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Abstract: Linear regression is widely used in applied sciences and, in particular, in satellite optical 
oceanography, to relate dependent to independent variables. It is often adopted to establish 
empirical algorithms based on a finite set of measurements, which are later applied to observations 
on a larger scale from platforms such as autonomous profiling floats equipped with optical 
instruments (e.g., Biogeochemical Argo floats; BGC-Argo floats) and satellite ocean colour sensors 
(e.g., SeaWiFS, VIIRS, OLCI). However, different methods can be applied to a given pair of 
variables to determine the coefficients of the linear equation fitting the data, which are therefore not 
unique. In this work, we quantify the impact of the choice of “regression method” (i.e., either type-I 
or type-II) to derive bio-optical relationships, both from theoretical perspectives and by using 
specific examples. We have applied usual regression methods to an in situ data set of particulate 
organic carbon (POC), total chlorophyll-a (TChla), optical particulate backscattering coefficient 
(bbp), and 19 years of monthly TChla and bbp ocean colour data. Results of the regression analysis 
have been used to calculate phytoplankton carbon biomass (Cphyto) and POC from: i) BGC-Argo 
float observations; ii) oceanographic cruises, and iii) satellite data. These applications enable 
highlighting the differences in Cphyto and POC estimates relative to the choice of the method. An 
analysis of the statistical properties of the dataset and a detailed description of the hypothesis of the 
work drive the selection of the linear regression method 
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1. Introduction 

In technical and scientific applications, the linear regression fit is one of the most common 
models used to establish a relationship between two variables. Two families of statistical methods, 
i.e., type-I (ordinary least square, OLS) and type-II (e.g., standard major axis, SMA), were developed 
to perform a linear regression depending on the properties of the data set [1]. In optical 
oceanography, the rationale behind the choice of a given method for computing a linear regression 
fit is often an overlooked question, seldom explained or supported by statistical evidence. 

This issue, which also pervades other fields of marine science such as fishery ecology, has 
already been highlighted by Laws et al. (1981) [2]: “the need to use model II (here type-II) regression 
methods in many applications have long been recognized, but a glance at the current literature will 
reveal that most biological oceanographers use model I (here type-I) regression methods exclusively 
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even when model II is clearly needed”. Until the 1980s, the lack of widespread statistical software 
packages could have been a reason that favoured the application of the most common type-I 
method. However, as reported in Laws et al. (1981) [2] and Innamorati et al. (1990) [3], the need for a 
more careful choice of the regression models and methods was already clear in the oceanographic 
community. 

Laws et al. (1981) [2] investigated the problem demonstrating that type-II methods should be 
applied to in situ data which are affected by instrument and sampling uncertainties. Specifically, 
they mentioned some common applications for which type-II methods are clearly needed, including, 
but not limited to, estimation of the phytoplankton chlorophyll-to-carbon ratio from chlorophyll vs. 
particulate carbon relationship [4,5]. 

The impact of the choice of regression method on optical oceanographic research is not minor. 
Linear regression models, in fact, are widely used to predict variables that are difficult or expensive 
to measure from field measurements. For example, the optical particulate backscattering coefficient 
(bbp) is in situ measured or derived from ocean colour imagery. It is at the base of the estimation of 
the particulate organic carbon (POC) [6–10] and the phytoplankton carbon biomass (Cphyto) [11–13], 
both of which are fundamental variables used to constrain and understand the total carbon budget 
in the ocean [14,15]. Even though there are many works in which regression methods are correctly 
used and clearly mentioned in the text giving the opportunity to understand and reproduce the 
work [16–20], there are several cases where no information is provided about the linear regression 
method used [12,21–25], thus, preventing an evaluation of the impact of the methodology on the 
derived parameters. The lack of such information is crucial as the use of one method over another 
can return significantly different estimates on parameters. Indeed, differences due to the application 
of a sub-optimal regression method, instead, might be considered as errors and propagate if the 
wrong parameters are then used as inputs for modelling (e.g., empirical algorithms of ocean 
parameters). For this reason, as McArdle (2003) [26] pointed out “…if the slope, the intercept, or both 
parameters of the line are important, then care must be taken that the scientific conclusions follow 
from the data”. In other words, the scientific conclusions must be based on the appropriate 
methodology, i.e., a methodology adapted to the statistical properties of the data set to be analysed. 

