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How does gait-specific pattern generation evolve in early infancy? The idea that neural

and biomechanical mechanisms underlying mature walking and running differ to some

extent and involve distinct spinal and supraspinal neural circuits is supported by various

studies. Here we consider the issue of human gaits from the developmental point of

view, from neonate stepping to adult mature gaits. While differentiating features of the

walk and run are clearly distinct in adults, the gradual and progressive developmental

bifurcation between the different gaits suggests considerable sharing of circuitry. Gaits

development and their biomechanical determinants also depend on maturation of the

musculoskeletal system. This review outlines the possible overlap in the neural and

biomechanical control of walking and running in infancy, supporting the idea that gaits

may be built starting from common, likely phylogenetically conserved elements. Bridging

connections betweenmovement mechanics and neural control of locomotion could have

profound clinical implications for technological solutions to understand better locomotor

development and to diagnose early motor deficits. We also consider the neuromuscular

maturation time frame of gaits resulting from active practice of locomotion, underlying

plasticity of development.

Keywords: early development, human bipedal locomotion, gait transitions, biomechanical gait determinants,

neural control of different gaits, infants

INTRODUCTION

What are the general characteristics of maturation of gait-specific pattern generation circuitries?
Even though humans start to walk significantly later than most animals (Garwicz et al., 2009),
stepping-like responses can be evoked in human neonates. These steps are very irregular and
typically disappear few weeks after birth and reappear later when they evolve into intentional
locomotion (Forssberg, 1985; Thelen and Cooke, 1987). Recent advances in biotechnology along
with reduced physical size of electromechanical systems has enabled to unveil new information
about the locomotor output of the stepping behavior (Zhu et al., 2015; Redd et al., 2019; Airaksinen
et al., 2020). By comparing this stepping behavior with adult walking, it has been shown that the
primitive muscular control patterns observed in neonates are highly preserved and recombined
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during development, supporting the idea that this early stepping
is a precursor to adult walking (Dominici et al., 2011; Sylos-
Labini, La Scaleia, Cappellini, Fabiano, Picone, Keshishian, 2020),
in spite of noticeable differences with mature gait (Forssberg,
1985; Ivanenko et al., 2013a; Yang et al., 2015). The infants
also show the elements of quadrupedal coordination during
stepping (La Scaleia et al., 2018), swimming (McGraw, 1939), or
crawling (Patrick et al., 2012; Forma et al., 2019). However, the
developmental path from the neonate behaviors to adult running
gaits is still unknown.

While the specific features of the walk and run are clearly
distinct in adults, there is little evidence for such distinct
walking and running patterns at the onset of independent
locomotion. Instead, the characteristics of gaits show gradual and
progressive values during growth (Whitall and Getchell, 1995).
In other words, the locomotor patterns in young children do
not fall nicely into a classic category like walking or running
(Vasudevan et al., 2016), but such distinction is stretched out
over developmental time. Here, we argue that these two different
modes of locomotion most likely evolved from similar circuitry,
and represent a specific kind of developmental bifurcation with
different maturational rates.

In the first sections, we briefly highlight the main
features of the two modes of mature human locomotion
and neurophysiological and biomechanical considerations for
the control of different animal gaits. Next, we consider recent
findings on the process of development of neural network, and
the absence of clear distinction in infant stepping. In a final
section, we discuss common elements of organization with
different modes of locomotion, and how early motor experience
during development may shape motor properties in different
environmental contexts including early gait impairments
in infancy.

THE TWO MODES OF HUMAN
LOCOMOTION

Among a vast variety of possible ways of locomotion, humans
generally prefer just two, categorized into walking and running
(Cavagna et al., 1988). Mature walking gait can be caricatured
by the hip joint swinging over a relatively straight leg, whereas
mature running gait can be seen as a bounce off compliant
leg followed by parabolic flight (Figure 1). Few variables clearly
distinguish features of walking and running gait and represent
the essence of these commonly produced behavioral patterns
(called collective variables). Once identified, the process that
underlies changes in locomotor behavior across the lifespan may
be studied.

One key parameter to discriminate forms of locomotion has
traditionally been the difference observed in the spatiotemporal
features, specifically the relative timing of the feet contacts
with the ground (Figure 1, lower panels). Indeed, periods of
single support intersperse with periods of double support during
walking and with periods of flights during running. Accordingly,
walking and running are operationally distinguished based on the
presence (running) or absence (walking) of an aerial phase during

which neither foot is in contact with the ground. Therefore,
the existence or absence of a flight phase is one well-accepted
collective variable.

Another distinguishing feature between adult walking and
running is the path of the center of mass (COM) of the body
(Figure 1, upper panels). The basis for this approach is the work
of Cavagna and co-workers (Cavagna et al., 1988), who showed
that major characteristics that serve as signatures for human
running and walking are the interaction between the forward
and the vertical displacement of the center of mass of the body
(COM). In walking, the COM reaches its lowest point when
its forward velocity is maximal; this behavior characterizes a
pendulum-like energy exchange between potential and kinetic
energy. In running, the COM reaches its lowest point when its
forward velocity is minimal; this behavior characterizes a storage-
release of elastic energy. These mechanisms were defined as the
“inverted pendulum”mechanism in walking, and the “pogo-stick
bouncing” in running (Figure 1).

