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Abstract

We define and study odd and even analogues of the major index statistics for

the classical Weyl groups. More precisely, we show that the generating functions of

these statistics, twisted by the one-dimensional characters of the corresponding groups,

always factor in an explicit way. In particular, we obtain odd and even analogues

of Carlitz’s identity, of the Gessel–Simion Theorem, and a parabolic extension, and

refinement, of a result of Wachs.

1 Introduction

In recent years a new statistic on the symmetric groups has been introduced and studied in

relation with vector spaces over finite fields equipped with a certain quadratic form ([21]).

This statistic combines combinatorial and parity conditions and is now known as the odd

inversion number, or odd length ([10], [12]). Analogous statistics have later been defined

and studied for the hyperoctahedral and even hyperoctahedral groups ([30], [31], [11]),

and more recently for all Weyl groups ([12]). A crucial property of this new statistic is

that its signed (by length) generating function over the corresponding Weyl group always

factors explicitly ([12], [33]).

Another line of research in the last 20 years has been the definition and study of

analogues of the major index statistic for the other classical Weyl groups, namely for

the hyperoctahedral and even hyperoctahedral groups (see, e.g., [1], [5], [7], [14], [15],
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[16], [24], [25], [32]) and for finite Coxeter groups ([27]). It is now generally recognized

that, among these, the ones with the best properties are those first defined by Adin and

Roichman in [1] for the hyperoctahedral group and by Biagioli and Caselli in [7] for the

even hyperoctahedral group.

Our purpose in this work is to define odd (and even) analogues of these major index

statistics for the classical Weyl groups and show that their generating function twisted

by the one-dimensional characters of the corresponding Weyl group always factors in

an explicit way. More precisely, we show that certain multivariate refinements of these

generating functions always factor explicitly. As consequences of our results we obtain odd

and even analogues of Carlitz’s identity [13], which involves overpartitions, of the Gessel–

Simion Theorem (see, e.g., [2, Theorem 1.3]), and of several other results appearing in the

literature ([2, Theorems 5.1, 6.1, 6.2] and [6, Theorem 4.8]). We also obtain an extension,

and refinement, of a result of Wachs ([34]).

The organization of the paper is as follows. In the next section we recall some defi-

nitions and results that are used in the sequel. In §3 we define and study odd and even

analogues of the major index and descent statistics of the symmetric group (Definition

3.1). In particular, we obtain odd and even analogues of Carlitz’s identity (Corollary 3.3),

of the Gessel–Simion Theorem (Corollary 3.4), and a parabolic extension, and refinement,

of a result of Wachs (Theorem 3.10). In §4 we define odd and even analogues of the major

index statistics introduced in [1] and [7] for the classical Weyl groups of types B and D,

respectively, and of the usual descent statistics on these groups (Definitions 4.1, 4.2 and

4.3). More precisely, we compute a multivariate refinement of the generating functions of

these statistics twisted by the one-dimensional characters of the corresponding groups and

show that they always factor explicitly. Finally, in §5, we show that, under some mild and

natural hypotheses, there is no “odd major index” that is equidistributed with the odd

length in the symmetric or hyperoctahedral groups and indicate some possible directions

for future work.

2 Preliminaries

In this section we recall some notation, definitions, and results that are used in the sequel.

As N we denote the set of non-negative integers and as P the set of positive integers. If

n ∈ N, then [n] := {1, 2, ..., n} and [±n] := {−n, ...,−1, 1, , ..., n}, in particular [0] = ∅.

For n ∈ P, in the polynomial ring Z[q] the q-analogue of n is defined by [n]q :=
n−1∑
i=0

qi and

the q-factorial by [n]q! :=
n∏
i=1

[i]q. We also find it convenient to let pn := (1 + (−1)n)/2.
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The cardinality of a set X is denoted by |X| and the power set of X by P(X). For n, k ∈ N
we let

([n]
k

)
:= {A ∈ P([n]) : |A| = k}.

For n ∈ N, i ∈ Z, q ∈ Q and J ⊆ [n] we let Je := {j ∈ J : j ≡ 0 (mod 2)},
Jo := {j ∈ J : j ≡ 1 (mod 2)}, J + i := {i+ j : j ∈ J} ∩ [n] and qJ := {qj : j ∈ J}.

Next we recall some basic results in the theory of Coxeter groups which are useful in

the sequel. The reader can consult [8] or [20] for further details. Let (W,S) be a Coxeter

system. The length of an element z ∈W with respect to S is denoted as `(z). If J ⊆ S and

w ∈ W we let W J := {w ∈ W : `(ws) > `(w) ∀ s ∈ J}, D(w) := {s ∈ S : `(ws) < `(w)}
and, more generally, for any A ⊆ W we let AJ := A ∩W J . When the group W is finite,

there exists a unique element w0 of maximal length.

For any n ∈ P let Sn be the group of bijections of the set [n]. For σ, τ ∈ Sn we let

στ := σ ◦ τ (composition of functions). It is well known (see e.g. [8]) that this is a Coxeter

group with set of generators {s1, s2, ..., sn−1}, si being, in one line notation, 12...(i+1)i...n,

or in disjoint cycle notation (i, i+ 1). Given a permutation σ = σ(1)σ(2)...σ(n) ∈ Sn, the

action of si on the right is given by σsi = σ(1)σ(2)...σ(i+ 1)σ(i)...σ(n), for all i ∈ [n− 1].

As a Coxeter group, identifying {s1, s2, ..., sn−1} with [n − 1], we have the following well

known result (see e.g. [8]).

Proposition 2.1. Let σ ∈ Sn. Then `(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}|, and

D(σ) = {i ∈ [n− 1] : σ(i) > σ(i+ 1)}.

So, given J ⊆ [n− 1], SJn = {σ ∈ Sn : σ(i) < σ(i+ 1) ∀ i ∈ J}.
For i ∈ [n] and T ⊆ Sn define T (i) := {σ ∈ A : σ−1(n) = i}. For A ⊆ Z, A =

{a1, . . . , ak}< (so A = {a1, . . . , ak} and a1 < · · · < ak) and σ ∈ S(A) we let τ be the only

element of S|A| defined by σ(ai) = aτ(i) for all i ∈ [k]. We call τ the flattening of σ and

write F (σ) = τ . Moreover, we define:

i∗ :=


i− sgn(i), if i ≡ 0 (mod 2);

i+ sgn(i), if i ≡ 1 (mod 2) and i+ sgn(i) ∈ [±n];

i, otherwise,

for all i ∈ [±n], where sgn(i) := 1 if i > 0 and sgn(i) := −1 if i < 0.

The elements of SBn are the bijective functions σ : [±n] → [±n] satisfying −σ(i) =

σ(−i), for all i ∈ [n]. We use the window notation. So, for example, the element [−2, 1] ∈
SB2 represents the function σ : [±2] → [±2] such that σ(1) = −2 = −σ(−1) and σ(2) =

1 = −σ(−2). We let Neg(σ) := {i ∈ [n] : σ(i) < 0}, neg(σ) = |Neg(σ)|, sBj := (j, j +

1)(−j,−j − 1) for j = 1, ..., n − 1, s0 := (1,−1), and SB := {s0, sB1 , ..., sBn−1}. It is well

known that (SBn , SB) is a Coxeter system of type Bn and that, identifying SB with [0, n−1],
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the following holds (see, e.g., [8, §8.1]). Given σ ∈ SBn we let

`A(σ) := |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}|.

Proposition 2.2. Let σ ∈ SBn . Then `B(σ) = `A(σ) −
∑

i∈Neg(σ)

σ(i), and D(σ) = {i ∈

[0, n− 1] : σ(i) > σ(i+ 1)}, where σ(0) := 0.

We let SDn be the subgroup of SBn defined by SDn := {σ ∈ SBn : |Neg(σ)| ≡ 0 (mod 2)},
s̃0 := (1,−2)(2,−1), and SD := {s̃0, sB1 , ..., sBn−1}. It is then well known that (SDn , SD) is

a Coxeter system of type Dn, and that the following holds (see, e.g., [8, §8.2]).

Proposition 2.3. Let σ ∈ SDn . Then `D(σ) = `B(σ)−neg(σ), and D(σ) = {i ∈ [0, n−1] :

σ(i) > σ(i+ 1)} , where σ(0) := −σ(2).

