh(g̃j ;q) −Eh(fj ;q)
∣∣→ 0.

PROOF. Applying to our circumstances the characterization of asymptotic
proximity provided by [21], we find that the sequences {g̃j ;q}, {fj ;q} are asymp-
totically proximal if and only if they are both tight and their finite-dimensional
distribution converge, that is, for all n ≥ 1, x1, . . . , xn ∈ K , we have that∣∣Pr

{(
g̃j ;q(x1), . . . , g̃j ;q(xn)

) ∈ A
}− Pr

{(
fj ;q(x1), . . . , fj ;q(xn)

) ∈ A
}∣∣→ 0
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for all A ∈ B(Rn). Now convergence of the finite-dimensional distributions was
established in Section 5.1, while tightness was established in Section 5.2; thus the
result follows immediately. �

As a simple application of the asymptotic proximity result, we have

E

{
sup g̃j ;q

1 + sup g̃j ;q

}
→ E

{
supfj ;q

1 + supfj ;q

}
.

It should be noted that asymptotically proximal sequences do not enjoy all the
same properties as in the standard weak convergence case. For instance, it is known
that the Portmanteau lemma does not hold in general, that is, it is not true that, for
every Borel set such that Pr{gn ∈ ∂A} = Pr{fn ∈ ∂A} = 0, we have∣∣Pr{gn ∈ A} − Pr{fn ∈ A}∣∣→ 0;
as a counterexample, it is enough to consider the sequences fn = −n−1 and gn =
n−1. However, it is indeed possible to obtain more stringent characterizations when
the subsequences are asymptotically Gaussian. We have the following.

PROPOSITION 19. For every A ∈ B(R), we have that∣∣∣Pr
{

sup
x∈S2

g̃j ;q(x) ∈ A
}

− Pr
{

sup
x∈S2

fj ;q ∈ A
}∣∣∣→ 0.

PROOF. We shall argue again by contradiction. Assume that there exists a
subsequence j ′

n such that for some ε > 0∣∣∣Pr
{

sup
x∈S2

g̃j ′
n;q(x) ∈ A

}
− Pr

{
sup
x∈S2

fj ′
n;q ∈ A

}∣∣∣> ε.(31)

By relative compactness, there exists a subsequence j ′′
n and a limiting process g∞;q

such that ∣∣∣Pr
{

sup
x∈S2

g̃j ′′
n ;q(x) ∈ A

}
− Pr

{
sup
x∈S2

g̃∞;q ∈ A
}∣∣∣→ 0.

Likewise, consider {j ′′′
n } ⊂ {j ′′

n }; again by relative compactness there exist f∞;q
such that fj ′′′

n ;q ⇒ f∞;q , and hence∣∣∣Pr
{

sup
x∈S2

fj ′′′
n ;q(x) ∈ A

}
− Pr

{
sup
x∈S2

f∞;q ∈ A
}∣∣∣→ 0.

Note that f∞;q, g̃∞;q are isotropic and continuous Gaussian random fields; indeed
for g̃∞;q it suffices to recall that the finite-dimensional distributions of {g̃j ;q} are
asymptotically Gaussian (Section 5.1), so if a weak limit exists it must be Gaus-
sian as well. Hence, the supremum is necessarily a continuous random variable,
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and no problems with nonzero boundary probabilities can arise. Also, the finite-
dimensional distributions are a determining class, whence the two Gaussian pro-
cesses f∞;q, g̃∞;q must necessarily have the same distribution. Hence,∣∣∣Pr

{
sup
x∈S2

fj ′′′
n ;q(x) ∈ A

}
− Pr

{
sup
x∈S2

g̃j ′′′
n ;q(x) ∈ A

}∣∣∣→ 0,

yielding a contradiction with (31). �

This result immediately suggests two alternative ways to achieve the ultimate
goal of this paper, for example, the evaluation of excursion probabilities on the
non-Gaussian sequence of random fields {gj ;q}. On one hand, it follows immedi-
ately that these probabilities may be evaluated by simulations, by simply sampling
realizations of a Gaussian field with known angular power spectrum; for q = 2, for
example, fj ;q is simply a Gaussian process with angular power spectrum given
by (28). There exist now very efficient techniques, based on packages such as
HealPix [27], for the numerical simulation of Gaussian fields with a given power
spectra; here the only burdensome step can be the numerical evaluation of expres-
sions like (28), but this is in any case much faster and simpler than the Monte
Carlo evaluation of smoothed non-Gaussian fields. Therefore, our result has an
immediate applied relevance.