The trajectory of the COM in space in turn depends on the
combined rotation of lower-limb segments (Lacquaniti et al.,
1999, 2002; Dewolf et al., 2018). During both running and
walking, the behavior of the COM is the result of a gait-dependent
control of phase relationship between the lower-limb segments
(Kao et al., 2000; Ivanenko et al., 2007a), also a distinguishing
feature of gaits.

NEUROPHYSIOLOGICAL
CONSIDERATIONS FOR THE CONTROL OF
DIFFERENT GAITS

It is known that such gait coordination results from interplay
between the activity of spinal central pattern generators (CPGs),
sensory signals originating in the limbs and supraspinal signals
(Grillner, 1981; Büschges et al., 1995). There are at least two
conceptual models on how the locomotor circuitry may be
organized (for a more comprehensive overview of hypotheses
on CPG organization, see, for example, Duysens et al., 2013;
Rybak et al., 2015; Kiehn, 2016; Minassian et al., 2017; Grillner
and El Manira, 2020). One model considers a set of unit
CPGs controlling specific groups of muscles (Grillner and El
Manira, 2020). Another model consists of a two-layered CPG
organizationwith one rhythm-generating circuit and another one
for downstream control of muscle activity and coordination of
different gaits (walk, trot, and gallop) (McCrea and Rybak, 2008;
Danner et al., 2017).

Several studies on animals have shown that the CPG circuits
residemainly in the ventral aspect of the spinal cord (Kiehn, 2016;
Grillner and El Manira, 2020), and are involved in changing the
mode of locomotion. While the intensity of supraspinal inputs
may determine the speed and mode of locomotion, the spinal
circuitry is able to implement specific coordination patterns for
different gaits. A classical physiological study on decerebrated
cat stepping on a treadmill showed that increasing the strength
of electrical stimulation of the mesencephalic locomotor region
can make the gait changes from a slow walk to trot and finally
gallop (Shik et al., 1966; Shik and Orlovsky, 1976). Another

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 May 2020 | Volume 8 | Article 473

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Dewolf et al. Emergence of Gaits in Infancy

FIGURE 1 | Schematic representation of two modes of human locomotion during stance phase.

example of gait-related spinal control can be obtained during
fictive swimming in the lamprey: varying the concentration of
neurotransmitter applied to the lamprey spinal cord produces
changes in the intersegmental coordination (Matsushima and
Grillner, 1992). In humans, by using mental imagery of
locomotion in fMRI, Jahn et al. (2008) have suggested that the
supraspinal network of quadrupeds is conserved in both walking
and running gaits, despite the transition to bipedalism. The
similarities of the basic organization of supraspinal locomotor
control for gait and speed regulation in humans and cats
(Drew et al., 2004) suggest similar gait-related spinal circuitries
across mammals. In sum, it is worth stressing that the neural
mechanisms for the control of different gaits involve both shared
and specific neural circuits. Figure 2 illustrates examples of such
gait-dependent changes in spinal locomotor controllers.

Using electrophysiological, pharmacological, or
neuroanatomical approaches in invertebrates and vertebrates,
the identification of the spinal interneurons and investigation
of the locomotor output provided important insights into the
gait-dependent organization of CPGs and how these functional
circuits are formed during development. An example of
developmental process can be observed during the Xenopus
metamorphosis (Figure 2A). Limb and tail muscle coordination
switches from pro-metamorphosis to metamorphic climax,
suggesting that the neural network is progressively reshaped
to allow the transformation from aquatic swimming to ground
stepping (Rauscent et al., 2006). Such plasticity results from
both a dynamic reconfiguration of spinal circuitry and the
involvement of new circuitry (Combes et al., 2004). Studies
focused on the patterns of recruitment of interneurons in the
spinal motor system of zebrafish led to principles underlying the
reorganization of spinal circuitry (Fetcho and McLean, 2010).
The neurons producing fast movements are established early
and, as the zebrafish develops, interneurons responsible for
low frequency movements are progressively added (Figure 2B).
At the end of development, the neurons producing slow,

intermediate, or fast movements can be recruited either
separately or combined sequentially to increase the locomotor
speed (McLean et al., 2008; Grillner and El Manira, 2020). Studies
on gait-related spinal circuits in mice demonstrated intriguing
similarities with the zebrafish spinal cord (McLean et al., 2008;
Fetcho and McLean, 2010). For example, in both species, V1
interneurons are critical for setting the speed of locomotion,
and sequential V2a recruitment is observed with increasing
speed (Ausborn et al., 2012). However, a major difference is
that as they speed up, mice (as the great majority of terrestrial
quadrupedal mammals) change their gait from walk to trot
and to gallop (Figure 2C), and the inter-limb coordination
switches from alternation during both walking and trotting
to synchrony during galloping. Such gait-dependent left–right
rhythmicity and coordination recruitments are mediated by
speed-dependent spinal interneurons (Figure 2C). According
to the unit-burst generator organization, spinal interneurons
coordinate the activity of “excitatory core burst generators”
dedicated to coordination of hip, knee and ankle flexor, and
extensor motor output of each limb (Grillner and Jessell,
2009; Grillner and El Manira, 2020), which can be combined
to produce various gait patterns (Catavitello et al., 2015;
Figure 2D). One alternative concept of the CPG organization
includes a separation of the networks for rhythm generation
and motoneuron excitation. According to this hypothesis, the
rhythm generating circuit would set the rhythm for one limb, and
then interneurons would activate a certain set of motoneurons
and inhibit others depending on gaits (Lafreniere-Roula and
McCrea, 2005; Shevtsova and Rybak, 2016; Danner et al., 2017;
Ausborn et al., 2018). Both approaches emphasize gait-specific
coupling of elements of pattern generation circuitries, mediated
by speed-dependent spinal interneurons.