For simplicity we often write Bn and Dn respectively in place of SBn and SDn . We refer to

[8, Chapter 8] for further details on the combinatorics of the groups SBn and SDn .

The descent number and the major index are the functions des : Sn → N and maj :

Sn → N defined respectively by des(σ) := |D(σ)|, and maj(σ) :=
∑

i∈D(σ) i, for all σ ∈ Sn.

More generally we let des(a) = |D(a)| and maj(a) :=
∑

i∈D(a) i for any sequence a =

(a1, ..., an) ∈ Zn, where D(a) = {i ∈ [n− 1] : ai > ai+1}.

Following [1] and [7] respectively we define the flag-major index of an element σ ∈ SBn
by

fmaj(σ) := 2 maj(σ) + neg(σ),

and the D-major index

Dmaj(σ) := fmaj(|σ|n),

where |σ|n := [σ(1), . . . , σ(n− 1), |σ(n)|].

Recall that a one-dimensional character of a group G is a homomorphism χ : G →
C \ {0}. The one-dimensional characters of Sn are well known to be the trivial and the

alternating one, given by σ 7→ 1 and σ 7→ (−1)`(σ) respectively, for all σ ∈ Sn. For the

group SBn we have the following result (see [26, Proposition 3.1]):

Proposition 2.4. The hyperoctahedral group SBn has four one-dimensional characters,

namely σ 7→ 1, σ 7→ (−1)`(σ), σ 7→ (−1)neg(σ) and σ 7→ (−1)`(σ)+neg(σ), for all σ ∈ SBn .

The group SDn has only the trivial and the alternating one-dimensional characters

σ 7→ 1 and σ 7→ (−1)`(σ), for all σ ∈ SDn ([26, Proposition 4.1]).
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3 Type A

In this section we introduce and study odd and even analogues of the descent and major

index statistics for the symmetric groups. In particular, we obtain odd and even ana-

logues of Carlitz’s identity, of the Gessel–Simion Theorem, and a parabolic extension, and

refinement, of a result of Wachs.

Definition 3.1. We define functions odes, edes, omaj, emaj : Sn → N by letting

odes(σ) := |D(σ)o|, edes(σ) := |D(σ)e|

and

omaj(σ) :=
∑

i∈D(σ)o

i+ 1

2
, emaj(σ) :=

∑
i∈D(σ)e

i

2
,

for all σ ∈ Sn, where D(σ)o = {i ∈ D(σ) : i ≡ 1 (mod 2)} and D(σ)e = {i ∈ D(σ) : i ≡ 0

(mod 2)}. We call these functions odd descent number, even descent number, odd major

index, and even major index respectively.

So for example, if σ = 81725634 then odes(σ) = 2, edes(σ) = 1, omaj(σ) = 3, and

emaj(σ) = 3.

For any J ⊆ [n − 1] we let the parabolic q-Eulerian polynomials and parabolic signed

q-Eulerian polynomials, respectively, be

AJn(q, x) :=
∑
σ∈SJ

n

qmaj(σ)xdes(σ),

and

BJ
n (q, x) :=

∑
σ∈SJ

n

(−1)`(σ)qmaj(σ)xdes(σ).

So A∅
n (q, x) = An(q, x) and B∅

n (q, x) = Bn(q, x) where An(q, x) and Bn(q, x) are, respec-

tively, the q-Eulerian polynomials and the signed q-Eulerian polynomials, as defined in

[34].

Our goal is to compute the generating functions of odes, omaj, and of edes, emaj,

twisted by the one-dimensional characters of the symmetric groups. Our first result is a

natural trivariate generating function factorization.

Theorem 3.2. Let n ∈ P. Then

∑
σ∈Sn

y`(σ)qomaj(σ)xodes(σ) = [n]y!

bn2 c∏
i=1

(1 + yxqi)

(1 + y)
,
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and ∑
σ∈Sn

y`(σ)qemaj(σ)xedes(σ) = [n]y!

bn−1
2 c∏
i=1

(1 + yxqi)

(1 + y)
.

Proof. Let, for brevity, Aon(y, q, x) :=
∑
σ∈Sn

y`(σ)qomaj(σ)xodes(σ). We prove the first equation

by induction on n > 1. We have that Ao1(y, q, x) = 1, and Ao2(y, q, x) = 1 + yxq. So let

n ≥ 3. For n ≡ 1 (mod 2) we find, by our inductive hypothesis,

Aon(y, q, x) =
∑
i∈[n]

∑
u∈Sn
u(n)=i

y`(σ)qomaj(u)xodes(u) =
∑
i∈[n]

yn−iAon−1(y, q, x)

= [n]yA
o
n−1(y, q, x) = [n]y!

bn−1
2 c∏
i=1

(1 + yxqi)

(1 + y)
,

as desired. For n ≡ 0 (mod 2) we have, by our inductive hypothesis,

Aon(y, q, x) =
∑

1≤i<j≤n

 ∑
σ∈Sn

σ(n−1)=i, σ(n)=j

y`(σ)qomaj(σ)xodes(σ) +
∑
σ∈Sn

σ(n−1)=j, σ(n)=i

y`(σ)qomaj(σ)xodes(σ)


=

∑
1≤i<j≤n

∑
τ∈Sn−2

y2n−j−i−1+`(τ)qomaj(τ)xodes(τ)

+
∑

1≤i<j≤n

∑
τ∈Sn−2

y2n−j−i+`(τ)qomaj(τ)+n
2 xodes(τ)+1

=
∑

1≤i<j≤n
(y2n−i−j−1 + y2n−i−jq

n
2 x)Aon−2(y, q, x)

= Aon−2(y, q, x)(1 + yq
n
2 x)

∑
1≤i<j≤n

y2n−i−j−1

= Aon−2(y, q, x)(1 + yq
n
2 x)

n−1∑
i=1

yn−i−1[n− i]y

= Aon−2(y, q, x)(1 + yq
n
2 x)

[n]y[n− 1]y
[2]y

,

as desired.

The proof for the even statistics is analogous, and is therefore omitted.

As a corollary of Theorem 3.2 we obtain the odd-even analogue of Carlitz’s identity

[13]. Recall that an overpartition is a partition where the last occurrence of any number

may be overlined (we refer the reader to [17]). So for example (1, 1, 1), (1, 1, 1), (2, 1), (2, 1),

(2, 1) and (2, 1) are the overpartitions of 3. We denote by P the set of overpartitions.

6



Corollary 3.3. Let n ∈ P. Then∑
σ∈Sn

qomaj(σ)xodes(σ)

bn2 c∏
i=1

(1− xqi)

=
n!

2b
n
2 c

∑
{λ∈P:λ16bn2 c}

q|λ|x`(λ),

and ∑
σ∈Sn

qemaj(σ)xedes(σ)

bn−1
2 c∏
i=1

(1− xqi)

=
n!

2b
n−1
2 c

∑
{λ∈P:λ16bn−1

2 c}
q|λ|x`(λ).

Proof. By Theorem 3.2 we have that

∑
σ∈Sn

qomaj(σ)xodes(σ)

bn2 c∏
i=1

(1− xqi)

=
n!

2b
n
2 c

bn2 c∏
i=1

(1 + xqi)

bn2 c∏
i=1

(1− xqi)

and the result follows immediately. The proof of the second equation is identical.

Note that Corollary 3.3 can also be stated in terms of super-Schur functions. Given

a partition λ and variables x1, ..., xm, y1, ..., yn we denote by sλ(x1, ..., xm/y1, ..., yn) the

super-Schur function (also known as hook Schur function, see [3]) associated to λ (we refer

the reader to [28] for the definition and further information about super-Schur functions).

Then we have, by [9, Equation (6)],∑
σ∈Sn

qomaj(σ)xodes(σ)

bn2 c∏
i=1

(1− xqi)

=
n!

2b
n
2 c
∑
k>0

s(k)(q, ..., q
bn2 c/q, ..., qb

n
2 c)xk

and ∑
σ∈Sn

qemaj(σ)xedes(σ)

bn−1
2 c∏
i=1

(1− xqi)

=
n!

2b
n−1
2 c

∑
k>0

s(k)(q, ..., q
bn−1

2 c/q, ..., qb
n−1
2 c)xk.