One can try, however, to be more ambitious than this, and verify whether these
excursion probabilities can indeed be evaluated analytically, rather than by Gaus-
sian simulations. This is in fact the purpose of the next, and final, section.

6. Asymptotics for the excursion probabilities. The purpose of this final
section is to show how the previous weak convergence results allow for very neat
characterizations of excursion probabilities, even in non-Gaussian circumstances.
In particular, our main result is the following.

THEOREM 20. There exists constants α > 1 and μ+ > 0 such that, for
u > μ+

lim sup
j→∞

∣∣∣Pr
{

sup
x∈S2

g̃j ;q(x) > u
}

− {2(1 − �(u)
)+ 2uφ(u)λj ;q

}∣∣∣
≤ exp

(
−αu2

2

)
,

where [see (27)]

λj ;q =
∑L

�=1((2� + 1)/(4π))C�;j,qP ′
�(1)∑L

�=1((2� + 1)/(4π))C�;j,q
.(32)
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PROOF. Note that∣∣∣Pr
{

sup
x∈S2

g̃j ;q(x) > u
}

− {2(1 − �(u)
)+ 2uφ(u)λj ;q

}∣∣∣
≤
∣∣∣Pr
{

sup
x∈S2

g̃j ;q(x) > u
}

− Pr
{

sup
x∈S2

f̃j ;q(x) > u
}∣∣∣(33)

+
∣∣∣Pr
{

sup
x∈S2

f̃j ;q(x) > u
}

− {2(1 − �(u)
)+ 2uφ(u)λj ;q

}∣∣∣,
where f̃j ;q is as defined in the previous section. Observe that by Proposition 19 the
first part of the right-hand side of the above inequality converges to 0, therefore,
we need only prove the required estimate for the second part of the right-hand side.

We shall mainly exploit Theorem 14.3.3 of [5], with some modifications to
adapt it to our needs. For each x0 ∈ S2, let us define the corresponding pivoted
random field as

f̂
x0
j ;q(x) = 1

1 − ρ(x, x0)

{
fj ;q(x) − ρ(x, x0)fj ;q(x0)

− Cov
(
fj ;q(x),

∂

∂ϑ
fj ;q(x0)

)
× Var

(
∂

∂ϑ
fj ;q(x)

)
∂

∂ϑ
fj ;q(x)(34)

− Cov
(
fj ;q(x),

∂

sinϑ∂φ
fj ;q(x0)

)

× Var
(

∂

sinϑ∂φ
fj ;q(x)

)
∂

sinϑ∂φ
fj ;q(x)

}
,

where ρ(x, x0) = E(fj ;q(x)fj ;q(x0)). Next define

μ+
j = sup

x0

E

(
sup
x �=x0

f̂
x0
j ;q(x)

)
and

σ 2
j = sup

x0

sup
x �=x0

Var
(
f̂

x0
j ;q(x)

)
.

Then from page 371 of [5], we know that for u ≥ μ+
j∣∣∣Pr

{
sup
x∈S2

fj ;q(x) > u
}

−EL0
(
Au

(
fj ;q, S2))∣∣∣

(35)

≤ Kue
−(u−μ+

j )2/2(1+1/(2σ 2
j ))

2∑
i=0

{
E

∣∣∣det
i

(
−∇2fj ;q − fj ;qI2

)∣∣∣2}1/2
,
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where I2 is the 2 × 2 identity matrix, deti of a matrix is the sum over all the
i-minors of the matrix under consideration, and K is a constant not depending
on j . Note that the expression on page 371 of [5] also involves an integral over
the parameter space with the metric induced by the second-order spectral moment.
However, under (20) this integral is easily seen to be uniformly bounded with
respect to j , so that we can get rid of it by invoking the isotropy of the field fj ;q ,
and absorbing the arising constant into K upfront.

Our goal is to get a uniform bound for the right-hand side of (35). Clearly,∑2
i=0 E|deti (−∇2fj ;q − fj ;qI2)|2 is bounded above by a universal constant,

largely because of the finite expansion for the kernel K(·, ·) used to define the field
gj ;q . Next, to get a uniform bound for μ+

j , we shall resort to a Slepian inequality
type of argument, and use the standard techniques of estimating the expected value
of supremum of a Gaussian random field using metric entropy.

