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We construct and study a fundamental field theory of the QCD axion: all couplings flow to zero in the 
infinite-energy limit realizing the totally asymptotically free (TAF) scenario. Some observable quantities 
(such as the masses of new quarks and scalars) are predicted at low energies by the TAF requirement 
in terms of gauge couplings and a vector-boson mass. Here the minimal model of this sort is explored; 
the axion sector is charged under an SU(2) gauge group and a dark photon appears at low energies. This 
model can be TAF and feature an absolutely stable vacuum at the same time.
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1. Introduction

QCD is perhaps the most satisfying building block of the Stan-
dard Model (SM). Not only it provides us with an accurate descrip-
tion of strong interactions, but is also a non-trivial fundamental 
theory: asymptotic freedom [1] tells us that QCD remains interact-
ing in the continuum limit.

It is surprising that, while the Yukawa interactions of the SM 
violate CP, the QCD Lagrangian respects it: the possible CP-violating 
θ angle, which includes the effect of the phases of the quark mass 
matrix, is strongly constrained by the experiments (for a recent 
review see [2]).

A possible explanation was proposed by Peccei and Quinn 
(PQ) [3]: they introduced a global chiral U(1) symmetry (called 
PQ symmetry and denoted here U(1)PQ), under which some col-
ored particles transform. These can be the quarks of the SM and/or 
some extra (still unobserved) quarks. Since all quarks must be 
massive, U(1)PQ has to be spontaneously broken. The correspond-
ing Goldstone boson [4], called the axion, is a good dark matter 
candidate [5]. Being U(1)PQ anomalous, the axion acquires a non-
vanishing potential (becoming a pseudo-Goldstone boson) and the 
QCD sector lies on a CP-symmetric vacuum.

In order to realize such a breaking in concrete models and pre-
serve computability at the same time one typically introduces new 
scalars and thus new quartic couplings (see e.g. [6,7]). However, 
mainly because of the difficulty in having asymptotically free (AF) 
quartic couplings, all these field-theoretic axion models proposed 
so far suffer from a Landau pole (LP) and spoil the asymptotic free-
dom of QCD.
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The purpose of this paper is to construct and study a funda-
mental and realistic field theory of axions, whose predictions can 
be computed explicitly from infinite energy down to the QCD con-
finement scale, below which lattice QCD technology needs to be 
used anyway. To the best of our knowledge, no previous construc-
tions had all these features at the same time. For example, there 
are viable axion models whose perturbative renormalization group 
equations (RGEs) have LPs, though in some constructions the LPs 
are all above the Planck scale (see e.g. [8]). It is possible that the 
LPs are only an artefact of perturbation theory; however, a confir-
mation of this would require non-perturbative calculations (e.g. on 
the lattice) and currently there is no lattice evidence that the LPs 
can disappear in the exact renormalization group flow, at least for 
axion models. On the other hand, composite axion constructions 
such as [9] can be viable TAF models, but they conjecture that the 
vacuum expectation values of the fields respect the required sym-
metry breaking and evidence of the validity of this ansatz (which 
again would involve non-perturbative calculations) is still missing 
to the best of our knowledge. We focus here on a minimal and 
computable realistic model that implements U(1)PQ and its break-
ing (leaving SU(3)c unbroken) and is TAF at the same time.

The TAF requirement has been used in the literature to obtain 
UV-complete extensions of particle physics models [10–13]. One 
common feature of these constructions is the presence of several 
extra fields and potentially further sources of CP violation, which, 
in the absence of U(1)PQ, may induce a too large radiative contri-
bution to θ unless a tremendous fine tuning is performed. This is 
another independent motivation to construct a TAF axion model. 
Yet another motivation is the fact that TAF models can predict the 
low-energy values of some observables: this can happen because 
some couplings must have precise low energy values in order for 
all couplings to be AF.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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In the present paper the other two fine-tuning problems that 
affect the SM (the cosmological constant and the Higgs mass ones) 
are not discussed. The main motivation for doing so is that, while 
these problems can be addressed with anthropic arguments [14], 
there appears to be no anthropic solution for the strong-CP prob-
lem.