A second corollary of Theorem 3.2 is the odd-even analogue of the Gessel–Simion

Theorem.

Corollary 3.4. Let n ∈ P. Then

∑
σ∈Sn

(−1)`(σ)qomaj(σ) =
⌊n

2

⌋
!

bn2 c∏
i=1

(1− qi),
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and ∑
σ∈Sn

(−1)`(σ)qemaj(σ) =
1− (−1)n

2

⌊n
2

⌋
!

bn−1
2 c∏
i=1

(1− qi).

A further corollary is the following.

Corollary 3.5. Let n ∈ P. Then
∑
σ∈Sn

qomaj(σ) and
∑
σ∈Sn

qemaj(σ) are symmetric unimodal

polynomials.

Proof. It follows immediately from Theorem 3.2 that
∑
σ∈Sn

qomaj(σ) = n!

2b
n
2 c

∏bn2 c
i=1 (1 + qi),

and that
∑
σ∈Sn

qemaj(σ) = n!

2b
n−1
2 c

∏bn−1
2 c

i=1 (1 + qi). But it is well known (see, e.g., [29]) that

the polynomial
k∏
i=1

(1 + qi) is unimodal for all k ≥ 1.

We note the following similar unimodality result.

Proposition 3.6. Let n,m > 1. Then the polynomial
∑

{λ∈P:λ16n,`(λ)=m}
q|λ| is symmetric

and unimodal with center of symmetry at m(n+1)
2 .

Proof. Let Pn,m(q) :=
∑

{λ∈P:λ16n,`(λ)=m}
q|λ|. It is easy to see that deg(Pn,m) = nm and

that q(n+1)mPn,m(q−1) = Pn,m(q). Moreover,

∑
m>0

Pn,m(q)xm =

n∏
i=1

(1 + xqi)

n∏
i=1

(1− xqi)

=

 n∑
j=0

ej(q, q
2, ..., qn)xj

(∑
r>0

hr(q, q
2, ..., qn)xr

)

=
∑
m>0

(
m∑
i=0

ei(q, q
2, ..., qn)hm−i(q, q

2, ..., qn)

)
xm

=
∑
m>0

(
m∑
i=0

ei(1, q, ..., q
n−1)hm−i(1, q, ..., q

n−1)

)
qmxm,

where ei are the elementary symmetric functions and hi are the complete symmetric func-

tions (see, e.g., [23, Chapter 1]). It is well known that ei(1, q, ..., q
n−1) = q(

i
2)
(
n
i

)
q
, while

hm−i(1, q, ..., q
n−1) =

(
n+m−i−1

m−i
)
q

(see, e.g., [23, Example 1.3]) where
(
a
b

)
q

:= [a]q!/([b]q![a−
b]q)! is the q-binomial coefficient. Since

(
a
b

)
q

is a symmetric unimodal polynomial of de-

gree b(a − b) (see, e.g., [29, Theorem 11]) and the product of two symmetric unimodal

polynomials with nonnegative coefficients is again symmetric and unimodal (see, e.g. [29,
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Proposition 1]), we have that the product ei(1, q, ..., q
n−1)hm−i(1, q, ..., q

n−1) is symmet-

ric and unimodal with center of symmetry m(n−1)
2 . Therefore Pn,m(q) is symmetric and

unimodal with center of symmetry m(n+1)
2 .

Note that Proposition 3.6 is related to, but different from, [18, Conjecture 7.2] namely

that the polynomial
∑

{λ∈P:λ16n,`(λ)6m}
q|λ| is unimodal.

Note that the parabolic analogues of the odd and even q-Eulerian polynomials don’t

factor nicely, in general. For example, one can check that
∑

σ∈S{2}4

qomaj(σ) = 5q3 + 3q2 +

3q + 1, and that
∑

σ∈S{1,3}5

qemaj(σ) = 16q3 + 4q2 + 9q + 1. Also, the bivariate generating

function of omaj and emaj does not seem to factor. For example,
∑

σ∈S3
q
omaj(σ)
1 q

emaj(σ)
2 =

q1q2 + 2q1 + 2q2 + 1. The “signed” generating functions, however, can always be reduced

to that over a certain subset, that of “Wachs permutations”, which we now define. Such

generating functions, in turn, can often, though not always, be computed combinatorially,

as we show in the sequel.

For n ∈ P we define:

W(Sn) := {σ ∈ Sn : |σ−1(i)− σ−1(i∗)| ≤ 1 if i ∈ [n− 1]}.

So these are permutations where, in one line notation, 1 and 2, 3 and 4, etc. appear in

adjacent positions. For example, 21534 ∈ W(S5) while 23541 /∈ W(S5). For n even this

class of permutations first appeared in [34] in the study of the signed Eulerian numbers.

For this reason we call the elements of W(Sn) Wachs permutations.

Note that, if n is even, W(Sn) = {σ ∈ Sn : |σ(i)− σ(i∗)| ≤ 1 if i ∈ [n− 1]}.

Proposition 3.7. Let m > 0 and J ⊆ [2m − 1]. Then there is a bijection between

W(S2m) ∩ SJ2m and S
Je/2
m × P({i ∈ [m] : 2i− 1 /∈ J}).

Proof. For J = ∅ the bijection is obtained by associating to each σ ∈ Sm and S ⊆ [m]

the permutation u ∈ W(S2m) defined by

u(2j − 1) :=

{
2σ(j)− 1, if j /∈ S,

2σ(j), otherwise,

and

u(2j) :=

{
2σ(j), if j /∈ S,

2σ(j)− 1, otherwise,

for j ∈ [m]. So, for example, if σ = 4213 and S = {2, 3} then u = 78432156. If

J ⊆ [2m−1] then the bijection just described restricts to a bijection betweenW(S2m)∩SJ2m
and S

Je/2
m × P({i ∈ [m] : 2i− 1 /∈ J}).
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In general it is not hard to see that |W(Sn)| = 2b
n
2 c ⌈n

2

⌉
!. The previous bijection

implies the following natural algebraic interpretation of odes, edes and omaj, emaj for

Wachs permutation of even rank. The proof is a routine check, and is therefore omitted.

Lemma 3.8. Let m ∈ P, and u ∈ W(S2m), u = (σ, S). Then

1. `(u) = 4`(σ) + |S|,

2. odes(u) = |S|, edes(u) = des(σ),

3. omaj(u) =
∑
t∈S

t, emaj(u) = maj(σ).

The proposition below gives a sign-reversing involution that reduces the computation

of the signed generating function over any quotient to the corresponding set of Wachs

permutations.

Proposition 3.9. Let n ∈ P, and J ⊆ [n− 1]. Then∑
σ∈SJ

n

(−1)`(σ)q
omaj(σ)
1 q

emaj(σ)
2 x

odes(σ)
1 x

edes(σ)
2 =

∑
σ∈W(Sn)J

(−1)`(σ)q
omaj(σ)
1 q

emaj(σ)
2 x

odes(σ)
1 x

edes(σ)
2 .

Proof. Let σ ∈ SJn \ W(Sn) and r := min{i ∈ [n − 1] : |σ−1(i) − σ−1(i∗)| ≥ 2}. Define

the map ι : SJn \ W(Sn)→ SJn \ W(Sn) by ι(σ) := (r, r∗)σ, for all σ ∈ SJn \ W(Sn). Then

`(ι(σ)) ≡ `(σ) + 1 (mod 2), D(ι(σ)) = D(σ), and ι(ι(σ)) = σ for all σ ∈ SJn \ W(Sn), so

the result follows.

The following result is a refinement, and extension, of [34, Theorem 1] (which is the

case J = ∅, q1 = q2 = q2, x1 = x/q and x2 = x).

Theorem 3.10. Let m ∈ P, and J ⊆ [2m− 1]. Then∑
σ∈SJ

2m

(−1)`(σ)q
omaj(σ)
1 q

emaj(σ)
2 x

odes(σ)
1 x

edes(σ)
2 =

∏
{i∈[m]:2i−1/∈J}

(1−x1qi1)
∑

τ∈SJe/2
m

q
maj(τ)
2 x

des(τ)
2 .