Another way to get insight into CPG functioning for
different gaits is to look at the spatiotemporal organization of
the total locomotor output and multi-muscle activity patterns
in particular. In dogs as in several other animal species
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FIGURE 2 | Examples of gait-specific changes in spinal locomotor controllers. (A) changes in coordination between extensor, flexor, and axial muscle bursts during

Xenopus metamorphosis (modified from Rauscent et al., 2006 with permission from Elsevier). (B) schematic summary of changes in the development and recruitment

of spinal circuitry in larval Zebrafish: neurons responsible for progressively slower movements in larvae are added as zebrafish develop (modified from Fetcho and

McLean, 2010 with permission). (C) distinct spinal interneurons circuits drive different gaits in mice (modified from Deska-Gauthier and Zhang, 2019 with permission

from Elsevier). (D) locomotion program as a characteristic timing of muscle activations during walk (left) and trot (right) in dogs. From top to bottom: averaged hindlimb

EMG data, basic activation patterns (p1-p4) obtained by decomposing muscle activity and a schematic sequence of activation patterns for each gait (modified from

Catavitello et al., 2015). Schematic representation of the unit burst generator CPG model is also plotted on the top (circles are interneurons controlling hip (H), knee (K),

and ankle (A) extensors (E) and flexors (F), excitatory and inhibitory connections are represented by lines ending with forks or circles, respectively) (redrawn from Grillner

and El Manira, 2020). (E) locomotion motor program as a sequence of activation pulses for walking and running in humans (modified from Cappellini et al., 2006).

including humans, muscle activity patterns (Figure 2D) can be
decomposed into a set of four basic temporal patterns that
account for ∼90% of total variance (Dominici et al., 2011;
Catavitello et al., 2015). These basic temporal patterns have

specific timings during a gait cycle (Figure 2D), consistent
with “drive pulse” rhythmic elements in the spinal circuitry
of zebrafishes, frogs, or mice (Rauscent et al., 2006; Fetcho
and McLean, 2010; Giszter et al., 2010). The specific timing
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FIGURE 3 | General features of gait patterns from neonate to adult. (A) spatiotemporal maps of motoneuron activity of the lumbosacral enlargement in neonates,

toddlers, preschoolers, and adults walking and running, and the delay between the maximum activation of lumbar and sacral motor pools (data from Ivanenko et al.,

2013a for stepping, and Cappellini et al., 2010 for running). (B) typical vertical loading force during stepping in neonates, toddlers, preschoolers, and adults walking

and running, and the characteristic force profile evaluated using an adapted ratio of the coefficients of Fourier series (Hallemans et al., 2006a) providing a description

of the main features of the shape of the ground reaction force: when the ratio is nil the force curve has a single hump whereas when the ratio increases, the force

curve tends to have a double hump shape.

of each basic temporal pattern differs between different gaits
to produce various intra- and inter-limb coordination, as
it does for human walking and running (Cappellini et al.,
2006; Figure 2E). In both running and walking, the muscles
activated by each basic temporal pattern are roughly similar,
suggesting some degree of commonality (Cappellini et al., 2006).
However, differences are also noticeable (Santuz et al., 2019),
such as the number of modules that show mode-dependent
modulation, with additional patterns detected during running
as compared to walking (Yokoyama et al., 2016). Recent data
from vertebrates indicates that the structure of the basic patterns
extracted from EMGs may originate from spinal interneuronal
networks (Caggiano et al., 2016; Takei et al., 2017). It is
therefore plausible that the functioning of gait-related spinal
circuits is reflected in the mode-dependent modulation of
basic activation patterns. The mode-dependency in the neural
networks underlying human locomotion is consistent with
the speed control mechanism of vertebrate CPGs, providing
indirect evidence for phylogenetically conserved neural circuits
of locomotion (Grillner and Jessell, 2009; Yokoyama et al.,
2016). The idea that neural mechanisms underlying walking and
running are partly independent in adulthood is further supported
by previous studies showing that newly acquired locomotor
patterns at slow speed rarely transfer to fast speed movements

(Vasudevan and Bastian, 2010; Ogawa et al., 2012, 2015). Taken
together, these observations might reflect the fact that, even
though there are shared neural circuits for different gaits, in
adults there is no simple scaling of motoneuron and interneuron
activity from walking to running, but the involvement of
somewhat different neural circuits.