In particular, we shall prove Proposition 21 in the Appendix that the assumed
regularity conditions on the kernel K ensure the following:

E
(
f̂

x0
j ;q(x2) − f̂

x0
j ;q(x1)

)2 ≤ c(LK,q)|x2 − x1|.(36)

Then using this uniform bound and a Slepian type of comparison argument, we
get a uniform (over j ) bound on the metric entropy corresponding to various f̂

x0
j ;q ,

which in turn ensures that there exist finite constants α > 1 and μ+ = supj μ+
j <

∞, such that, for u > μ+,∣∣∣Pr
{

sup
x∈S2

fj ;q(x) > u
}

−EL0
(
Au

(
fj ;q, S2))∣∣∣≤ exp

(
−αu2

2

)
,(37)

uniformly over j , where

EL0
(
Au

(
fj ;q, S2))= 2

(
1 − �(u)

)+ 2uφ(u)λj ;q,

which proves the result. �

APPENDIX

All of this section is devoted to the proof of the following proposition.

PROPOSITION 21. Under the assumption that the kernel K appearing in the
definition of g̃j ;q is of the form (20), the field f̂

x0
j ;q satisfies the following:

E
(
f̂

x0
j ;q(x2) − f̂

x0
j ;q(x1)

)2 ≤ c(LK,q)|x2 − x1|,(38)

where the constant c(LK,q) depends on q and �, but does not depend on j .
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As a by-product of the proof, we shall also obtain a uniform upper bound on σ 2
j .

For notational simplicity and without loss of generality, we take the coefficients
{ki

2i+1
4π

} in (20) to be identically equal to one.
Writing ρ(x, y) = cov(fj ;q(x), fj ;q(y)), and ∂φx , ∂θx as directional derivatives

at x in the normalized spherical coordinate directions, we have

cov
(
f̂

x0
j ;q(x1), f̂

x0
j ;q(x2)

)
= 1

(1 − ρ(x0, x1))(1 − ρ(x0, x2))

× (
ρ(x1, x2) − ρ(x0, x1)ρ(x0, x2)

− cov
(
fj ;q(x1), ∂θx0

fj ;q(x0)
)

cov
(
fj ;q(x2), ∂θx1

fj ;q(x1)
)

× cov
(
∂θx1

fj ;q(x1), ∂θx1
fj ;q(x1)

)
− cov

(
fj ;q(x1), ∂φx0

fj ;q(x0)
)

cov
(
fj ;q(x2), ∂φx1

fj ;q(x1)
)

× cov
(
∂φx1

fj ;q(x1), ∂φx1
fj ;q(x1)

)
− ρ(x0, x1)ρ(x0, x2) + ρ(x0, x1)ρ(x0, x2)ρ(x0, x0)

+ ρ(x0, x2) cov
(
fj ;q(x1), ∂θx0

fj ;q(x0)
)

cov
(
fj ;q(x0), ∂θx1

fj ;q(x1)
)

× cov
(
∂θx1

fj ;q(x1), ∂θx1
fj ;q(x1)

)
+ ρ(x0, x2) cov

(
fj ;q(x1), ∂φx0

fj ;q(x0)
)

cov
(
fj ;q(x0), ∂φx1

fj ;q(x1)
)

× cov
(
∂φx1

fj ;q(x1), ∂φx1
fj ;q(x1)

)
− cov

(
fj ;q(x2), ∂θx0

fj ;q(x0)
)

cov
(
∂θx2

fj ;q(x2), fj ;q(x1)
)

× cov
(
∂θx2

fj ;q(x2), ∂θx2
fj ;q(x2)

)
+ ρ(x0, x1) cov

(
fj ;q(x2), ∂θx0

fj ;q(x0)
)

cov
(
∂θx2

fj ;q(x2), fj ;q(x0)
)

× cov
(
∂θx2

fj ;q(x2), ∂θx2
fj ;q(x2)

)
+ (var

(
∂θx1

fj ;q(x1)
))2 cov

(
fj ;q(x1), ∂θx0

fj ;q(x0)
)

× cov
(
fj ;q(x2), ∂θx0

fj ;q(x0)
)

× cov
(
∂θx1

fj ;q(x1), ∂θx2
fj ;q(x2)