Proof. Let A := {i ∈ [m] : 2i − 1 /∈ J}. Then by Lemma 3.8 and the considerations

preceding it we have that∑
σ∈DJ

2m

(−1)`(σ)q
omaj(σ)
1 q

emaj(σ)
2 x

odes(σ)
1 x

edes(σ)
2 =

∑
τ∈SJe/2

m

∑
T⊆A

(−1)4`(τ)+|T |q
∑

t∈T t
1 q

maj(τ)
2 x

|T |
1 x

des(τ)
2

=
∑

τ∈SJe/2
m

q
maj(τ)
2 x

des(τ)
2

∏
a∈A

(1− x1qa1).

The result follows from Proposition 3.9.

We note the following consequences of Theorem 3.10.
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Corollary 3.11. Let m ∈ P. Then

∑
σ∈S2m

(−1)`(σ)q
omaj(σ)
1 q

emaj(σ)
2 = [m]q2 !

m∏
i=1

(1− qi1).

Note that for symmetric groups of odd rank the bivariate signed generating function

of omaj and emaj does not factorize nicely. For example,
∑

σ∈S5
(−1)`(σ)q

omaj(σ)
1 q

emaj(σ)
2 =

(1 + y2)(1 + x3 + xy4 + x4y4 − 2x3y2 − 2xy2).

Corollary 3.12. Let m ∈ P and J ⊆ [2m− 1]. Then∑
σ∈SJ

2m

(−1)`(σ)qmaj(σ)xdes(σ) =
∏

{i∈[m]:2i−1/∈J}

(1− xq2i−1)
∑

τ∈SJe/2
m

q2maj(τ)xdes(τ).

Proof. This follows immediately by taking q1 = q2 = q2, x1 = x
q , and x2 = x in Theorem

3.10.

Corollary 3.13. Let m ∈ P. Then∑
σ∈S[2m]o

2m

(−1)`(σ)q
omaj(σ)
1 q

emaj(σ)
2 x

odes(σ)
1 x

edes(σ)
2 =

∑
τ∈Sm

q
maj(τ)
2 x

des(τ)
2 .2

We note that the previous “sign-balance” identities are examples of the phenomenon

described in [19], namely that the signed enumeration on 2m objects by certain statistics

is essentially equivalent to the ordinary enumeration on m objects by the same statistics.

4 Types B and D

In this section we define and study odd and even analogues of the descent and flag-major

statistics on the classical Weyl groups of types B and D, and compute the generating

functions of these statistics twisted by the one-dimensional characters of these groups.

For i ∈ [n− 1] we write, for brevity, “si” rather than “sBi ”. We also define

s∗i := (i, i∗)(−i,−i∗)

for all i ∈ [n− 1]. Note that the involution of Bn defined by σ 7→ s∗iσ, restricts to Dn.

Definition 4.1. We define six statistics on the hyperoctahedral group Bn by letting

omaj(σ) :=
∑

i∈D(σ)o

i+ 1

2
, emaj(σ) :=

∑
i∈D(σ)e

i

2
,

odes(σ) := |D(σ)o|, edes(σ) := |D(σ)e|,

oneg(σ) := |Neg(σ)o|, eneg(σ) := |Neg(σ)e|,

for all σ ∈ Bn.

11



So, for example, if σ = [−2, 5, 3, 1,−4] then D(σ) = {0, 2, 3, 4}, Neg(σ) = {1, 5},
omaj(σ) = 2, odes(σ) = 1, oneg(σ) = 2, emaj(σ) = 3, edes(σ) = 3, and eneg(σ) = 0. Note

that, if σ ∈ Sn, then the first four of these statistics coincide with those already defined

in the previous section by the same name.

Definition 4.2. We define the odd flag-major index and the even flag-major index of

σ ∈ Bn by letting

ofmaj(σ) := 2 omaj(σ) + oneg(σ), efmaj(σ) := 2 emaj(σ) + eneg(σ).

So, if σ is as above then ofmaj(σ) = efmaj(σ) = 6.

For σ ∈ Bn we let |σ|n := [σ(1), . . . , σ(n−1), |σ(n)|]. We then define six more statistics

on Bn.

Definition 4.3. We let

oDmaj(σ) := ofmaj(|σ|n), eDmaj(σ) := efmaj(|σ|n),

onegD(σ) := oneg(|σ|n), enegD(σ) := eneg(|σ|n),

odesD(σ) := odes(|σ|n), edesD(σ) := edes(|σ|n),

for all σ ∈ Bn.

So, for example, if σ is as above then odesD(σ) = 1, oDmaj(σ) = 5, edesD(σ) = 2 and

eDmaj(σ) = 2. We call oDmaj and eDmaj the odd D-major index and the even D-major

index of σ ∈ Bn, respectively.

Our aim is to compute the generating functions
∑
σ∈Bn

χ(σ)xofmaj(σ)yodes(σ)zoneg(σ) and∑
σ∈Dn

χ(σ)xoDmaj(σ)yodesD(σ)zonegD(σ) where χ is any one-dimensional character of the cor-

responding group, and the analogous even ones.

4.1 The trivial character

We start with the trivial characters of Bn and Dn. Recall that we let pn := (1 + (−1)n)/2.

Theorem 4.4. Let n ≥ 2. Then

∑
σ∈Bn

xofmaj(σ)yodes(σ)zoneg(σ) =
n!

2b
n
2
c (1 + xz)pn+1

bn
2
c∏

j=1

(1 + 3xz + 3yx2j + yzx2j+1),

and

∑
σ∈Bn

xefmaj(σ)yedes(σ)zeneg(σ) =
n!

2b
n−1
2
c
(1 + y)(1 + xz)pn

bn−1
2
c∏

j=1

(1 + 3xz + 3yx2j + yzx2j+1).
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Proof. We only prove the formula for the odd statistics, the proof for the even ones being

analogous. We proceed by induction on n ≥ 2, the result being easy to check for n = 2.

Suppose first that n is odd. Then we have that∑
σ∈Bn

xofmaj(σ)yodes(σ)zoneg(σ) =
∑
i∈[±n]

∑
{σ∈Bn:σ(n)=i}

xofmaj(σ)yodes(σ)zoneg(σ)

=
∑

τ∈Bn−1

∑
i∈[n]

(1 + zx)xofmaj(τ)yodes(τ)zoneg(τ)

= n(1 + zx)
∑

τ∈Bn−1

xofmaj(τ)yodes(τ)zoneg(τ),

as desired. Suppose now that n is even. Let σ ∈ Bn and [τ, i, j] be its window notation

(i, j ∈ [±n]). Then one can check that

ofmaj(σ) =


ofmaj(τ), if 0 < i < j,

ofmaj(τ) + 1, if i < 0 and i < j,

ofmaj(τ) + n+ 1, if 0 > i > j,

ofmaj(τ) + n, if i > 0 and i > j.

Therefore we conclude that∑
σ∈Bn

xofmaj(σ)yodes(σ)zoneg(σ) =
∑

i,j∈[±n]
i 6=±j

∑
σ∈Bn

σ(n−1)=i, σ(n)=j

xofmaj(σ)yodes(σ)zoneg(σ)

=
∑

0<i<j

∑
τ∈Bn−2

xofmaj(τ)yodes(σ)zoneg(τ)

+
∑
i<j
i<0
i 6=−j

∑
τ∈Bn−2

xofmaj(τ)+1yodes(τ)zoneg(τ)+1

+
∑

0>i>j

∑
τ∈Bn−2

xofmaj(τ)+n+1yodes(τ)+1zoneg(τ)+1

+
∑
i>j
i>0
i 6=−j

∑
τ∈Bn−2

xofmaj(τ)+nyodes(τ)+1zoneg(τ)

=

(
n

2

)
(1 + 3zx+ zyxn+1 + 3yxn)

∑
τ∈Bn−2

xofmaj(τ)yodes(τ)zoneg(τ),

and the result again follows.

The corresponding result for Dn is a consequence of the one in type B. Note that if

f1, ..., fk : Bn → N then∑
σ∈Bn

x
f1(|σ|n)
1 · · ·xfk(|σ|n)k = 2

∑
σ∈Dn

x
f1(|σ|n)
1 · · ·xfk(|σ|n)k . (1)
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Theorem 4.5. Let n > 3. Then

∑
σ∈Dn

xoDmaj(σ)yodesD(σ)zonegD(σ) =
n!