In addition to examples illustrated in Figure 2, there are
also other important aspects related to the maturation rates
of gait-specific pattern generation networks. There might
be different rates of maturation in different animals; for
instance, the development of spinal interneurons observed
in zebrafish (Figure 2B) may not necessarily apply to other
species. Nevertheless, increasing evidence suggests a similar
developmental pattern of neurons in vertebrates (Cepeda-Nieto
et al., 2005; Fetcho and McLean, 2010). Interestingly, it has been
shown that walking and running in non-human bipeds do not
mature at the same rate, with a running pattern relatively mature
earlier in life in chicks (Muir et al., 1996). The fact that chicks
can innately run almost as well as an adult may suggest that, as
in zebrafish, the interneurons mainly involved in the production
of fast movement are developed early. Humans have a relatively
long period of gait development (Garwicz et al., 2009) and, in the
following sections, we will specifically consider the organization
and maturation of gait patterns in humans.
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FIGURE 4 | General foot placement characteristics during stepping. (A) examples of initial forefoot (IFC), flat foot (FFC), and heel (IHC) contacts in three neonates

(adapted from Sylos-Labini et al., 2017). (B) from top to bottom: three different foot-contact patterns in toddlers (IFC, FFC, and IHC) and plantar pressure prints (left

foot) of a typical adult “heel-to-toe” rolling pattern during the stance phase (redrawn from Hallemans et al., 2006b with permission from Elsevier). (C) percent of steps

with different types of touchdown contacts for stepping in neonates (from Sylos-Labini et al., 2017), toddlers and preschoolers (from Hallemans et al., 2006b) and

adult walking and running (from Larson, 2014).

GENERAL FEATURES AND MATURATION
OF GAIT PATTERNS FROM NEONATE TO
ADULT

The CPGs in vertebrates emerged during evolution from a
common ancestral circuit (Grillner and Jessell, 2009; Kiehn,
2016) and it has been suggested that, in humans, locomotor
modules evolved from similar circuitry (Dominici et al., 2011;
Yokoyama et al., 2016). In humans, when EMG activity patterns
are mapped onto the spinal cord in approximate rostrocaudal
locations of the motoneuron (MN) pools, the activation of MNs
tends to occur in bursts (Figure 3) that can be associated with

the major kinetic or kinematic events of the gait cycle in a gait-
specific manner (Ivanenko et al., 2008a; Cappellini et al., 2010;
La Scaleia et al., 2014; Yokoyama et al., 2017; Dewolf et al.,
2019a). In particular, the sacral activation timing is clearly gait-
dependent (Ivanenko et al., 2008a). It is worth stressing that these
gait-specific features undergo functional reorganization during
development from the neonate to the adult.

In adults, during walking the COM vaults over a relatively

stiff limb with the heel well in front of the hip at the beginning
of stance, and the heel lift with a maintained toe contact at the

end of stance. One of the direct consequences of such heel-

to-toe roll-over pattern is that the extension of distal joints is
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FIGURE 5 | Lack of adaptability of the intersegmental coordination to different locomotor conditions in toddlers. (A) intersegmental coordination assessed by principal

component analysis (PCA) of limb segment elevation angles during walking. From left to right: thigh, shank, and foot elevation angles (relative to the vertical),

corresponding 3D trajectory in segment angle space along with the interpolated plane and the directions of PC1 and PC2, and two principal components that account

for ∼99% of variance of three elevation angles in adults (modified from Ivanenko et al., 2008b). (B) examples of gait loops and interpolation planes during walking in

one toddler and one adult. Stick diagrams for one stride are also shown. Percent of variance explained by the third PC (PV3) is indicated, and reflects the deviation

from planarity. (C) changes in the orientation of the covariance plane during walking over different surfaces in adults and a lack of these adaptations in toddlers. Upper

panels: projection of the normal to the covariance plane onto the thigh axis (u3t, mean + SD). Lower panels: spatial distribution of the normal to the plane (u3, the

angles of cones correspond to 2 spherical angular dispersions) for each condition (modified from Dominici et al., 2010).

delayed relative to proximal joints, leading to the typical double-

hump shape (so-called ≪m− pattern≫) of the vertical ground

reaction force (Figure 3, bottom panel), characterized by Fourier
analysis (based on the relationship between the shape of the force
and the ratios of the coefficients of the Fourier series, Alexander
and Jayes, 1980; Hallemans et al., 2006b). In addition, separate
lumbar and sacral activations are observed: muscle activations
intervene close to the apexes of the m-pattern to re-excite the

inverted-pendulum oscillations of the system (Ivanenko et al.,
2008a; Lacquaniti et al., 2012; Dewolf et al., 2019a). Conversely,
during running with the center of mass rebounding on compliant
spring legs, the vertical force exerted on the ground presents
a single-hump shape (Nilsson and Thorstensson, 1989; Dewolf
et al., 2016), and both the lumbar and sacral activations intervene
close to the apexes of the ground reaction force (Ivanenko et al.,
2008a; Cappellini et al., 2010; Yokoyama et al., 2017) (Figure 3).
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FIGURE 6 | Emergence of walking and running gait features during development. (A) comparison between knee angle (top) and hip vertical trajectory (bottom) in

infants and adults, adapted from Vasudevan et al. (2016). Walking (blue) and running (green) gaits were defined based on the presence of double support period or

flight phase, respectively. Note similar kinematic patterns in infants and distinct patterns in adults for both gaits. (B) percentage of recovery of mechanical energy (R%)

during walking as a function of the time after the onset of independent walking (left) (adapted from Ivanenko et al., 2004), and R% during running as a function of age

(data from Schepens et al., 1998). During walking, a greater R% reflects a potentially better pendular energy exchange whereas during running, a smaller R% reflects a

potentially better elastic energy exchange.