In this regard, our primary goal is to evaluate the impact of the linear regression model (and 
methods) in optical and satellite oceanography. To do so, we quantify the differences between the 
results obtained applying diverse regression methods to the same bio-optical data set, and 
investigate the consequences of an inappropriate selection. Namely, we used field measurements 
collected in the north-western Mediterranean Sea at the BOUSSOLE (BOUee pour l’acquiSition 
d’une Serie Optique à Long termE) site [27–29], during three years of monthly oceanographic cruises 
(2011–2013) and more than one year (July 2013–November 2014) of Biogeochemical-Argo (aka 
BGC-Argo) vertical profiles. We applied both type-I and type-II regression methods to determine the 
coefficients of the linear equations of the total chlorophyll-a (TChla)-bbp and bbp-POC relationships 
from discrete samples. Afterwards, we assessed the impact of the derived linear models with to the 
estimation of Cphyto and POC base on the time series of bbp vertical profiles from the BGC-Argo floats 
and by applying either type-I or type-II regression method. Finally, a similar analysis was also 
conducted relying on satellite observations, namely Cphyto was evaluated, by using 19-years of 
monthly TChla and bbp.  

2. Data and Methods 

2.1. Theoretical Background 

Establishing a linear relationship between dependent and independent variables (y and x, 
respectively) requires the computation, through linear regression analysis, of the coefficients of a 
linear equation, i.e., the slope (B) and intercept (A): 𝑦 =  𝐵 ∙  𝑥 +  𝐴 (1) 
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The independent variable may be either uncontrolled (i.e., whose variability is affected by 
random phenomena) or controlled by the investigator, whereas the dependent variable has to be 
random by definition. The properties of both variables should drive the choice of an appropriate 
method to perform regression analysis, in contrast to linear correlation analysis, which is only aimed 
at measuring the strength of the linear relationship between two variables, independent of their 
properties and of any functional or causal link between them [1]. 

Although linear fitting is mainly used as a means to highlight a linear relationship between a 
pair of parameters, often the resulting equation is adopted as a model for further computations or 
analysis. Thus, the selection of the statistical method used to calculate the slope and the intercept of 
the linear model is of great importance to minimize the uncertainties associated with the dependent 
variable. 

If the objective of linear regression is the interpolation or extrapolation of a data set, then the 
most common computational method, OLS, is appropriate independent of the properties of the 
variables [1,30]. This is the default method that most software use for computing and displaying a 
fitting line onto a scatter plot and the one which most users are familiar with. Nevertheless, other 
methods might be more appropriate depending on the goal of the analysis and on the properties of 
the data set. In such a context, the first step is selecting either a type-I or type-II regression method, 
which depends on whether the relationship between x and y variables is symmetric or asymmetric. 
This means whether or not the variables can be interchanged without altering the 
hypothesis/assumptions of the work and the derived parameters. An asymmetric relationship 
underpins a classical linear regression problem whereby the independent variable is characterized 
by null or low uncertainties as compared to the dependent one. This is the case, for instance, when 
the independent variable is fully controlled by the investigator or inherently free from uncertainties. 
A symmetric relationship, on the other hand, occurs when both variables show comparable 
uncertainties. Asymmetric relationships require type-I regression, whereas symmetric relationships 
require a type-II regression method [31]. While OLS is the only method to handle type-I problems, 
several methods can be adopted with a type-II regression. The OLS needs to be used only if the aim 
of the analysis is to predict the value of the dependent variable (y), given the independent one (x). 
This method minimizes the deviations of y from the fitting line, i.e., those that are relevant to the 
prediction of unknown y values. Both x, y and deviations from the fitting line are instead relevant if 
the goal of the regression analysis is to assess the slope and/or intercept of the best regression line 
(see Figure A1 in Appendix A). In this case, OLS is not the most appropriate while type-II methods 
have to be followed. These type-II methods provide slope and intercept estimates that are, in most 
cases, significantly different from those obtained through OLS. Type-II methods are: major axis 
(MA), standard major axis (SMA) and ranged major axis (RMA). Note that the latter acronym is also 
used for reduced major axis, which is a synonym for SMA [31]. 

According to [1], MA is the appropriate method when: 1) data distribution is bivariate normal; 
2) x and y variables are dimensionless or share the same units, and 3) the error variance is of similar 
magnitude for the two variables. RMA can handle variables whose units are heterogeneous because 
data is normalized before computing a MA. Because of this normalization, possible outliers have to 
be identified and eliminated from the data set, otherwise they could significantly alter the results. In 
the SMA, the slope is calculated as the ratio of the standard deviation of y to that of x [1]. However, 
SMA has two drawbacks: it should be computed only when the correlation between x and y and is 
significant, and its slope cannot be tested for significance. 