Here we assume that gravitational interactions, unlike what 
happens in Einstein gravity, become so weak at high energy that 
their impact on the renormalization group (RG) flow is negligible, 
but still all successes of Einstein’s theory at accessible energies are 
reproduced. In particular, it is assumed that the gravitational cou-
plings (analogous to the gauge couplings in Yang-Mills theories) 
approach zero before the matter couplings in the UV. This sce-
nario, called softened gravity [11] may be realized, for example, in 
UV modifications of gravity featuring quadratic curvature terms in 
the action [15] or in non-local extensions of general relativity [16]. 
We, therefore, neglect gravity in the present study.

2. Building the model

As well-known, the scalars of a TAF model should be charged 
under some gauge interaction and the gauge group must not have 
any U(1) factor to avoid LPs.

The minimal possibility (which we consider here) is having 
the axion sector gauge invariant under an SU(2) group (hence-
forth SU(2)a). Then the full gauge group contains the factor 
SU(3)c×SU(2)a , where SU(3)c is the ordinary SU(3) of strong in-
teractions. The gauge group should also include extra factors to 
account for a TAF extension of the SM (explicit realizations were 
provided in [11–13]). We will refer to such an extension as the 
SM sector. This sector has to be present, in addition to the ax-
ion sector we describe here, for obvious phenomenological rea-
sons. The SM and axion sectors talk to each other through the 
SU(3)c gauge interactions. Here we will take as typical exam-
ple of TAF SM extensions those based on the trinification gauge 
group SU(3)L×SU(3)c×SU(3)R [13] because SU(3)c is not embed-
ded in a larger gauge group factor, in contrast to other known 
TAF models like, for instance, those based on the Pati-Salam group 
SU(2)L×SU(4)PS×SU(2)R [11,12]. However, we will not commit 
ourselves to any specific TAF SM extension here.

In order to have U(1)PQ invariance we introduce two extra 
Weyl fermions q and q̄ in the fundamental and antifundamental of 
SU(3)c×SU(2)a , respectively, and give them the same PQ charge: 
{q, ̄q} → eiα/2{q, ̄q}, where α is a constant. For the sake of mini-
mality we require the PQ charges of all particles in the SM sector 
to vanish; from this point of view the model we are constructing is 
similar to the KSVZ-like axion models [6]. Since the extra-fermion 
representation of the gauge group is vector like, there are no gauge 
anomalies as long as the SM sector is free from gauge anoma-
lies; this is clearly the case for the trinification SM sectors, whose 
fermions can form a representation of the anomaly free E6 group 
containing SU(3)L×SU(3)c×SU(3)R . As usual U(1)PQ forbids an ex-
plicit mass term q̄q and so, in order to give mass to these extra 
quarks (as required by the experiments), we introduce a scalar 
field A, which spontaneously breaks U(1)PQ. Therefore, A has to 
be complex and have Yukawa interactions with q and q̄,

Ly = −yq̄ Aq + H.c. . (2.1)

The PQ symmetry of Ly requires A to transform under U(1)PQ

as follows: A → e−iα A. Gauge invariance, on the other hand, tells 
us that A has to be invariant under SU(3)c and belong to the 
adjoint of SU(2)a . The scalar A, being complex, contains two Her-
mitian adjoint representations AR and AI and we can decompose 
A = AR + i A I . Note that further Yukawa interactions besides (2.1)
and those present in the SM sector are forbidden by the gauge 
symmetries and U(1)PQ.

The potential of A is given by

V A = −m2Tr(A† A) + λ1Tr2(A† A) + λ2|Tr(A A)|2, (2.2)

where m2 is taken to be positive to trigger the spontaneous break-
ing of U(1)PQ. Both Tr(A† A) and |Tr(A A)|2 are real and non-
negative. Therefore, the couplings λi (with i = 1, 2) are real and 
vacuum stability at high-field values (henceforth “high-field sta-
bility”) is guaranteed for λi > 0. However, these conditions are 
sufficient but not necessary for high-field stability. Indeed, since 
Tr2(A† A) ≥ |Tr(A A)|2 the coupling λ2 can be negative and the nec-
essary and sufficient conditions for high-field stability are1

λ1 > 0, λ1 + λ2 > 0. (2.3)

Later on we will show that this model is TAF and stable at high 
fields for some values of the parameters and for the same values 
absolute vacuum stability (not only high-field stability) is guaran-
teed. Here we neglect the couplings with the scalars of the SM 
sector; we note that setting to zero those couplings is consistent 
at the one-loop level because they are not generated and so they 
remain zero at the one-loop level if their initial conditions in the 
RG flow is set to zero. The one-loop approximation, on the other 
hand, is enough for our purposes because total asymptotic free-
dom implies that all couplings approach zero at high energies. So, 
in order to establish total asymptotic freedom we can focus on the 
one-loop RGEs.