In neonates, stepping lacks these specific features of adult
heel-to-toe roll-over walking pattern (Forssberg, 1985; Dominici
et al., 2011), and the foot placement characteristics in neonates
showed wide variations (Figure 4A, Sylos-Labini et al., 2017).
Three major footfall patterns were identified with the initial
heel, midfoot, and forefoot contacts, respectively (Figure 4C).
However, even when the neonates demonstrated a heel initial
contact, the general features of gait patterns markedly differed
relatively to adult. Indeed, the two peaks in the vertical ground
reaction force and the associated MNs bursts were lacking.
Instead, the vertical force exerted on the ground (neonates
are generally able to support ∼30% of their weight) presents
a single-hump shape, even if some influences of the manual
body weight support on the ground reaction force cannot be
excluded (Forssberg, 1985; Sylos-Labini et al., 2017). However,
when adults walk with a body weight support system, the
kinetic events defining the “m-pattern” (i.e., the early stance
peak of vertical force, the mid-stance interval, and the late

stance peak) are recognizable in the force profiles up to
75% of body weight support (Ivanenko et al., 2002). In
addition, during stance, antigravity leg muscles tend to be
co-activated with a quasi-sinusoidal waveform, corresponding
to the single-hump shape of the force, independently of
the level of body weight support (Sylos-Labini, La Scaleia,
Cappellini, Fabiano, Picone, Keshishian, 2020). In turn, a
quasi-synchronous lumbar and sacral activations is observed
(Figure 3A), corresponding to the single peak of vertical force
(Ivanenko et al., 2013a).

Throughout the development, a progressively greater
occurrence of initial heel contacts is observed during walking
(Figure 4B) (Bertsch et al., 2004; Hallemans et al., 2006b), along
with maturation of the control of foot trajectory (Forssberg,
1985; Dominici et al., 2007) and intersegmental coordination
(Figure 5B) Cheron et al., 2001; Ivanenko et al., 2004; Dominici
et al., 2011. Meanwhile, the timing and amplitude of muscle
activities are gradually tuned to the mechanical behavior
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(Okamoto et al., 2003; Dominici et al., 2011; Teulier et al., 2012;
Sylos-Labini, La Scaleia, Cappellini, Fabiano, Picone, Keshishian,
2020; Cheung et al. under review). The muscle activations
are progressively shaped to produce the desynchronized joint
extension, and the lumbar and sacral loci of activation become
more dissociated (Figure 3) with shorter activation durations
(Ivanenko et al., 2013a; Cappellini et al., 2016).

The progressive emergence of mature gait suggests that
these patterns result from the neural maturation of central
pathways, as well as a better integration of central commands
with sensory signals (Yang et al., 1998). In adults, various
cerebral cortices are involved in the control of locomotion
(Leyton and Sherrington, 1917; Drew, 1988; Fukuyama et al.,
1997), with some of them predominantly participating in the
control of running rather than walking (Suzuki et al., 2004;
Jahn et al., 2008). Neonates have most likely weak descending
input (Yang and Gorassini, 2006). Indeed, many structures of
the central nervous system are not mature at birth. For example,
corticospinal tract axons become progressively myelinated only
during the first 2–3 years of life (Richardson, 1982; Brody
et al., 1987; Kinney and Volpe, 2018). While the involvement
and the functionality of supraspinal structures for gait control
have been little investigated in infants (see however Petersen
et al., 2010), one can hypothesize that features of mature gaits
are progressively added with the maturation and the gradual
integration of supraspinal, intraspinal, and sensory control. In
summary, the collective variables of mature patterns are not fully
implemented at birth (Figures 3, 4, 5B), raising questions about
complete innateness of gait-specific circuitry differentiation
(Grillner and Wallén, 2004).

LACK OF GAIT TRANSITION IN INFANTS

Another evidence for the lack of differentiation between the
two gaits in early infancy is the absence of clear gait transition
events. Indeed, an essential criterion for gait distinction has
been formulated by defining a gait as “a pattern of locomotion
characteristic of a limited range of speeds described by quantities
of which one or more change discontinuously at transitions to
other gaits” (Alexander, 1989). Adults spontaneously walk at slow
speeds and run at faster speeds, so that transitions from one gait
to another generally occur when speeding up or slowing down
and when one gait mode tends to become energetically more
efficient than the other one. Despite small variations depending
on walking conditions (De Smet et al., 2009; Van Caekenberghe
et al., 2010), a spontaneous transition from walk to run occurs
around 2 m/s (Van Caekenberghe et al., 2010; Ganley et al., 2011;
Segers et al., 2013) and is typically abrupt (Raynor et al., 2002;
Segers et al., 2013). In particular, the gait transition is marked
by a discontinuous change in intralimb coordination (Saibene
and Minetti, 2003; Ivanenko et al., 2011). This modification of
coordination is related to the shift from the relatively straight leg
of walking to the compliant spring leg behavior of running. This
difference in support leg length during stance is clearly reflected
by the trajectory of the hip and the knee joint angle (Figure 6A,
right panels).

In infants, Vasudevan et al. (2016) analyzed the hip trajectory
and knee joint angle during supported stepping on a treadmill in
a large range of speeds (from 0.06 to 2.36 m/s; i.e., even above
adult spontaneous walk to run transition). As speed increased,
a period of flight started appearing, which suggests that infants
switched from walk to run. However, when comparing the hip
trajectory and knee joint angular motion during gait without
(slow speeds) and with (fast speeds) flight phases, the authors
did not find an altered intralimb coordination or a modified
hip trajectory in a manner that would suggest adult-like gait
transition (Figure 6A, left panels).