Differences estimates of the slopes and intercepts obtained by applying different methods 
depend on the degree of correlation between x and y. When x and y are strongly significantly 
correlated the differences between the three type-II methods based on the major axis are usually 
small. Nonetheless, all of them differ from OLS regression to a larger extent [1]. Yet, when the 
correlation coefficient tends to 1, the differences between type-II methods and OLS diminish 
respectively (see Appendix A).  

In the following sections, we are concentrating only on SMA, as a type-II method, and OLS, as 
type-I, because both are the most widely used in optical oceanography and field sciences (for more 
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details about their mathematical treatment see Appendix A). Furthermore, MA and RMA cannot be 
applied to our dataset (i.e., heterogeneous parameters with different units, presence of outliers) 
[1,26,30,31]. 

2.2. Field and Satellite Measurements 

2.2.1. Cruise Data 

The BOUSSOLE project started in 2001, and its activities are developed around a bio-optical 
buoy located in the deep waters (2440 m) of the Ligurian Sea, one of the sub-basins of the Western 
Mediterranean Sea [27–29] (http://www.obs-vlfr.fr/Boussole/html/home/home.php). Figure 1 shows 
the area of study and the location of BOUSSOLE site. The BOUSSOLE site has been visited monthly 
for buoy servicing, during which 0–400 m casts are performed for the acquisition of conductivity, 
temperature and pressure (SBE 911plus, SeaBird Inc., Bellevue, WA, USA). Likewise, water samples 
are collected at 12 depths (400, 200, 150, 80, 70, 60, 50, 40, 30, 20, 10 and 5 m) with 12 L Niskin bottles 
mounted on a General Oceanic Rosette equipped with an SBE 32 Carousel Water Sampler, and then 
subsampled into polycarbonate bottles. An independent optical package is coupled to the 
conductivity, temperature and density (CTD)/Rosette for the acquisition of inherent optical 
properties. In this study, we used measurements of POC, TChla and bbp collected from October 2011 
to December 2013, whose measurement protocols are summarized below: 

Particulate organic carbon. Water is filtered through Whatman 25 mm GF/F glass-fiber filters 
(filtered volume from 2.27 to 5.5 L, depending on samples). Filters were washed beforehand using 
the soxhlet extraction method with dichloromethane. After filtration, samples were put into petri 
dishes and stored in liquid nitrogen for the duration of the cruise and then transferred into −80°C 
freezer until analysis, which took place within 12 months from sampling. Two days before the 
analysis, the filters were stored in a drying chamber at 50 °C during 1 night and then decarbonated 
with HCl solution. Finally, the filters were analyzed using a carbon, hydrogen and nitrogen (CHN) 
analyzer (Perkin Elmer 2400 series II) with the combustion analysis method. The relative uncertainty 
of the POC was estimated at < 1% from inter-calibration exercises of the analytical platform used 
here with other French laboratories (L. Coppola personal communication). 

Total chlorophyll-a. Samples for the determination of phytoplankton pigments were filtered 
through 25 mm Whatman GF/F (0.7 µm retention capacity), put into petri dishes and stored in liquid 
nitrogen for the duration of the cruise. They were then transferred into −80 °C freezer until the 
analysis, which took place within 6–8 months from sampling. Pigments were identified and 
quantified with the high-performance liquid chromatography (HPLC) technique following [32]. The 
total chlorophyll-a concentration is computed as the sum of the concentrations of chlorophyll-a, 
chlorophyllide-a, and divinyl chlorophyll-a. Uncertainties in the methodology of the analytical 
platform used here were evaluated in a series of Round-Robin experiments (SeaHARRE-1 to 5; 
https://oceancolor.gsfc.nasa.gov/docs/technical/), and is of 6% for TChla used here (report of the 
analyses by J. Ras and M. Ouhssain). 

Particulate backscattering coefficient. The total volume scattering function at 140°, β(140, λ), 
was measured with a HydroScat-VI backscattering meter (HOBI Labs) at 6 wavelengths (420, 442, 
488, 550, 620, 700 nm). The instrument was deployed within an independent Inherent Optical 
Properties (IOPs) package mounted below the CTD/Rosette, with the optics field of view looking at 
nadir. In this study, the down-cast was used to insure the medium was not perturbed during the 
measurement (i.e., to avoid possible disaggregation of particulate). Thus, the measurements had a 
maximum time lag of approximately 30 min with the discrete POC and HPLC sampled during the 
up-cast. The spectral particulate backscattering coefficient, bbp(λ), is obtained following [33], with 
few differences: 1) one dark 0–50 m β(140, λ) profile was measured, averaged and subtracted from all 
profiles within each cruise; 2) data were binned around ±0.5 m of each nominal depth (1 m 
resolution); 3) the total absorption and beam attenuation coefficients used for the σ correction [34] 
were measured respectively with an a-Sphere absorption meter (HOBI Labs) and a with Gamma-4 
transmissometer (Hobi Labs). 
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2.2.2. BGC-Argo Floats Data 