2b
n
2
c (1 + 2zx+ yxn)pn

bn−1
2
c∏

j=1

(1 + 3xz+ 3yx2j + yzx2j+1)

and

∑
σ∈Dn

xeDmaj(σ)yedesD(σ)zenegD(σ) =
n!

2b
n−1
2
c
(1+y) (1 + 2zx+ yxn)pn+1

bn−2
2
c∏

j=1

(1+3zx+3yx2j+yzx2j+1).

Proof. Let n ≥ 3 be odd. Then∑
σ∈Bn

xoDmaj(σ)yodesD(σ)zonegD(σ) =
∑
i∈[±n]

∑
{σ∈Bn:σ(n)=i}

xofmaj(|σ|n)yodes(|σ|n)zoneg(|σ|n)

= 2n
∑

τ∈Bn−1

xofmaj(τ)yodes(τ)zoneg(τ),

and the result follows from Theorem 4.4 and (1). Let now n be even. Let σ ∈ Bn and

[τ, i, j] be its window notation (i, j ∈ [±n]). Then we have that

oDmaj(σ) =


ofmaj(τ), if 0 < i < |j|,
ofmaj(τ) + 1, if i < 0,

ofmaj(τ) + n, if i > |j|.

Therefore∑
σ∈Bn

xoDmaj(σ)yodesD(σ)zonegD(σ) =
∑

0<i<|j|

∑
τ∈Bn−2

xofmaj(τ)yodes(τ)zoneg(τ)

+
∑
i<0
−i 6=|j|

∑
τ∈Bn−2

xofmaj(τ)+1yodes(τ)zoneg(τ)+1

+
∑
i>|j|

∑
τ∈Bn−2

xofmaj(τ)+nyodes(τ)+1zoneg(τ)

= n(n− 1) (1 + 2zx+ yxn)
∑

τ∈Bn−2

xofmaj(τ)yodes(τ)zoneg(τ),

and the result again follows from Theorem 4.4 and (1).

The proof for the even statistics is analogous and is therefore omitted.

4.2 The alternating character

The computation for the character σ 7→ (−1)`B(σ) of SBn is considerably more involved.

We begin with the following reduction result. For n ∈ P we let

W(Bn) := {σ ∈ Bn : |σ−1(i)− σ−1(i∗)| ≤ 1 for all i ∈ [n− 1]}.

We call the elements ofW(Bn) signed Wachs permutations. So, for example, [−3,−4, 5, 2, 1] ∈
W(B5) while [3,−4, 1, 2] /∈ W(B4).
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Proposition 4.6. Let n ∈ P, and S ⊆ [n]. Then∑
{σ∈Bn:Neg(σ)=S}

(−1)`B(σ)x
omaj(σ)
1 x

emaj(σ)
2 y

odes(σ)
1 y

edes(σ)
2

=
∑

{σ∈W(Bn):Neg(σ)=S}

(−1)`B(σ)x
omaj(σ)
1 x

emaj(σ)
2 y

odes(σ)
1 y

edes(σ)
2 .

Proof. Let B̂n := {σ ∈ Bn : Neg(σ) = S}, and ϕ : B̂n \W(Bn)→ B̂n \W(Bn) be defined

by ϕ(σ) := s∗rσ where r := min{i ∈ [n − 1] : |σ−1(i) − σ−1(i∗)| ≥ 2} if σ ∈ B̂n \ W(Bn).

Then ϕ : B̂n \W(Bn)→ B̂n \W(Bn) is an involution, `B(ϕ(σ)) ≡ `B(σ) + 1 (mod 2), and

D(ϕ(σ)) = D(σ), so the result follows.

Note that there is a bijection between W(B2m) and Bm × P([m]) obtained by associ-

ating to each σ ∈ Bm and S ⊆ [m] the signed permutation u ∈ B2m defined by

(u(2j − 1), u(2j)) :=


(2σ(j), 2σ(j)− 1), if j ∈ S, σ(j) > 0,

(2σ(j)− 1, 2σ(j)), if j /∈ S, σ(j) > 0,

(2σ(j) + 1, 2σ(j)), if j ∈ S, σ(j) < 0,

(2σ(j), 2σ(j) + 1), if j /∈ S, σ(j) < 0,

for j ∈ [m]. So, for example, if σ = [3,−1,−2, 5,−4] and S = {1, 4, 5} then u =

[6, 5,−2,−1,−4,−3, 10, 9,−7,−8]. Because of this bijection we will often identifyW(B2m)

and Bm×P([m]) and write simply u = (σ, S) to mean that u and (σ, S) correspond under

this bijection. The proof of the next result is a routine check using our definitions, and is

therefore omitted.

Lemma 4.7. Let m ∈ P, and u ∈ W(B2m), u = (σ, S). Then

1. neg(u) = 2 neg(σ), oneg(u) = eneg(u) = neg(σ);

2. odes(u) = |S|, edes(u) = des(σ);

3. omaj(u) =
∑

t∈S t, emaj(u) = maj(σ);

4. `A(u) = 4`A(σ) + |S| and `B(u) = 4`B(σ) + |S| − neg(σ).

For brevity, we define the following two monomials, for any σ ∈ Bn: σo(x, y) :=

xomaj(σ)yodes(σ) and σe(x, y) := xemaj(σ)yedes(σ). We need to prove a further reduction

result.

Lemma 4.8. Let m ∈ P, and S ⊆ [2m+ 1]. Then∑
{σ∈B2m+1:Neg(σ)=S}

(−1)`B(σ)σo(x, y) =
∑

{σ∈B2m+1:Neg(σ)=S,|σ(2m+1)|=2m+1}

(−1)`B(σ)σo(x, y),
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and ∑
{σ∈B2m+1:Neg(σ)=S}

(−1)`B(σ)σe(x, y) =
∑

{σ∈B2m+1:Neg(σ)=S,|σ(1)|=2m+1}

(−1)`B(σ)σe(x, y).

Proof. Let ψ : {σ ∈ B2m+1 : |σ(2m+1)| 6= 2m+1} → {σ ∈ B2m+1 : |σ(2m+1)| 6= 2m+1}
be defined by ψ(σ) := s∗rσ where r := σ(2m + 1). Then ψ is an involution, `B(ψ(σ)) ≡
`B(σ) + 1 (mod 2), Neg(ψ(σ)) = Neg(σ) and D(σ)o = D(ψ(σ))o. This proves the first

equation. The proof for the even one is analogous and is therefore omitted.

For S ⊆ [n] we define S∗ := {i∗ : i ∈ S}. Using the reductions proved so far we can

now compute explicitly several “building blocks” of the generating functions that we are

interested in.

Lemma 4.9. Let m ∈ P, and S ⊆ [2m]. Then

∑
{σ∈B2m:Neg(σ)=S}

(−1)`B(σ)σo(x, y) =

 (−1)
|S|
2 m!

m∏
i=1

(1− yxi), if S = S∗,

0, otherwise,

and ∑
{σ∈B2m:Neg(σ)=S}

(−1)`B(σ)σe(x, y) = 0.

Proof. Note that, by Proposition 4.6,∑
{σ∈B2m:Neg(σ)=S}

(−1)`B(σ)σo(x, y) =
∑

{σ∈W(B2m):Neg(σ)=S}

(−1)`B(σ)σo(x, y),

and the right hand side is zero whenever S 6= S∗. If S = S∗, by Lemma 4.7 we have that∑
{σ∈W(B2m):Neg(σ)=S}

(−1)`B(σ)σo(x, y) =
∑

{σ∈Bm:Neg(σ)=Se/2}

∑
T⊆[m]

(−1)|T |+neg(σ)x

∑
t∈T

t

y|T |

=
∑

{σ∈Bm:Neg(σ)=Se/2}

(−1)neg(σ)
∑
T⊆[m]

(−y)|T |x

∑
t∈T

t

= (−1)|S|/2m!
m∏
i=1

(1− yxi),

as claimed.