It is unlikely that the smoothness of gait transitions and
the lack of differentiation between gaits are attributed to
experimental conditions, such as partial body weight support
in infants. In adults, a lack of abrupt changes was observed
with a simulated lower level of gravity (Ivanenko et al., 2011;
Sylos-Labini et al., 2011), supporting the idea that loading
conditions may be a major trigger of the transition to running
(Segers et al., 2013). To record infant stepping on a treadmill
(Vasudevan et al., 2016), infants were manually supported (∼55%
of their weight were supported, on average). Therefore, these
authors also compared adults with 50% body weight support and
observed that changes in intralimb coordination at the walk-to-
run transition in adults remained. While body weight support
may affect the abruptness of the walk-to-run transition, it does
not completely eliminate signs of gait transition. The fact that the
infants do not display distinct intralimb coordination and COM
trajectory across a large range of speeds (Figure 6A) suggests that
the gait-related neural circuitries are not mature yet.

BIOMECHANICAL FACTORS AND
DEVELOPMENT

In addition to above-mentioned maturation of the neural
circuitries, biomechanical factors also play a role in locomotor
development (Thelen, 1995; Adolph and Robinson, 2015; Adolph
et al., 2018). In humans as in other animals, locomotion behavior
in its different forms arises from the closed-loop interaction
between the neural output, the physical dynamics of the
mechanical system (inertia, viscoelastic properties of muscles and
tendons and body size) and the ability to adjust the movement
to the external environment (Taga, 1995; Hatsopoulos, 1996; Aoi
and Tsuchiya, 2006).

First, some influences on gait patterns in infants might be
expected due to differences in the anthropometry, shape, and
mass distribution across different body segments, all parameters
changing considerably during the entire course of development
through adult age. This implies a continuous update of the neural
commands to take into account the changing mechanical factors.
Different mass distribution across body segments in infants
and, in turn, the location of the COM, induces modifications
of balance (Druelle et al., 2016), which potentially affects the
emerging locomotor behavior (Clark et al., 1988). The shape of
the body, bone morphology (Shefelbine et al., 2002; Cowgill et al.,
2010; Raichlen et al., 2015), and foot structure (Maier, 1961;
Bosch et al., 2007; Price et al., 2018) in infants are different from
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adults, and they also change with limb loading and locomotor
experience during development. In particular, a child’s foot goes
through significant developmental changes in shape and soft
tissues of the foot sole, e.g., the presence of a fat pad underneath
the foot plantar surface in infants and slow ossification of
intrinsic foot bones during the first years after birth (Maier, 1961;
Gould et al., 1989; Bertsch et al., 2004). These latter factors are
especially important since the spring-like longitudinal arch is
a unique feature of the human foot, an essential evolutionary
adaptation to the “bouncing” mechanism of running (Holowka
and Lieberman, 2018; Venkadesan, Yawar, Eng, Dias, Singh,
Tommasini, 2020). Therefore, different foot functions might be
expected in infants as compared to spring-like behavior of the
adult foot (Wager and Challis, 2016; Kelly et al., 2018).

Second, there might also be important peripheral contributors
to the lack of adult-like locomotor patterns in early infancy, in
particular due to slower and weaker muscles. For instance, based
on the principle of dynamically similar locomotion (taking into
account the differences in body proportions by comparing adults
and infants moving at the same Froude number, Cavagna et al.,
1983; Alexander, 1989; Schepens et al., 2004, neonates would
be expected to show walk-to-run transition at ∼2 km/h (since
their limb is about 6 times shorter), which would correspond
to ∼0.25 s stride duration. Significantly wider muscle activation
bursts in infants (Dominici et al., 2011; Cappellini et al., 2016;
Sylos-Labini, La Scaleia, Cappellini, Fabiano, Picone, Keshishian,
2020) would further compromise the control of such short
running cycles. Furthermore, given that skeletal muscles are
substantially slower in neonates due to the absence of fast
fibers at birth (Denny-Brown and Sherrington, 1929; Buller
et al., 1960), it would be problematic for them to accurately
control such short gait cycles. In fact, even during stepping,
the stride duration in neonates (∼2–5 s) is considerably longer
than in adults (∼1 s) (Ivanenko et al., 2013a). Even in older
(11–13 yrs) children, muscle contraction time is ∼50% longer
than in adults (Dayanidhi et al., 2013), and running requires
faster limb oscillations due to shorter limbs (Schepens et al.,
1998), which might possibly explain why children also display a
third gait mode—“skipping”—requiring slower limb oscillations
(Minetti, 1998). In addition, muscle strength also increases
during development (Bäckman et al., 1989), and the deviation
from adult gaits in infancy may also be related to adaptive
strategies for limiting the muscle activation demands (Hubel and
Usherwood, 2015).