3. The RG flow

The one-loop β-function of the gauge coupling g of a generic 
gauge group G is

dg2

dt
= −bg4, b ≡ 11

3
C2(G) − 4

3
S2(F ) − 1

6
S2(S), (3.1)

where t ≡ ln(μ2/μ2
0)/(4π)2, the energy scale μ0 is arbitrary, μ is 

the usual RG scale and C2(G), S2(F ) and S2(S) are the Dynkin in-
dices of the adjoint representation (C2(G) = N for G = SU(N)), the 
Dirac-spinor representation and the scalar representation, respec-
tively. The general solution to Eq. (3.1) is g2(t) = g2

0/(1 + g2
0bt), 

where g0 ≡ g(0). Then in order to have an AF gauge coupling and 
avoid a LP we must have b > 0. The corresponding Gaussian fixed 
point is UV attractive: whatever value of g0 is chosen, it is al-
ways true that g → 0 as t → ∞. For SU(2)a we have S2(F ) = 3/2, 
S2(S) = 4 (we have 4 = 2 + 2 instead of 2 because A is complex) 
and so the constant b for the corresponding gauge coupling ga is

ba = 14

3
, (3.2)

which, being positive,2 gives an AF ga . With a similar computation 
one finds that the constant b corresponding to SU(3)c is instead

bs = 29

3
− �, (3.3)

where � is the positive extra contribution due to the fermions 
and scalars in the SM sector. Using, for example, the results of [13]

1 If one extends the extra gauge group beyond SU(2)a the potential generically 
involves more quartic couplings and the stability analysis becomes more challeng-
ing.

2 One could extend the minimal model by adding other Weyl fermions charged 
under both SU(3)c and SU(2)a as long as the AF conditions remain satisfied. This 
would generically promote y to a matrix.
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we find that it is possible to have gs AF keeping the SM sector 
TAF. Moreover, since q and q̄ do not have Yukawa couplings with 
the SM sector (they transform under SU(2)a and U(1)PQ, but the 
fields in the SM sector do not), these extra quarks favor the total 
asymptotic freedom in the SM sector: this is because the smaller 
bs is (keeping bs > 0) the bigger gs at a fixed energy favoring AF 
for the Yukawa and scalar quartic in the SM sector [13].

The RGE of y is instead

dy2

dt
= y2

(
9y2

2
− 8g2

s − 9g2
a

2

)
. (3.4)

Equations of this type have been studied in [11]. In our case the 
general solution to (3.4) for any ba and bs is

y2(t) =
y2

0

(
1 − 9y2

0 I(t)
2

)−1

(
1 + g2

s0bst
)8/bs

(
1 + g2

a0bat
)9/(2ba)

, (3.5)

where y0 ≡ y(0), gs0 ≡ gs(0), ga0 ≡ ga(0) and

I(t) ≡
t∫

0

dt′(
1 + g2

s0bst′)8/bs
(
1 + g2

a0bat′)9/(2ba)
. (3.6)

We find that I(t) admits a closed form expression.3 Looking 
at (3.5) and (3.6) and using the AF conditions for the gauge cou-
plings (bs > 0 and ba > 0) we see that y is AF if and only if y0

satisfies

y2
0 ≤ 2

9I∞
, I∞ ≡ lim

t→∞ I(t), (3.9)

otherwise y has a LP. Note that if bs > 0 and ba > 0 the inte-
gral I∞ is positive and convergent whenever 8/bs + 9/(2ba) > 1, 
which, from (3.2) and (3.3), is satisfied for any value of � such that 
bs > 0, namely � < 29/3. This bound is compatible with the val-
ues in existing TAF SM sectors discussed in the literature. It follows 
that by taking y0 small enough (such that it satisfies the inequal-
ity in (3.9)) one can indeed have an AF y. When the condition 
in (3.9) is fulfilled as a strict inequality y decreases faster than 
the gauge couplings at large t . This class of solutions are UV at-
tractive because if we perturb the initial condition y0 by a small 
enough amount (keeping the inequality in (3.9) satisfied) the solu-
tion remains AF. When instead y2

0 = 2/(9I∞) the Yukawa coupling 
decreases like the gauge coupling at large t (see Figs. 1 and 2). 
Such solution is not UV attractive, but IR attractive because it re-
quires a specific isolated value of y0 (see below for a formal proof). 
This provides us with an interesting prediction of y at low energy 
and, therefore, of the masses of the new quarks as discussed below 
in Sec. 4.