)
+ var

(
∂θx1

fj ;q(x1)
)

var
(
∂φx2

fj ;q(x2)
)

cov
(
fj ;q(x1), ∂φx0

fj ;q(x0)
)

× cov
(
fj ;q(x2), ∂θx0

fj ;q(x0)
)

cov
(
∂θx1

fj ;q(x1), ∂φx2
fj ;q(x2)

)
− cov

(
fj ;q(x2), ∂φx0

fj ;q(x0)
)

var
(
∂φx2

fj ;q(x2)
)

× cov
(
∂φx2

fj ;q(x2), fj ;q(x1)
)
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+ ρ(x0, x1) cov
(
fj ;q(x2), ∂φx0

fj ;q(x0)
)

var
(
∂φx2

fj ;q(x2)
)

× cov
(
∂φx2

fj ;q(x2)fj ;q(x0)
)

+ var
(
∂θx1

fj ;q(x1)
)

var
(
∂φx2

fj ;q(x2)
)

× cov
(
fj ;q(x1), ∂θx0

fj ;q(x0)
)

× cov
(
fj ;q(x2), ∂φx0

fj ;q(x0)
)

cov
(
∂θx1

fj ;q(x1), ∂φx2
fj ;q(x2)

)
+ (

var
(
∂φx1

fj ;q(x1)
))2 cov

(
fj ;q(x1), ∂φx0

fj ;q(x0)
)

× cov
(
fj ;q(x2), ∂φx0

fj ;q(x0)
)

cov
(
∂φx1

fj ;q(x1), ∂φx2
fj ;q(x2)

))
.

Note that ρ(x1, x2) can be assumed to have Pl(〈x1, x2〉) as the leading poly-
nomial (uniform over all j ). Then, taking x1 = x2 in the above computation, and
going through some more (but simple) calculations, one can show that there exists
a constant M > 0 such that Var(f̂ x0

j ;q(x)) ≤ M uniformly over all j , which in turn,

together with the assumption of isotropy, proves that σ 2
j ≤ M ′, for some M ′ < ∞.

Next, to prove Proposition 21 we begin with

E
(
f̂

x0
j ;q(x2) − f̂

x0
j ;q(x1)

)2
= var

(
f̂

x0
j ;q(x1)

)+ var
(
f̂

x0
j ;q(x2)

)− 2 cov
(
f̂

x0
j ;q(x1), f̂

x0
j ;q(x2)

)
.

We shall analyze each pair of the terms in the above expression separately.
Let us, for instance, consider (together) one of the, seemingly, more involved
term of the expression which is the last term of the covariance and the corre-
sponding term in var(f̂ x0

j ;q(x1)). At the expense of introducing more notation, let
us write C�;φφ = var(∂φxfj ;q(x)) (note that due to isotropy, the variance does
not depend on the spatial point x), then the difference between the last term of
Var(f̂ x0

j ;q(x1)) and the last term of Cov(f̂
x0
j ;q(x1), f̂

x0
j ;q(x2)), can be written as, for

all x1, x2 ∈ (B(x0, ε))
c that is, outside a ball of size ε around the point x0, we shall

have

1

(1 − ρ(x0, x1))2(1 − ρ(x0, x2))

× (
C3

�;φφ

(
cov

(
fj ;q(x1), ∂φx0

fj ;q(x0)
))2(1 − ρ(x0, x2)

)
− C2

�;φφ cov
(
fj ;q(x1), ∂φx0

fj ;q(x0)
)

× cov
(
fj ;q(x2), ∂φx0

fj ;q(x0)
)

× cov
(
∂φx1

f (x1), ∂φx2
fj ;q(x2)

)(
1 − ρ(x0, x1)

))
= C2

�;φφ∂φx0
ρ(〈x1, x0〉)

(1 − ρ(x0, x1))2(1 − ρ(x0, x2))
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× (
C�;φφ

(
1 − ρ(x0, x2)

)
∂φx0

ρ(x1, x0)

− (
1 − ρ(x0, x1)

)
∂φx0

ρ(x2, x0)∂φx1
∂φx2

ρ(x1, x2)
)

= C2
�;φφ∂φx0

ρ(〈x1, x0〉)
(1 − ρ(x0, x1))2(1 − ρ(x0, x2))

× ((
∂φx0

ρ(x1, x0) − ∂φx0
ρ(x2, x0)

)
C�;φφ

(
1 − ρ(x0, x2)

)
+ ∂φx0

ρ(x2, x0)
(
C�;φφ

(
1 − ρ(x0, x2)

)
− (1 − ρ(x0, x1)

)
∂φx1

∂φx2
ρ(x1, x2)

))
.