Finally, a lack of gait-specific circuitry differentiation might
also be associated with a general lack of adaptability to
biomechanical constrains in infants. A key example of the
closed-loop interaction between the development of neural
commands and biomechanics is the emergence of multi-
segmental coordinative law (Lacquaniti et al., 1999). Such a
kinematic covariation between limb segment rotations has been
uncovered in human walking and running (Borghese et al.,
1996; Bianchi et al., 1998; Ivanenko et al., 2007a). Each segment
oscillates back and forth relative to the vertical with a similar
waveform, time-shifted across different segments (Figure 5A).
The lower limb segment angles do not evolve independently
of each other, but they are tightly coupled (Borghese et al.,

1996). Indeed, when the angles are plotted one vs. the others,
they co-vary along a plane, describing a characteristic loop over
each stride (Figure 5A). The specific shape and orientation of
the plane reflects the phase relationship between segments and
therefore the timing of the intersegmental coordination (Barliya
et al., 2009). Such coordination of limb segments can be described
by statistical methods using principal component analysis (PCA).
The two first principal components (PC1 & PC2) lie on the plane
of angular covariation and describe the global form of the gait
loop, whereas the third one (PC3) is orthogonal to the plane
(Borghese et al., 1996). The percentage of variance accounted
for by PC1 and PC2 reflect the shape of the gait loop, whereas
the variance accounted for by PC3 reflects the planarity of the
loop. At the onset of unsupported walking, a significant deviation
from planarity is observed for the child (Cheron et al., 2001).
Also, the gait loop was less elongated than in adults, and the
variance accounted by PC1 (Ivanenko et al., 2004) was smaller
than in adults, most likely due to a higher foot lift during
swing phase (Dominici et al., 2007; Ivanenko et al., 2007a). Even
if the intersegmental coordination in toddlers rapidly evolves
toward the adult shape and planarity with experience (Cheron
et al., 2001; Ivanenko et al., 2004; Dominici et al., 2011), when
toddlers step on different support surface, they do not adapt
their intersegmental coordination as adults do. Instead, they keep
constant phase relationships (Figure 5C, Dominici et al., 2010).
Since the changes in planar covariation are thought to reflect the
ability to adapt to different gait conditions (Bianchi et al., 1998;
Martino et al., 2014; Dewolf et al., 2018), such as walking and
running (Ivanenko et al., 2007a), the lack of changes observed
in toddlers suggest a reduced flexibility of gait (Dominici et al.,
2010), and potentially the absence of distinct gait patterns at the
onset of independent locomotion.

EMERGENCE OF DIFFERENT MODES OF
LOCOMOTION DURING GROWTH

“During the second year of life, toddler’s locomotion is neither
walking, nor running, but something not yet differentiated”

Bernstein (1947)
First emphasized by Bernstein (1947), the above-considered

observations are consistent with the idea that locomotor patterns
in infants are immature and lack adaptive features. Indeed,
with walking experience, the gait-specific collective variables
progressively become close to the values obtained in adults
(Whitall and Getchell, 1995). For instance, despite millions
of years of bipedal evolution, at the onset of independent
walking the pendulum-like mechanism of walking and the
bouncing mechanism of running deviate significantly from those
of adults (Figure 6B) (Ivanenko et al., 2004, 2007b; Legramandi
et al., 2013). During running, a flight phase progressively
occurs and increases as the vertical push provided by muscles
increases with age (Legramandi et al., 2013). These changes
with aging are concomitant with an enhancing of the elastic
bounce that characterizes adult running gait (Schepens et al.,
1998), as the percentage of pendular COM energy exchange
decreases (Figure 6B). During walking, toddlers at the onset
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of unsupported locomotion fail to demonstrate a prominent
pendular energy exchange (Cheron et al., 2001; Ivanenko et al.,
2004, 2007b) as well as an adult-like heel-to-toe roll-over pattern
(Figure 4). With walking experience, the hip trajectory and the
pendulum-like exchange of energy progressively evolve toward
mature values (Figure 6B) (Ivanenko et al., 2004; Schepens et al.,
2004; Van de Walle et al., 2010). At the same time, the foot-
contact pattern shows a trend from initial forefoot to initial
heel contact (Figure 4C), and the vertical force waveform slowly
evolves toward a double-hump shape (Figure 3) (Hallemans
et al., 2006b).

The gradual evolution of gaits after the onset of independent
locomotion supports the idea that the original spinal
networks are still used, but that gait-specific neural circuits
mature progressively during development. Interestingly, the
modification of intralimb coordination, vertical force, and spinal
motor pools during walking in elderly adults suggests that aging
causes a regression of the locomotor pattern: the ability to adapt
the intersegmental coordination to speeds is reduced (Dewolf
et al., 2019b), the second apex of the m-pattern progressively
decreases (Meurisse et al., 2019), while the burst of sacral motor
pools occurs earlier during the step cycle (Monaco et al., 2010).
Even if far less attention has been devoted to the development
of running skills, running most likely evolves from the same
original spinal networks, and also requires maturation and
experience. During growth, the older the child, the closer the
waveform to the adult. It is interesting to note that, as in walking,
these trends slowly reverse during the course of the life (Cavagna
et al., 2008).

While the involvement of gait-dependent spinal interneurons
has been emphasized above, the lack of evidence for distinct
walking and running patterns in infants and the progressive
developmental bifurcation between the different forms of gait
suggest a sharing of circuitry before the full maturation of the
brain and its descending inputs. In humans, the maturation of
walking corresponds to maintenance of primitive patterns with
superimposition of additional patterns (Dominici et al., 2011;
Sylos-Labini, La Scaleia, Cappellini, Fabiano, Picone, Keshishian,
2020), and the maturation of running may also involve fine-
tuning and reshaping of these primitive patterns (Cheung et al.
under review). In adults, despite diverse biomechanical demands
of running and walking, few patterns of muscle activation are
also shared (Cappellini et al., 2006; Yokoyama et al., 2016),
indirectly supporting a common neural origin for the two gait
forms in infancy.