As part of this study, we used data obtained from two of BGC-Argo profiling floats deployed in 
the North Western Mediterranean Sea for a total 87 vertical profiles as displayed in Figure 1. The 
float referenced as WMO (World Meteorological Organization) N°6901496 was deployed in the 
Ligurian Sea near the BOUSSOLE buoy on 15 July 2013. In March, due to a significant bio-fouling of 
the optical sensors, this float was recovered, cleaned and deployed on again the 14 March 2014 
under the reference of WMO N°6901776. Thus, the two BGC-Argo time series were joined end to 
end, corresponding to upward casts collected between 16 July 2013 and 25 October 2014. 

All casts started from the parking depth at 1000 m at a time that was sufficient for surfacing 
around noon (local time). Vertical resolution of acquisition was 10 m between 1000 m and 250 m, 1 m 
between 250 m and 10 m, and 0.2 m between 10 m and the surface. Here, only “noon” casts were 
used. Following procedures described in [35], the bbp(700) profiles were calibrated, 
quality-controlled and additionally corrected by removing positive spikes greater than twice the 
90th quantiles of the residual signal calculated as the difference between the profile and a median 
filter (window of 5 dots). 

 

Figure 1. The northwestern Mediterranean Sea showing the southern coast of France, the island of 
Corsica, and the location of the BOUSSOLE buoy in the Ligurian Sea (black star) redrawn from [22]. 
Black dots are the locations where the float surfaced, while the float trajectory is overlaid in the plot 
with dashed black line. 

2.2.3. Ocean Colour Data 

The full ESA OC-CCI v3.0 (European Space Agency Ocean Colour-Climate Change Initiative 
version 3.0) monthly TChla (mg m−3) and bbp (m−1; 443nm) data time-series at 4 km resolution for the 
period 1997–2015 over the global ocean was downloaded from the ESA-CCI website 
(http://www.esa-oceancolour-cci.org/). ESA-CCI products are the results of the merging between 
SeaWiFS, MERIS, MODIS-Aqua, and VIIRS time-series [25,36–38]. TChla was estimated with a 
blending of the OCI (as implemented by NASA, itself a combination of CI and OC4), the OC5 
(NASA, 2010) and the OC3 algorithms (http://www.esa-oceancolour-cci.org/?q=webfm_send/684). 
The Quasi-Analytical Algorithm (QAA) was used to compute bbp [39,40]. The accuracy of the QAA 
algorithm was demonstrated in several recent studies [12,13,19,23–25,41]. Both datasets were 
remapped at 100 km resolution, enough to resolve the broader oceanographic scales of variability. In 
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such a context, monthly TChla and bbp data were selected for the specific area of the northwestern 
Mediterranean basin to maintain the same domain of the analysis performed by using field 
measurements (see Figure 1). 

2.3. Statistics 

In such a context, the following statistical indicators have been used to quantify the impact of 
regression methods in deriving bio-optical relationships and subsequent biogeochemical parameters 
(i.e., Cphyto and POC): 

(i) “Anomalies” here defined as the difference between parameters established with OLS and SMA 
linear regression methods. 

(ii) The relative percentage differences (RPD) between parameters computed by the application of 
the unsuitable and suitable method. 

3. Results and Discussion 

In the following, we use models of Cphyto as a function of the TChla -bbp relationship, and POC as 
a function of bbp as examples to highlight the impact of using a regression method not adapted to the 
data set on typical bio-optical oceanographic problems. 

3.1. Total Chlorophyll-a versus Optical Backscattering  

Behrenfeld et al. (2005) [11] proposed the estimation of Cphyto based on the relationship between 
TChla and bbp(443) and applied their model to SeaWiFS ocean color data on a global scale. Bellacicco 
et al. (2016) [12] revisited the model for regional tuning respective to the Mediterranean Sea and 
used the 555 nm band instead of 443 nm for bbp. Recently, Bellacicco et al. (2018) [13] generalized this 
approach on a global scale by using bbp(443). The equation for the computation of Cphyto is: C୮୦୷୲୭  =  ൣbୠ୮(λ) – bୠ୮୩ (λ) ൧ ∙ SF (2) 