Recall that the covariance function ρ does depend on j , but since we are assum-
ing the kernel K(x, y) to have finite expansion, thus the corresponding Legendre
polynomial expansion of ρ(x1, x2) can be assumed to have a P�(〈x1, x2〉) (uniform
over j ) which is the leading polynomial. Then, taking the modulus of the above
expression, and considering all x1, x2 ∈ (B(x0, ε))

c that is, outside a ball of size ε

around the point x0, we shall have∣∣∣∣ C2
�;φφ∂φx0

P�(〈x1, x0〉)
[1 − P�(〈x0, x1〉)]2[1 − P�(〈x0, x2〉)]

∣∣∣∣
× ∣∣({∂φx0

P�

(〈x1, x0〉)− ∂φx0
P�

(〈x2, x0〉)}C�;φφ

[
1 − P�

(〈x0, x2〉)]
+ ∂φx0

P�

(〈x2, x0〉){C�;φφ

[
1 − P�

(〈x0, x2〉)]
− [1 − P�

(〈x0, x1〉)]∂φx1
∂φx2

P�

(〈x1, x2〉)})∣∣
≤
∣∣∣∣ C2

�;φφP ′
�(〈x1, x0〉)

(1 − P�(〈x0, x1〉))2(1 − P�(〈x0, x2〉))
∣∣∣∣

× (∣∣(P ′
�

(〈x1, x0〉)(− sin θx1 sin(φx1 − φx0)
)

− P ′
�

(〈x2, x0〉)(− sin θx2 sin(φx2 − φx0)
))∣∣ · εC�;φφ

+ ∣∣P ′
�

(〈x2, x0〉)(− sin θx2 sin(φx2 − φx0)
)∣∣

× ∣∣(C�;φφ

[
1 − P�

(〈x0, x2〉)]− [1 − P�

(〈x0, x1〉)]
× {

P ′′
�

(〈x1, x2〉) sin θx1 sin θx2 sin2(φx1 − φx2)

+ P ′
�

(〈x1, x2〉) cos(φx1 − φx2)
})∣∣)

≤ C2
�;φφM(ε, �)

× ({∣∣P ′
�

(〈x1, x0〉)∣∣
× ∣∣(sin θx2 sin(φx2 − φx0) − sin θx1 sin(φx1 − φx0)

)∣∣
+ ∣∣(P ′

�

(〈x2, x0〉)− P ′
�

(〈x1, x0〉))∣∣ · ∣∣sin θx2 sin(φx2 − φx0)
∣∣}× εC�;φφ
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+ M1(ε, �)C�;φφ

∣∣P�

(〈x0, x1〉)− P�

(〈x0, x2〉)∣∣
+ M1(ε, �)

∣∣1 − P�

(〈x0, x1〉)∣∣
× ∣∣C�,φφ − P ′′

�

(〈x1, x2〉) sin θx1 sin θx2 sin2(φx1 − φx2)

− P ′
�

(〈x1, x2〉) cos(φx1 − φx2)
∣∣)

≤ C2
�,φφM(ε, �)

× (
εC�,φφM2(�, ε)

× (| sin θx2 | ·
∣∣sin(φx2 − φx0) − sin(φx1 − φx0)

∣∣
+ ∣∣sin(φx1 − φx0)

∣∣ · | sin θx2 − sin θx1 | + M3(�, ε)|x2 − x1|)
+ M ′

1(ε, �)|x2 − x1| + M ′′
1 (ε, �) · | sin θx1 sin θx2 | · sin2(φx1 − φx2)

+ M ′′
1 (ε, �) × ∣∣C�,φφ − P ′

�

(〈x1, x2〉) cos(φx1 − φx2)
∣∣)

≤ C2
lφφM(ε, �)

× (
εC�,φφM2(ε, �)M4(ε, �) · ∣∣sin(φx2 − φx1) − sin(φx1 − φx1)

∣∣
+ M4(ε, �) · | sin θx2 − sin θx1 | + M3(ε, �)|x2 − x1|
+ M ′

1(ε, �)|x2 − x1|
+ M ′′′

1 (ε, �) sin2(θx2 − θx1) + M ′′
1 (ε, �) · ∣∣C�,φφ − P ′

�

(〈x1, x2〉)∣∣
+ M

(iv)
1 (ε, �)

∣∣1 − cos(φx2 − φx1)
∣∣).