Suchmaturation is probably a process in which environmental
signals act to bring about the characteristics of adult-like walking
(Forssberg, 1992). This is supported by the fact that independent
stepping acts as a functional trigger of gait maturation (Ivanenko
et al., 2004; Yang et al., 2015), and Earth’s gravity has a significant
impact on early development of motor functions (Cheron et al.,
2001; Ivanenko et al., 2007b). It is indeed well-documented that
the interaction with the environment influences the development
of motor networks. For example, early exposure of animals to
altered gravitational field (hypo- or hyper-gravity) affects their
mature motor performance (Sondag et al., 1997; Walton, 1998;
Wubbels and de Jong, 2000; Walton et al., 2005; Bojados et al.,

2013). Of particular interest, hyper-gravity reduces the postnatal
development of descending inputs to the spinal cord (Brocard
et al., 2003), suggesting that gravity has a critical role to shape the
maturation of gait-specific pattern generation circuitries. When
adult humans are exposed to microgravity, they start to rely more
on skipping (a potential vestigium of gallop) or running gait
(Pavei et al., 2015; Lacquaniti et al., 2017). It is therefore plausible
that, if humans were even born on the Moon, modification of the
chronology of the emergence of gait during development (and
even novel locomotor behaviors) would occur, starting from the
same inborn motor primitives.

The interactions with the environment that shape the
emergence of gait is conceivable, because stepping development
in infants highlights strong plasticity. For example, Patrick
et al. (2014) showed that the interlimb coordination can be
manipulated with a 4-week training, indicating experience-
dependent learning at a young age (<10 months). In animals,
early motor experience influences the muscle typology (Serradj
and Jamon, 2016). Such impact of training procedures suggests
that experience is required for normal development of locomotor
behavior and that motor output in adults could be optimized
by appropriate training during a defined period of motor
development (Walton et al., 1992; Muir and Chu, 2002; Serradj
and Jamon, 2016). Accordingly, human infants undergoing daily
stepping exercise exhibit an earlier onset of independent walk
than untrained infants (Zelazo et al., 1972; Yang et al., 1998).

As in animals, it is plausible that the two modes of locomotion
and their corresponding neural circuits have different maturation
rate. While the running pattern of chicks seems mature earlier
in life (Muir et al., 1996), the current coarse picture of
the development of running patterns in infants needs to be
refined at different developmental stages, providing important
insights into the process of skills acquisition. Even if the
patterns of innate stepping differs from the efficient running
adult gait, several parameters bear a striking resemblance to
the mature running patterns (Figures 3, 4C), such as the
vertical force, the motoneuron activity of the lumbosacral
enlargement, diverse foot contact strategies and knee flexed
throughout stance (Yang et al., 2015; Vasudevan et al., 2016;
Sylos-Labini et al., 2017). A hypothetical innateness of some
features characteristic of adult running is also compatible with
the evaluation of the evolution of the human body form.
Indeed, Rolian et al. (2009) suggest that the modern human
forefoot proportions might be part of a suite of adaptations
selected especially for running gait that evolved in the genus
Homo around 2 million years ago (Bramble and Lieberman,
2004; Venkadesan, Yawar, Eng, Dias, Singh, Tommasini, 2020).
Hypotheses of innate behavior should always be taken in a
relative terms, since any behavior is modified by experience
(Grillner and Wallén, 2004; Vanden Hole et al., 2017).

CONCLUDING REMARKS

The emergence of adult-like walking and running patterns
results from the evolution of multiple subsystems of the
developing child, involving both neural and biomechanical
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factors (Thelen and Ulrich, 1991). While the locomotor output
of stepping neonates has been widely compared to the adult
walking, its comparison with adult running patterns needs
to be explored further to unravel some of the mysteries
surrounding the progressive bifurcation of the locomotor
networks at different developmental stages. The delayed onset
of running in children may be related to environmental
and musculoskeletal factors and a limited ability to adapt
to biomechanical constrains in infants (Thelen, 1995). The
findings we reviewed in this article point to a partial
overlap in the neural and biomechanical control of walking
and running in infancy, suggesting that different forms of
gait are built starting from common, likely phylogenetically
conserved elements.

Gaining insights into the maturation and differentiation of
human gaits may also provide important clinical implications.
For instance, while the rehabilitative protocols in children with
cerebral palsy usually focus on walking training, early running
training may also be beneficial, and improve walking gait (Lewis,

2017). Indeed, many studies have examined how children with
cerebral palsy manage to walk, but few have investigated running,
which may be even more stable than walking in these children
(Iosa et al., 2013). There may also be critical developmental
windows during which specific experiences have a greater

effect on the early developmental process and differentiation
of locomotor behaviors than at other times (Ivanenko et al.,
2013b; Yang et al., 2013). Taking advantage of newly available
biotechnological approaches and techniques (Zhu et al., 2015;
Chung et al., 2019; Redd et al., 2019; Xu et al., 2019; Airaksinen
et al., 2020) for both advanced neurophysiological pediatric
recordings and rehabilitation training in the sensitive period
for maturation (e.g., using biofeedback or neuromodulation)
would help to diagnose and assess early motor deficits and
to determine the activity-based intervention for infants with
developmental disorders.
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