For the even statistics note that the assignment σ 7→ s∗|σ(1)|σ defines an involution of

B2m which preserves the functions emaj and edes, so the result follows.
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Lemma 4.10. Let m ∈ P and S ⊆ [2m+ 1]. Then

∑
{σ∈B2m+1:Neg(σ)=S}

(−1)`B(σ)σe(x, y)

=



y(−1)
|S|+1

2 m!
m∏
i=1

(1− yxi), if 1 ∈ S and (S \ {1} − 1)∗ = S \ {1} − 1,

(−1)
|S|
2 m!

m∏
i=1

(1− yxi), if 1 6∈ S and (S − 1)∗ = S − 1,

0, otherwise.

Proof. Let 1 ∈ S. Then 0 ∈ D(σ) for all σ ∈ Bn such that Neg(σ) = S. We have that, by

Lemma 4.8,

∑
{σ∈B2m+1:Neg(σ)=S}

(−1)`B(σ)σe(x, y) =
∑

{σ∈B2m+1:
Neg(σ)=S, σ(1)=−2m−1}

(−1)`B(σ)σe(x, y)

= −y
∑

{σ∈B2m:
Neg(σ)=S\{1}−1}

(−1)`B(σ)σo(x, y),

and the result follows by Lemma 4.9. If 1 6∈ S the result follows by analogous computations.

Note that if |S| is even (resp., odd) the first (resp., second) case in the above lemma

cannot occur. We can now prove one of our main results. Recall that we have defined

pn := 1+(−1)n
2 .

Theorem 4.11. Let n > 2. Then

∑
{σ∈Bn:σ(n)>0

neg(σ)≡ε (mod 2)}

(−1)`B(σ)xomaj(σ)yodes(σ)z
oneg(σ)
1 z

eneg(σ)
2 = pεOn(x, y, z1, z2), (2)

∑
{σ∈Bn:σ(n)<0

neg(σ)≡ε (mod 2)}

(−1)`B(σ)xomaj(σ)yodes(σ)z
oneg(σ)
1 z

eneg(σ)
2 = −z1z1−ε2 pn+εOn(x, y, z1, z2), (3)

where ε ∈ {0, 1} and On(x, y, z1, z2) :=
⌊
n
2

⌋
!(1− z1z2)b

n−1
2 c
bn2 c∏
i=1

(1− yxi).
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Proof. We write σo(x, y, z1, z2) := xomaj(σ)yodes(σ)z
oneg(σ)
1 z

eneg(σ)
2 for brevity and we begin

by proving (2) for ε = 1. Note that

∑
{σ∈Bn\Dn:σ(n)>0}

(−1)`B(σ) σo(x, y, z1, z2)

=
∑

S⊆[n−1]

z
|So|
1 z

|Se|
2

∑
{σ∈Bn\Dn:Neg(σ)=S}

(−1)`B(σ)σo(x, y)

=
∑

{S⊆[n−1]:|S|≡1 (mod 2)}

z
|So|
1 z

|Se|
2

∑
{σ∈Bn:Neg(σ)=S}

(−1)`B(σ)σo(x, y).

This already proves (2) if ε = 1 and n is even, by Lemma 4.9. Suppose now that n is odd.

Then for all S ⊆ [n− 1] such that |S| ≡ 1 (mod 2) we have that, by Lemmas 4.8 and 4.9,

∑
{σ∈Bn:Neg(σ)=S}

(−1)`B(σ)σo(x, y) =
∑

{σ∈Bn:Neg(σ)=S,σ(n)=n}

(−1)`B(σ)σo(x, y)

=
∑

{σ∈Bn−1:Neg(σ)=S}

(−1)`B(σ)σo(x, y) = 0,

and (2) for ε = 1 again follows.

We now prove (2) for ε = 0. Suppose first that n is even. Then proceeding as in the

previous case and using Lemma 4.9 we have that

∑
{σ∈Dn:σ(n)>0}

(−1)`B(σ) σo(x, y, z1, z2)

=
∑

{S⊆[n−1]:|S|≡0 (mod 2)}

z
|So|
1 z

|Se|
2

∑
{σ∈Bn:Neg(σ)=S}

(−1)`B(σ)σo(x, y)

=
∑

{S⊆[n−1]:S=S∗}

z
|So|
1 z

|Se|
2 (−1)

|S|
2

(n
2

)
!

n/2∏
i=1

(1− yxi)

=
(n

2

)
!

n/2∏
i=1

(1− yxi)
∑

{S⊆[n−2]:S=S∗}

(−z1z2)
|S|
2 ,
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and (2) follows in this case. If n is odd then by Lemma 4.8 we have similarly that∑
{σ∈Dn:σ(n)>0}

(−1)`B(σ) σo(x, y, z1, z2)

=
∑

{S⊆[n−1]:|S|≡0 (mod 2)}

z
|So|
1 z

|Se|
2

∑
{σ∈Bn:Neg(σ)=S,σ(n)=n}

(−1)`B(σ)σo(x, y)

=
∑

{S⊆[n−1]:|S|≡0 (mod 2)}

z
|So|
1 z

|Se|
2

∑
{σ∈Bn−1:Neg(σ)=S}

(−1)`B(σ)σo(x, y)

=
∑

{S⊆[n−1]:S=S∗}

z
|So|
1 z

|Se|
2 (−1)

|S|
2

(
n− 1

2

)
!

(n−1)/2∏
i=1

(1− yxi)

=
⌊n

2

⌋
!

bn2 c∏
i=1

(1− yxi)
∑

T⊆[n−1]o

(−z1z2)|T |,

by Lemma 4.9 and (2) again follows.

We now prove (3) for ε = 1. We have that∑
{σ∈Bn\Dn:σ(n)<0}

(−1)`B(σ) σo(x, y, z1, z2)

=
∑

{S⊆[n]:n∈S}

z
|So|
1 z

|Se|
2

∑
{σ∈Bn\Dn:Neg(σ)=S}

(−1)`B(σ)σo(x, y)

=
∑

{S⊆[n]:|S|≡1 (mod 2),n∈S}

z
|So|
1 z

|Se|
2

∑
{σ∈Bn:Neg(σ)=S}

(−1)`B(σ)σo(x, y),

and this proves (3) in this case by Lemma 4.9 if n is even. Suppose now that n is odd.

Then, from the previous equation and Lemmas 4.8 and 4.9, we have that

∑
{σ∈Bn\Dn:σ(n)<0}

(−1)`B(σ) σo(x, y, z1, z2)

=
∑

{S⊆[n]:|S|≡1 (mod 2),n∈S}

z
|So|
1 z

|Se|
2

∑
{σ∈Bn:Neg(σ)=S,σ(n)=−n}

(−1)`B(σ)σo(x, y)

= −
∑

{T⊆[n−1]:|T |≡0 (mod 2)}

z
|To|+1
1 z

|Te|
2

∑
{σ∈Bn−1:Neg(σ)=T}

(−1)`B(σ)σo(x, y)

= −
∑

{T⊆[n−1]:T=T ∗}

z
|To|+1
1 z

|Te|
2 (−1)

|T |
2

(
n− 1

2

)
!

(n−1)/2∏
i=1

(1− yxi)

= −z1
∑

{T⊆[n−1]:T=T ∗}

(−z1z2)
|T |
2

(
n− 1

2

)
!

(n−1)/2∏
i=1

(1− yxi)

= −z1
⌊n

2

⌋
!

bn2 c∏
i=1

(1− yxi)
∑

S⊆[n−1]o

(−z1z2)|S|
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and (3) follows if ε = 1.

Finally, if n is even, then we obtain similarly that∑
{σ∈Dn:σ(n)<0}

(−1)`B(σ) σo(x, y, z1, z2)

=
∑

{S⊆[n]:n∈S,|S|≡0 (mod 2)}

z
|So|
1 z

|Se|
2

∑
{σ∈Bn:Neg(σ)=S}

(−1)`B(σ)σo(x, y)

=
∑

{S⊆[n]:n∈S,S=S∗}

z
|So|
1 z

|Se|
2 (−1)

|S|
2

(n
2

)
!

n/2∏
i=1

(1− yxi)

=
(n

2

)
!

n/2∏
i=1

(1− yxi)
∑

T⊆[n−2]o

(−z1z2)|T |+1.

and (3) follows for ε = 0. If n is odd then, by Lemmas 4.8 and 4.9∑
{σ∈Dn:σ(n)<0}

(−1)`B(σ)σo(x, y, z1, z2)

=
∑

{S⊆[n]:n∈S,|S|≡0 (mod 2)}

z
|So|
1 z

|Se|
2

∑
{σ∈Bn:Neg(σ)=S,σ(n)=−n}

(−1)`B(σ)σo(x, y)

= −
∑

{S⊆[n]:n∈S,|S|≡0 (mod 2)}

z
|So|
1 z

|Se|
2

∑
{τ∈Bn−1:Neg(τ)=S\{n}}

(−1)`B(τ)τo(x, y)

= −
∑

{T⊆[n−1]:|T |≡1 (mod 2)}

z
|To|+1
1 z

|Te|
2

∑
{τ∈Bn−1:Neg(τ)=T}

(−1)`B(τ)τo(x, y) = 0.