The RGEs of λ1 and λ2 are dλ1
dt = β1, and dλ2

dt = β2, where

β1(g, y, λ) = 9

2
g4

a + λ1

(
8λ2 + 6y2 − 12g2

a

)
+ 14λ2

1 + 8λ2
2 − 3y4

(3.10)

3 Indeed, the integral in (3.6) is a particular case of

t∫
0

dt′

(1 + a1t′)e1 (1 + a2t′)e2
= I(t) − I(0), (3.7)

where

I(t) =
(

a1+a1a2t
a1−a2

)e2

2 F1

(
1 − e1, e2;2 − e1; −a2−a1a2t

a1−a2

)
(1 + a1t)e1−1(1 + a2t)e2 (a1 − a1e1)

, (3.8)

and 2 F1 is Gauss’s hypergeometric function.
Fig. 1. Running of couplings. They all flow to zero in the UV. In the plot we set 
� = 28/3 (compatibly with known TAF SM sectors). The value t = 0 is interpreted 
as the PQ symmetry breaking scale.

Fig. 2. Solutions of the RGEs (multiplied by t) and their asymptotes as dictated by 
the fixed-flow ansatz. The parameters are set as in Fig. 1.

and

β2(g, y, λ) = 3

2
g4

a + λ2

(
12λ1 + 6y2 − 12g2

a

)
+ 6λ2

2 + 3

2
y4.

(3.11)

The β-functions above have been obtained by applying the gen-
eral formalism of [17–19] to the present model. The RGEs of the 
λi are too complicated for us to determine analytically the general 
solution at any t . However, we can understand if all couplings are 
AF by considering the ansatz
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Table 1
Real solutions (λ̃1, ̃λ2) to (3.14) (corresponding to TAF so-
lutions) obtained by varying the contribution � to the RGE 
of the strong coupling (compatibly with a TAF SM sector, 
see e.g. [13]). The Yukawa coupling is at the fixed-flow, 
Eq. (3.13). The values of (λ̃1, ̃λ2) are approximated with 
three digits.

� unstable vacuum stable vacuum

28/3 (0.183,−3.23) (1.68,−0.951)

26/3 (0.149,−1.05) (0.575,−0.343)

8 (0.145,−0.598) (0.349,−0.231)

g2
s (t) = g̃2

s

t
, g2

a (t) = g̃2
a

t
, y2(t) = ỹ2

t
, λi(t) = λ̃i

t
, (3.12)

where g̃2
s , g̃2

a , ỹ and λ̃i are constants. The ansatz above is mani-
festly TAF and is a fixed flow: although the couplings individually 
run, their ratios do not. A solution of the form in (3.12) exists if 
and only if the corresponding algebraic system of equations ob-
tained by plugging (3.12) into the RGEs admits solutions with g̃2

s , 
g̃2

a , ỹ2 and λ̃i real and also g̃2
s , g̃2

a and ỹ2 positive. Note that, when 
this condition is satisfied, (3.12) not only is a solution of the RGEs, 
but also describes the t � 1 asymptotic behavior of any solution.

Let us first consider the RGEs of the gauge couplings with the 
fixed-flow ansatz. Here we are interested in the case g̃2

s 	= 0 (as 
we want to match the non-trivial low energy QCD running) and 
g̃2

a 	= 0 because we want a TAF model. Then from (3.1) g̃2
a = 1/ba

and g̃2
s = 1/bs . Turning to the Yukawa coupling, we have either 

ỹ2 = 0 or

ỹ2 = 2

9

(
9

2ba
+ 8

bs
− 1

)
. (3.13)

The latter case corresponds to saturating the bound in (3.9) and is, 
therefore, an IR attractive solution as mentioned above. Finally the 
corresponding system of algebraic equations for the quartic cou-
plings reads

λ̃i = −βi(g̃, ỹ, λ̃). (3.14)

In Table 1 we show the real solutions (λ̃1, ̃λ2) to Eq. (3.14)
obtained by varying � (considering as an example the values cor-
responding to the TAF SM sector reported in [13]). In that Table 
y is at the fixed-flow in (3.13). Taking instead the Yukawa cou-
pling outside the fixed flow, that is setting ỹ = 0, produces no TAF 
solutions.