Now note that C�,φφ is precisely equal to P ′
�(1), which can be rewritten as

P ′
�(〈x1, x1〉). Replacing this in the last part of the above expression, we get the

following:∣∣∣∣ C2
�;φφ∂φx0

P�(〈x1, x0〉)
[1 − P�(〈x0, x1〉)]2[1 − P�(〈x0, x2〉)]

∣∣∣∣
× ∣∣({∂φx0

P�

(〈x1, x0〉)− ∂φx0
P�

(〈x2, x0〉)}C�;φφ

[
1 − P�

(〈x0, x2〉)]
+ ∂φx0

P�

(〈x2, x0〉){C�;φφ

[
1 − P�

(〈x0, x2〉)]
− [1 − P�

(〈x0, x1〉)]∂φx1
∂φx2

P�

(〈x1, x2〉)})∣∣
≤ C2

lφφM(ε, �)

× (
εC�,φφM2(ε, �)M4(ε, �) · ∣∣sin(φx2 − φx1) − sin(φx1 − φx1)

∣∣
+ M4(ε, �) · | sin θx2 − sin θx1 | + M3(ε, �)|x2 − x1|
+ M ′

1(ε, �)|x2 − x1|
+ M ′′′

1 (ε, �) sin2(θx2 − θx1) + M ′′
1 (ε, �) · ∣∣P ′

�

(〈x1, x1〉)− P ′
�

(〈x1, x2〉)∣∣
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+ M
(iv)
1 (ε, �)

∣∣1 − cos(φx2 − φx1)
∣∣)

≤ c(ε,LK)|x1 − x2|.
By replicating these set of calculations for each pair of terms in E(f̂

x0
j ;q(x2) −

f̂
x0
j ;q(x1))

2, we conclude that for every x1, x2 ∈ B(x0, ε),

E
(
f̂

x0
j ;q(x2) − f̂

x0
j ;q(x1)

)2 ≤ c(ε,LK)|x2 − x1|.
Next, we wish to extend this to points inside the set B(x0, ε) \ {x0}, but the Lips-
chitz coefficient c(ε,LK) needs to be controlled. Observing that c(ε,LK) depends
on ε through the distance of points x1, x2 to x0, note that cov(f̂

x0
j ;q(x1), f̂

x0
j ;q(x2))

grows rapidly as either of x1 or x2 approach x0, whereas when x1 and x2 simul-
taneously approach x0, then the expression assumes the form of an indeterminate
form, for which one can use the standard l’Hôpital’s rule to get a precise form of
the expression. Thus, let us first examine the following:

lim
x→x0

var
(
f̂

x0
j ;q(x)

)
= lim

x→x0

1

(1 − ρ(x0, x))2

× (
1 − ρ2(x0, x) + 2ρ(x0, x)∂θx0

ρ(x0, x)∂θxρ(x0, x)∂2
θx

ρ(x, x)

+ 2ρ(x0, x)∂φx0
ρ(x0, x)∂φxρ(x0, x)∂2

φx
ρ(x, x)

+ {∂θx0
ρ(x0, x)

}2{
∂2
θx

ρ(x, x)
}3

+ {∂φx0
ρ(x0, x)

}2{
∂2
φx

ρ(x, x)
}3)

.

Let us do the limit computations for just the first term of the variance expression:

lim
x→x0

1 − ρ2(x0, x)

(1 − ρ(x0, x))2

= lim
x→x0

−2ρ(x0, x)∂θxρ(x0, x)

(−2)(1 − ρ(x0, x))∂θxρ(x0, x)

= lim
x→x0

ρ(x0, x)∂2
θx

ρ(x0, x) + (∂θxρ(x0, x))2

(1 − ρ(x0, x))∂2
θx

ρ(x0, x) − (∂θxρ(x0, x))2

= lim
x→x0

ρ(x0, x)∂3
θx

ρ(x0, x) + 3∂θxρ(x0, x)∂2
θx

ρ(x0, x)