This proves (3) for ε = 0 and this concludes the proof.

The following is the even analogue of the previous theorem. Its proof is similar and is

therefore omitted.

Theorem 4.12. Let n > 2. Then

∑
{σ∈Bn:σ(n)>0

neg(σ)≡ε (mod 2)}

(−1)`B(σ)xemaj(σ)yedes(σ)z
oneg(σ)
1 z

eneg(σ)
2 =

(−yz1)εpn+1

1− z1z2
On(x, y, z1, z2), (4)

∑
{σ∈Bn:σ(n)<0

neg(σ)≡ε (mod 2)}

(−1)`B(σ)xemaj(σ)yedes(σ)z
oneg(σ)
1 z

eneg(σ)
2 = −(−yz1)εz1z2pn+1

1− z1z2
On(x, y, z1, z2).

(5)

As a consequence of Theorems 4.11 and 4.12 we can now easily obtain the generat-

ing function of the odd flag-major index, the odd descent number, and the odd negative
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number, twisted by the alternating character of the hyperoctahedral group, and the corre-

sponding even ones. For y = z = 1 this result is the odd and even analogue of [2, Theorem

5.1].

Corollary 4.13. Let n > 2. Then

∑
σ∈Bn

(−1)`B(σ)xofmaj(σ)yodes(σ)zoneg(σ) =
⌊n

2

⌋
! (1− xz)d

n
2
e
bn2 c∏
i=1

(1− yx2i),

and

∑
σ∈Bn

(−1)`B(σ)xefmaj(σ)yedes(σ)zeneg(σ) = pn+1

⌊n
2

⌋
!(1− xz)b

n
2 c
bn2 c∏
i=0

(1− yx2i).

We note that Corollary 4.13 implies that∑
σ∈Bn

(−1)`B(σ)xomaj(σ)yodes(σ) = 0

which is also implied by [26, Theorem 3.2].

Note that
∑

σ∈Bn
(−1)`B(σ)x

omaj(σ)
1 x

emaj(σ)
2 does not factor nicely, in general, for ex-

ample, if n = 5 then one obtains (1 − x1)(1 − x1x2)
2(1 + x22)(x

6
1x

4
2 − 2x41x

2
2 + x21x

4
2 +

x41 − 2x21x
2
2 + 1). Similarly

∑
σ∈Bn

x`B(σ)yofmaj(σ) does not factor nicely. For example∑
σ∈B3

x`B(σ)yofmaj(σ) = (x2+x+1)(x3y+1)(x4y3+x3y2+x3y+x2y2+x2y+xy2+xy+1).

Similar considerations hold in the even case.

As another simple consequence of Theorems 4.11 and 4.12 we also obtain the generating

function of oDmaj, odesD and onegD, and the corresponding even one for the only non-

trivial one-dimensional character of the even hyperoctahedral group. A special case of the

following result (y = z = 1) is the odd and even analogue of [6, Theorem 4.8].

Corollary 4.14. Let n > 2. Then

∑
σ∈Dn

(−1)`D(σ)xoDmaj(σ)yodesD(σ)zonegD(σ) =
⌊n

2

⌋
!(1− xz)b

n−1
2 c
bn2 c∏
i=1

(1− yx2i),

and

∑
σ∈Dn

(−1)`D(σ)xeDmaj(σ)yedesD(σ)zenegD(σ) = pn+1

⌊n
2

⌋
!(1 + y)(1− xz)b

n−2
2 c
bn2 c∏
i=1

(1− yx2i).

Proof. For σ ∈ Dn let σ̃ := [σ(1), . . . , σ(n−1),−σ(n)]. Then we have from our definitions,

Proposition 2.3 and Theorem 4.11 that
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∑
σ∈Dn

(−1)`D(σ)xoDmaj(σ)yodesD(σ)zonegD(σ)

=
∑

{σ∈Dn:σ(n)>0}

(−1)`B(σ)σo(x
2, y, zx, 1) +

∑
{σ∈Dn:σ(n)<0}

(−1)`B(σ̃)+1σ̃o(x
2, y, zx, 1)

=
⌊n

2

⌋
!(1− xz)b

n−1
2 c
bn2 c∏
i=1

(1− yx2i)−
∑

{τ∈Bn\Dn:τ(n)>0}

(−1)`B(τ)τo(x
2, y, zx, 1)

=
⌊n

2

⌋
!(1− xz)b

n−1
2 c
bn2 c∏
i=1

(1− yx2i).

The second equation follows similarly from Theorem 4.12.

We note that, as in the case of the hyperoctahedral group,
∑

σ∈Dn

(−1)`D(σ)x
oDmaj(σ)
1 x

eDmaj(σ)
2

does not seem to factor, in general.

4.3 The other characters

We conclude by computing the generating function of the statistics studied in this section

twisted by the remaining one-dimensional characters of the hyperoctahedral group.

As in the case of the alternating character, the following corollary can be deduced

directly from Theorems 4.11 and 4.12. For y = z = 1 it is the odd and even analogue of

[2, Theorem 6.1].

Corollary 4.15. Let n > 2. Then

∑
σ∈Bn

(−1)`B(σ)+neg(σ)xofmaj(σ)yodes(σ)zoneg(σ) =
⌊n

2

⌋
! (1 + xz)pn+1(1− xz)b

n
2
c
bn2 c∏
i=1

(1− yx2i)

and

∑
σ∈Bn

(−1)`B(σ)+neg(σ)xefmaj(σ)yedes(σ)zeneg(σ) = pn+1

⌊n
2

⌋
!(1 + y)(1− xz)b

n
2 c
bn2 c∏
i=1

(1− yx2i).

One can check that
∑

σ∈Bn
(−1)`B(σ)+neg(σ)x

omaj(σ)
1 x

emaj(σ)
2 does not factor explicitly

in general.

To calculate the generating function of the statistics studied in this section twisted by

the remaining character we begin with a reduction result.

For σ ∈ Bn we let |σ| := [|σ(1)|, . . . , |σ(n)|].
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Proposition 4.16. Let n > 2 and S ⊆ [n]. Then∑
{σ∈Bn:

Neg(σ)o=S}

(−1)neg(σ)xomaj(σ)yodes(σ) =
∑
{σ∈Bn:

Neg(σ)o=S
odes(|σ|)=0}

(−1)neg(σ)xomaj(σ)yodes(σ)

and ∑
{σ∈Bn:

Neg(σ)e=S}

(−1)neg(σ)xemaj(σ)yedes(σ) =
∑
{σ∈Bn:

Neg(σ)e=S
edes(|σ|)=0}

(−1)neg(σ)xemaj(σ)yedes(σ).

Proof. Let σ ∈ Bn and i ∈ [n − 1] be such that i ≡ 1 (mod 2) and |σ(i)| > |σ(i + 1)|.
Let σ̃ := [σ(1), ..., σ(i),−σ(i + 1), σ(i + 2), ..., σ(n)]. Then neg(σ̃) ≡ neg(σ) + 1 (mod 2),

oneg(σ̃) = oneg(σ), odes(σ̃) = odes(σ) and hence omaj(σ̃) = omaj(σ).

The second formula is proved analogously.

The next result completes the computation of the generating functions of the statis-

tics ofmaj, odes, and oneg, and their even counterparts, twisted by the one-dimensional

characters of Bn. For y = z = 1 the result is the odd and even analogue of [2, Theorem

6.2].

Theorem 4.17. Let n > 2. Then

∑
σ∈Bn

(−1)neg(σ)xofmaj(σ)yodes(σ)zoneg(σ) =
n!