Note that the last column in Table 1 satisfies the vacuum sta-
bility condition in (2.3), while the second column does not and 
the corresponding solutions are then ruled out. Furthermore, λ2 is 
always negative. These features are quite robust and persist even 
if we vary ba in addition to bs . This can be done, for example, 
by adding a certain number ne of extra vector-like Dirac fermions, 
which are neutral under SU(3)c and U(1)PQ, but in the fundamen-
tal of SU(2)a . The values of (λ̃1, ̃λ2) for all TAF solutions are then 
shown in Table 2.

We find that the solutions in the last column of both Table 1
and 2 are all IR attractive, which results in a prediction for the λi
at low energies and for the scalar spectrum, as discussed below in 
Sec. 4.

In order to show that y and λi are IR attractive one can use the 
general formalism in [11]. According to this article, y is IR attrac-
tive (repulsive) when the following quantity is positive (negative):

S y ≡ 1

2
+ ∂βy

∂ y
(g̃, ỹ, λ̃), (3.15)

where βy(g, y, λ) is the β-function of y defined as βy ≡ dy/dt . 
By using (3.2), (3.3) and (3.13) we find that S y > 0 whenever the 
Table 2
Real solutions (λ̃1, ̃λ2) as in Table 1 except that ne vector-like Dirac 
fermions (in the fundamental of SU(2)a , but neutral under SU(3)c and 
U(1)PQ) are added. The number ne is varied until total asymptotic 
freedom is possible.

� ne unstable vacuum stable vacuum

28/3 1 (0.219,−3.25) (1.70,−0.965)

// 2 (0.268,−3.27) (1.73,−0.986)

// 3 (0.344,−3.30) (1.77,−1.02)

// 4 (0.469,−3.34) (1.84,−1.08)

// 5 (0.722,−3.42) (1.97,−1.20)

// 6 (1.50,−3.49) (2.34,−1.70)

26/3 1 (0.185,−1.06) (0.593,−0.362)

// 2 (0.237,−1.07) (0.619,−0.389)

// 3 (0.314,−1.08) (0.656,−0.435)

// 4 (0.447,−1.08) (0.712,−0.528)

8 1 (0.182,−0.601) (0.365,−0.255)

// 2 (0.236,−0.599) (0.387,−0.294)

// 3 (0.324,−0.570) (0.411,−0.376)

AF conditions for the gauge couplings (bs > 0, ba > 0) are satisfied. 
Therefore, y is IR attractive. Analogously, λi is IR attractive (repul-
sive) when the following quantity is positive (negative)

Si ≡ 1 + ∂βλi

∂λi
(g̃, ỹ, λ̃). (3.16)

For all values in the last column of Table 1 and 2 we find Si > 0
so λi are both IR attractive when the unavoidable requirement of 
high-field stability is imposed.

We can also find numerically the solutions to the RGEs of the 
quartic couplings for any given initial conditions of the gauge cou-
plings even outside the fixed-flow ansatz in (3.12). In Fig. 1 we also 
plot the running of the quartic couplings and their sum (to show, 
among other things, that the high-field stability conditions in (2.3)
are satisfied without relying on the fixed-flow ansatz). Choosing 
perturbative low-energy values of the gauge couplings results in 
predicted perturbative values of the Yukawa and quartic couplings 
as shown in Fig. 1. Therefore, our one-loop approximation for the 
predicted values is reliable. In Fig. 2 it is shown that also the quar-
tic couplings (like the Yukawa one) scale as the gauge couplings in 
the t → ∞ limit: indeed, λi approach λ̃i as dictated by Eq. (3.12). 
However, at low energies the running goes generically outside the 
fixed-flow ansatz as clear from Fig. 2.

4. Stationary points and the mass spectrum

The two Hermitian adjoint representations AR and AI can be 
expressed in terms of the Pauli matrices σ k as follows: AR =
ARkσ

k/2, AI = AIkσ
k/2, where a sum over k = 1, 2, 3 is under-

stood. Since SU(2)a transforms the ARk and AIk as ordinary rota-
tions transform the coordinates in three dimensions, it is possible 
to set AR3 = AI2 = AI3 = 0 through an SU(2)a transformation. In 
the following we, therefore, do so without loss of generality.