(1 − ρ(x0, x))∂3
θx

ρ(x0, x) − 3∂θxρ(x0, x)∂2
θx

ρ(x0, x)

= lim
x→x0

(
ρ(x0, x)∂4

θx
ρ(x0, x) + ∂θxρ(x0, x)∂3

θx
ρ(x0, x)

+ 3∂2
θx

ρ(x0, x)∂2
θx

ρ(x0, x) + 3∂θxρ(x0, x)∂3
θx

ρ(x0, x)
)
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/
((

1 − ρ(x0, x)
)
∂4
θx

ρ(x0, x) − 4∂θxρ(x0, x)∂3
θx

ρ(x0, x)

− 3
(
∂2
θx

ρ(x0, x)
)2)

,

where we have applied l’Hôpital’s rule at each step (four times), and we note that
the final expression is indeed a nontrivial, determinate limit.

We note that we have assumed ρ(x0, x) = P�(〈x0, x〉), and hence the derivatives
above have the following form:

∂θxP�

(〈x0, x〉)= P ′
�(·)

(
cos θx sin θx0 cos(φx − φx0) − sin θx cos θx0

)
,

∂2
θx

P�

(〈x0, x〉)= P ′′
� (·)(cos θx sin θx0 cos(φx − φx0) − sin θx cos θx0

)2
+ P ′(·)(− sin θx sin θx0 cos(φx − φx0) − cos θx cos θx0

)
,

∂3
θx

P�

(〈x0, x〉)
= P ′′′

� (·)(cos θx sin θx0 cos(φx − φx0) − sin θx cos θx0

)3
+ 2P ′′

� (·)(cos θx sin θx0 cos(φx − φx0) − sin θx cos θx0

)
× (− sin θx sin θx0 cos(φx − φx0) − cos θx cos θx0

)
+ P ′(·)(− cos θx sin θx0 cos(φx − φx0) + sin θx cos θx0

)
,

∂4
θx

P�

(〈x0, x〉)= P
(iv)
� (·)(cos θx sin θx0 cos(φx − φx0) − sin θx cos θx0

)4
+ 3P ′′′

� (·)(cos θx sin θx0 cos(φx − φx0) − sin θx cos θx0

)
× (− sin θx sin θx0 cos(φx − φx0) − cos θx cos θx0

)
+ 2P ′′′

� (·)(cos θx sin θx0 cos(φx − φx0) − sin θx cos θx0

)2
× (− sin θx sin θx0 cos(φx − φx0) − cos θx cos θx0

)
+ 2P ′′

� (·)(− sin θx sin θx0 cos(φx − φx0) − cos θx cos θx0

)2
− 2P ′′

� (·)(cos θx sin θx0 cos(φx − φx0) − sin θx cos θx0

)2
+ P ′′(·)(cos θx sin θx0 cos(φx − φx0) − sin θx cos θx0

)
× (− cos θx sin θx0 cos(φx − φx0) + sin θx cos θx0

)
+ P ′(·)(sin θx sin θx0 cos(φx − φx0) + cos θx cos θx0

)
.

Thus, we conclude that

P�

(〈x0, x〉)|x=x0 = 1,

∂θxP�

(〈x0, x〉)|x=x0 = 0,

∂2
θx

P�

(〈x0, x〉)|x=x0 = −P ′(1),

∂3
θx

P�

(〈x0, x〉)|x=x0 = 0,
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∂4
θx

P�

(〈x0, x〉)|x=x0, = 2P ′′
� (1) + P ′

�(1).

Subsequently, we shall argue that by continuity, and the fact the field f̂
x0
j ;q ap-

pears to be singular at x0, we conclude that for x1, x2 ∈ B(x0, ε) and a small
enough ε,

sup
x1,x2∈B(x0,ε)

E
(
f̂

x0
j ;q(x2) − f̂

x0
j ;q(x1)

)2 = lim
(x1,x2)→(x0,x0)

E
(
f̂

x0
j ;q(x2) − f̂

x0
j ;q(x1)

)2
.

The limit on the right-hand side can again be evaluated by applying l’Hôpital’s
rule, and thus, the (uniform) Lipschitz behaviour is justified. Thereafter, we note
that by the isotropy of the underlying field fj ;q , the E(supx∈S2\{x0} f̂

x0
j ;q(x)) does

not depend on x0, and thus we get a uniform (over j and x0) Lipschitz bound, as
claimed.
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