2b
n
2 c

(1− xz)d
n
2 e
bn2 c∏
i=1

(1− yx2i),

and

∑
σ∈Bn

(−1)neg(σ)xefmaj(σ)yedes(σ)zeneg(σ) =
n!

2b
n−1
2 c

(1− xz)b
n
2 c
bn−1

2 c∏
i=0

(1− yx2i).

Proof. By Proposition 4.16 we have that

∑
σ∈Bn

(−1)neg(σ) xomaj(σ)yodes(σ)zoneg(σ)

=
∑
S⊆[n]o

z|S|
∑
{σ∈Bn:

Neg(σ)o=S}

(−1)neg(σ)xomaj(σ)yodes(σ)

=
∑
S⊆[n]o

z|S|
∑
{σ∈Bn:

odes(|σ|)=0
Neg(σ)o=S}

(−1)neg(σ)xomaj(σ)yodes(σ).
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Now notice that, if σ ∈ Bn is such that odes(|σ|) = 0 and i ≡ 1 (mod 2), then σ(i) > σ(i+1)

if and only if σ(i+ 1) < 0, so D(σ)o + 1 = Neg(σ)e. Therefore the previous sum equals

∑
S⊆[n]o

z|S|
∑
T⊆[n]e

∑
{σ∈Bn:

Neg(σ)=S]T
odes(|σ|)=0}

(−1)|S|+|T |x
1
2

∑
t∈T

t

y|T |

= |{σ ∈ Bn : odes(|σ|) = 0,Neg(σ) = S ∪ T}|
∑
S⊆[n]o

(−z)|S|
∑
T⊆[n]e

(−y)|T |x
1
2

∑
t∈T

t

=
n!

2b
n
2 c

(1− z)d
n
2 e
bn2 c∏
i=1

(1− yxi).

The second equality follows analogously, using the reduction of Proposition 4.16.

The joint distribution of ofmaj and efmaj twisted by “negative” character does not

seem to factor.

5 Final comments

It is clear that the most desirable property that one would like an “odd major index”

to possess is that it is equidistributed with the odd length. It is easy to see that, if we

require, as seems reasonable, such an odd major index to be an additive function of the

descent set, such an odd major index does not exist in general. For example, one has that∑
π∈S5

∏
i∈D(π)

xi = 1 + 4x4 + 9x3 + 6x3x4 + 9x2 + 16x2x4 + 11x2x3 + 4x2x3x4 + 4x1

+11x1x4 + 16x1x3 + 9x1x3x4 + 6x1x2 + 9x1x2x4 + 4x1x2x3 + x1x2x3x4

and one can check that there are no j1, j2, j3, j4 ∈ N such that

∑
π∈S5

∏
i∈D(π)

xji = 1 + 12x+ 23x2 + 48x3 + 23x4 + 12x5 + x6 =
∑
π∈S5

xL(π)

where L(π) := |{(i, j) ∈ [n]2 : i < j, π(i) > π(j), i 6≡ j (mod 2)}| is the odd length

of the symmetric group. Of course this computation does not rule out the existence of

more general odd and even major indexes such as, for example, polynomial functions with

integer coefficients of the elements of the descent set.

Similar computations show that no additive “odd major index” that depends only on

the descent and negative sets exists in the hyperoctahedral groups that is equidistributed
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with the odd length, where the odd length is the one defined in [30] and [31], and further

studied in [10], [12], and [22], namely

LB(σ) =
1

2
|{(i, j) ∈ [±n]2 : i < j, σ(i) > σ(j), i 6≡ j (mod 2)}|,

where σ ∈ Bn and σ(0) := 0. Analogous considerations about more general indexes, as at

the end of the previous paragraph, also apply in this case.

It is well know that major indexes possess remarkable algebraic interpretations in terms

of coinvariant algebras and tensor invariant algebras (see, e.g. [1], [4] and [7]). It would

be interesting to find similar interpretations for the odd and even statistics introduced

and studied in this work. Moreover, considering that the flag-major index was originally

defined in [1] for wreath products, a reasonable directions for further work would be to

define and study odd and even analogues of these major indices for wreath products.

6 Acknowledgements

The first author would like to thank Sylvie Corteel for useful and interesting conversations

that led to the proof of Proposition 3.6. This material is partly based upon work supported

by the Swedish Research Council under grant no. 2016-06596 while the first author was

in residence at Institut Mittag-Leffler in Djursholm, Sweden during Spring 2020. The

first author is partially supported by the MIUR Excellence Department Project CUP

E83C18000100006. We also thank the referee for a careful reading and useful comments.

References

[1] R. M. Adin and Y. Roichman, The flag major index and group actions on polynomial

rings, Europ. J. Combin. 22, 431–446 (2001).

[2] R. Adin, I. Gessel, and Y. Roichman, Signed Mahonians, J. Comb. Theory Series A,

109, 25–43 (2005).

[3] A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics

and to representations of Lie superalgebras, Advances in Math., 64, 118–175 (1987).

[4] F. Bergeron, Algebraic combinatorics and coinvariant spaces, CRC Press, 2009.

[5] R. Biagioli, Major and descent statistics for the even-signed permutation group, Adv.

in Appl. Math., 31(1), 163–179 (2003).

[6] R. Biagioli, Signed Mahonian polynomials for classical Weyl groups, Europ. J. Com-

bin. 27.2, 207–217 (2006).

25



[7] R. Biagioli and F. Caselli, Invariant algebras and major indices for classical Weyl

groups, Proceedings of the LMS 88.3, 603–631 (2004).

[8] A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathe-

matics, 231, Springer-Verlag, New York, 2005.

[9] F. Brenti, Determinants of Super-Schur Functions, Lattice Paths, and Dotted Plane

Partitions, Advances in Math., 98, 27–64 (1993).

[10] F. Brenti, A. Carnevale, Proof of a conjecture of Klopsch-Voll on Weyl groups of type

A, Trans. Amer. Math. Soc. 369, 7531–7547 (2017).

[11] F. Brenti, A. Carnevale, Odd length for even hyperoctahedral groups and signed gen-

erating functions, Discrete Math., 340, 2822–2833 (2017).

[12] F. Brenti, A. Carnevale, Odd length in Weyl groups, Algebraic Comb., 2, 1125–1147

(2019).

[13] L. Carlitz, A combinatorial property of q-Eulerian numbers, Amer. Math. Monthly

82, 51–54 (1975).

[14] R. J. Clarke and D. Foata, Eulerian calculus. I. Univariable statistics, Europ. J.

Combin., 15 345–362, (1994).

[15] R. J. Clarke and D. Foata, Eulerian calculus. II. An extension of Han’s fundamental

transformation, Europ. J. Combin., 16, 221–252 (1995).

[16] R. J. Clarke and D. Foata, Eulerian calculus. III. The ubiquitous Cauchy formula,

Europ. J. Combin., 16 329–355, (1995).

[17] S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356.4, 1623–1635

(2004).

[18] J. Dousse and K. Byungchan, An overpartition analogue of q-binomial coefficients, II:

Combinatorial proofs and (q, t)-log concavity, J. Comb. Theory Series A 158, 228–253

(2018).

[19] S. P. Eu, T. S. Fu, Y. J. Pan and C. T. Ting Two refined major-balance identities on

321-avoiding involutions, Europ. J. Combin. 49, 250–264 (2015).

[20] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Ad-

vanced Mathematics, no.29, Cambridge Univ. Press, Cambridge, 1990.

26



[21] B. Klopsch, C. Voll, Igusa-type functions associated to finite formed spaces and their

functional equations, Trans. Amer. Math. Soc., 361 no. 8, 4405–4436, (2009).

[22] A. Landesman, Proof of Stasinski and Voll’s hyperoctahedral group conjecture, Aus-

tralas. J. Combin., 71 196–240, (2018).

[23] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford university press,

1998.

[24] V. Reiner, Signed permutation statistics, Europ. J. Combin., 14 553–567, (1993).

[25] V. Reiner, Signed permutation statistics and cycle type, Europ. J. Combin., 14 569–

579, (1993).

[26] V. Reiner, Descents and one-dimensional characters for classical Weyl groups, Dis-

crete Math. 140.1–3, 129–140 (1995).

[27] P. Sentinelli, Parabolically induced functions and equidistributed pairs, Bolet́ın de la
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