For general values of AR1, AI1 and AR2 the three SU(2)a gauge 
fields acquire the following masses:

MV = ga

√
A2

R1 + A2
R2 + A2

I1,

MV ± =

√√√√ M2
V

2
±

√
M4

V

4
− g4

a A2
I1 A2

R2. (4.1)

The Weyl quarks q and q̄ (that are doublets under SU(2)a) form 
instead two Dirac quarks Q ± (both triplets under SU(3)c) with 
masses
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M Q ± = y

2

√
A2

R1 + (AI1 ± AR2)2. (4.2)

There are only three physically inequivalent stationary points. 
An obvious one is the origin (AR1 = AI1 = AR2 = 0), which leaves 
SU(2)a unbroken and corresponds to a maximum of V A . Next, 
there are all the equivalent configurations obtained from

AR1 = m√
λ1 + λ2

, AI1 = 0, AR2 = 0, (4.3)

through a U(1)PQ and/or an SU(2)a transformation. Note that AR1

in (4.3) is guaranteed to be real from the high-field stability con-
dition in (2.3). These stationary points break SU(2)a down to a 
residual Abelian group U(1)a . Indeed, from (4.1) one has MV − = 0, 
and MV + = MV = gam/

√
λ1 + λ2. The value of AR1 given by (4.3)

is the PQ symmetry breaking scale fa . The corresponding value of 
V A is

V A = − m4

4(λ1 + λ2)
(potential at (4.3)). (4.4)

The quarks Q ± acquire equal non-vanishing masses for y 	= 0: 
M Q + = M Q − = y m/(2

√
λ1 + λ2). The scalar spectrum correspond-

ing to (4.3) includes three massive scalars with squared masses 
M2

S1 = 2m2, and M2
S2 = M2

S3 = −2λ2m2/(λ1 + λ2). Note that also 
the second squared mass is positive for λ2 < 0 and λ1 + λ2 > 0, 
which is the case for the TAF solutions with stable vacuum re-
ported in the last column of Tables 1 and 2. The vacuum in (4.3)
is, therefore, a minimum of the potential (and actually, as we will 
see, the absolute minimum) using the TAF and high-field stabil-
ity requirements. The scalar spectrum also includes three massless 
modes, two of them are eaten by the two massive vector bosons. 
The third one is the axion. Since U(1)PQ is broken by anomalies 
the axion receives as usual a mass at quantum level.

The last class of stationary points consists of all the equivalent 
configurations obtained from

AR1 = 0, AI1 = ±AR2 = ± m√
2λ1

(4.5)

through a U(1)PQ and/or an SU(2)a transformation. These config-
urations break SU(2)a completely; indeed, from (4.1) one finds 
MV = √

2ga|AI1| and MV ± = ga|AI1|, but are not phenomeno-
logically acceptable because they lead to a massless extra col-
ored fermion (see (4.2)). Inserting (4.5) into V A one obtains V A =
−m4/(4λ1). Since λ1 must be positive from high-field stability this 
value of V A is higher than the one in (4.4) if and only if λ2 < 0 and 
λ1 +λ2 > 0, which is the case for the TAF solutions reported in the 
last column of Table 1 and 2 (those with a stable vacuum). More-
over, the scalar squared mass matrix in case (4.5) has eigenvalues 
2m2λ2/λ1 and 2m2. So the TAF requirement and high-field stability 
automatically allow (and actually force) us to exclude the phe-
nomenologically unacceptable stationary points in (4.5) because 
they guarantee that the vacuum in (4.3) is the absolute minimum 
of the potential and the stationary points in (4.5) are only saddle 
points.

Note that having a vacuum with the residual U(1)a is not phe-
nomenologically ruled out. Indeed, one can perform a linear homo-
geneous transformation on the ordinary hypercharge and the U(1)a

gauge bosons in a way that the extra massless boson (which ap-
pears at low energies as a dark photon) does not interact at the 
renormalizable level with the SM particles; its effective interac-
tions can be generated only via loop contributions involving the 
extra quarks q and q̄. As long as the masses of these fermions, 
M Q ± , are large enough these interactions appear at low ener-
gies as non-renormalizable terms in the Lagrangian suppressed by 
appropriate powers of the large masses. The dark photon is com-
patible with the observations given that M Q ± are around the PQ 
symmetry breaking scale fa . Indeed, fa is at least of order 108 GeV 
and even higher to account for the whole dark matter through the 
axion (see [2] for a recent review on axion bounds), which is more 
than enough to satisfy the observational bounds [20].

For example, let us consider the limit on the number of effec-
tive relativistic degrees of freedom (see [21] for a recent determi-
nation), which implies the dark photon decouples at a temperature 
Td > TBBN ∼ MeV. As shown in [20], this translates into a bound 
on the mass scale suppressing the effective interaction between 
the dark photon and the Higgs boson, the quarks and the leptons 
of the SM. The exact form of this bound depends on the precise 
way the dark photon can interact via loops with the SM. But in 
any case the bound found in [20] is not exceeding more than two 
orders of magnitude the TeV scale and so is amply satisfied by the 
dark photon of the TAF axion sector, whose interactions with the 
SM fields are suppressed, as discussed above, by a scale at least 
as large as 108 GeV. We also observe that the dark photon does 
not produce modifications on the spectrum of isocurvature per-
turbations exceeding the observational bounds (the most recent 
ones are those by Planck [22]). Indeed, the dark photon, being a 
massless spin-1 particle, contributes only with vector modes to the 
cosmological perturbations and those modes are known to decay 
with time.

Finally, we note that the requirement of TAF couplings and vac-
uum stability leads to a prediction for the scalar masses M S1, M S2

and M S3 and for the masses of the new quarks, M Q ± . This is 
because y and λi are predicted at low energies by the TAF require-
ment once ga and gs are fixed at low energies and, therefore, the 
above-mentioned masses can be extracted once the mass of the 
extra massive spin-1 particle is fixed. To make this explicit note 
that

M S1 = √
2 fa

√
λ1(ta) + λ2(ta), M S2 = M S3 = √−2λ2(ta) fa,

M Q ± = y(ta) fa/2, (4.6)

where ta is the low energy value of t (namely t computed at the 
PQ scale) and the PQ symmetry breaking scale can be written as 
follows, fa = MV /ga(ta). One can set, for example, ta = 0 without 
loss of generality by choosing appropriately the arbitrary reference 
scale μ0 (as done in Figs. 1 and 2). Our result here is opposed to 
known (non-TAF) axion models, where the masses and couplings 
of the new particles are freely adjustable parameters. The fact that 
the Yukawa and quartic couplings as well as the masses M S1, M S2, 
M S3 and M Q ± are predicted at low energies can lead to testable 
predictions for cosmology. One way one could test this model is 
through gravitational wave detectors; the spectrum of gravitational 
waves produced by the PQ symmetry breaking has specific features 
due to the fact that the theory has less adjustable parameters than 
in non-TAF axion models [23].

5. Conclusions

A fundamental field theory of the QCD axion has to have certain 
features. In particular, the axion sector should be invariant under 
a non-Abelian gauge group to ensure total asymptotic freedom. 
Here, the minimal realistic model of this sort has been explicitly 
built and studied: it features an SU(2)a gauge symmetry, a complex 
scalar A in the adjoint representation of SU(2)a and one extra Dirac 
field {q, ̄q} in the fundamental representation of SU(3)c×SU(2)a to 
implement the U(1)PQ symmetry. All PQ charges of the SM parti-
cles have been set to zero for simplicity. We have shown that there 
are initial conditions for the RG flow such that the model is TAF 
and features an absolutely stable vacuum at the same time. An in-
teresting feature of this model is the presence of a dark photon in 
the low-energy spectrum.
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Besides the presence of extra non-Abelian gauge symmetries 
a generic TAF theory can predict a number of observable quan-
tities given that the RG flow typically involves IR attractive fixed 
points. In the minimal model proposed, indeed, we have seen that 
some of the masses of the extra particles are predicted in terms of 
other parameters that would have been independent in an effec-
tive model with a finite cutoff. This is the case for the extra quarks 
and scalars, whose masses can be expressed in terms of the SU(3)c

and SU(2)a gauge couplings and the SU(2)a vector boson mass or, 
equivalently, fa . The reason is that the corresponding Yukawa and 
quartic couplings are IR attractive to realize the TAF requirement.

Let us conclude by giving some examples of possible outlook. 
It would be interesting to construct TAF models of the QCD ax-
ion where the quarks carrying the PQ charges are those already 
present in the SM. For example, one could construct a DFSZ-like [7]
TAF model. This could have interesting implications for the Higgs 
physics given that the DFSZ model features an extra Higgs dou-
blet. Also, it would be valuable to know whether the dark photon 
present in the low energy spectrum of the minimal model generi-
cally appears in other TAF axion models. Another example of pos-
sible outlook is the construction of fundamental QCD axion models 
where some couplings flow to an interacting UV fixed point.
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