where 𝜆 is the wavelength. Here, we used bbp at 700 nm for compatibility also with BGC-Argo float 
measurements. The bkbp(700) is the backscattering coefficient, at 700 nm, of the background fraction 
of non-algal particles that does not covary with TChla (e.g., heterotrophic bacteria and viruses) [11]. 
This value corresponds to the bbp(700) when TChla is zero: it is the intercept of the linear fit between 
the two variables. SF is the scaling factor chosen to give satellite Chl:C values (average value of 
0.010) consistent with laboratory results, and also for the average contribution of phytoplankton to 
total particulate organic carbon (±30%) to be consistent with field estimates. In the original work, SF 
is equal to 13,000 mg C m−2 [11]. Here, taking into account the change of wavelength for bbp(700 nm 
instead of 443 nm) and to remain consistent with [11], we computed, according to in situ data, a SF of 
16,455 mg C m−2, 26% more with respect to the value of the original work. About the bkbp(700), 
Bellacicco et al. (2016) [12] demonstrated that bkbp (555) varies both in space and time. However, for 
sake of simplicity, we considered it to be a constant as in the original work of Behrenfeld et al. (2005) 
[11]. The main assumption of the model is the good relationship between TChla and bbp [12,13,23]. 
The first order co-variability between TChla and bbp is expected because phytoplankton cells contain 
TChla and also act as light backscatterers [13,42–44]. This co-variability also indicates that particles 
population abundance covaries with phytoplankton biomass, whereas the physiological 
photoacclimation process plays a secondary role in determining the chlorophyll variations [11,44]. In 
such a specific context, the underlying hypothesis is that TChla is the independent variable while bbp 
is the dependent one. There is no likelihood of interchanging the variables for the evaluation of the 
bkbp. Indeed, bkbp is defined as the intercept of the linear regression fit between TChla and bbp, and it 
is the bbp when TChla is equal to 0. The choice of the most appropriate regression method is founded 
upon which is the dependent variable and which is the independent one. In this case, the main goal 
is the estimation of a parameter (bkbp), allowing for the definition of another parameter (Cphyto), thus 
OLS is the preferable method to be applied [11–13].  
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The use of either OLS or SMA has consequences on the final Cphyto biomass estimates that we 
can compute using in situ data. Furthermore, the intercept of the linear fit (i.e., bkbp coefficient), in 
fact, has a biological meaning, as being the background contribution of the non-algal particles to the 
total bbp [11]. Figure 2 shows the TChla-bbp relationship with indicated both slopes and intercepts as 
computed by applying the two different regression methods. Here, the intercept varies from 5.8 
(±0.5) × 10−4 to 4.5 (±0.3) × 10−4 m−1 when calculated with OLS and SMA, respectively (Figure 2). These 
values are lower than those reported for the same region (though only surface measurements were 
used) [12]. This is consistent with a theoretically higher carbon (and its proxy bbp) to TChla ratio in 
more illuminated waters [14]. 

 

Figure 2. Scatter-plot and linear fit (continuous lines) calculated with ordinary least square (OLS) 
(blue) and standard major axis (SMA) (red) methods in the TChla-bbp relationship at the BOUSSOLE 
site. For both the coefficients, intercepts (A) and slopes (B), the standard errors are also indicated. 

As discussed before, the definition of cause (independent variable) and effect (dependent 
variable) is thus fundamental and represents the working hypothesis. If one focuses on the 
relationship between TChla and bbp, the goal being their comparison, the SMA (or RMA) has to be 
applied because it is statistically more robust in the context of the analysis of field measurements as 
explained in Section 2.1. 

To further underline the difference in results when applying OLS or SMA methods, we 
computed the total Cphyto from Equation (2) and by using the bbp(700) 0–400 m profiles collected 
during the BOUSSOLE cruises. To each profile, we applied the bkbp(700) values (i.e., intercepts) 
obtained after the application of both OLS and SMA methods (Figure 2). The RPD on Cphyto 
estimation is equal to 23.5% (overestimation of total Cphyto using SMA instead of the appropriate OLS 
method). 

Additionally, in order to evaluate how the estimate of Cphyto changes when using either 
methods, we applied the relationships reported in Figure 2 to the time series of bbp(700) vertical 
profiles from the BGC-Argo dataset. When assessing the integral of Cphyto over depth and time, the 
RPD between Cphyto,SMA and Cphyto,OLS is 28.7%. In this example, the use of SMA (the less adapted 
method) leads to an overestimation of Cphyto. 

Furthermore, we conducted the analysis by using 19-years of monthly ocean colour data of 
TChla and bbp(443) for the period 1997–2015 as shown in Figure 3. As described earlier, the good 
relationship between TChla and bbp enables defining the bkbp coefficient, a fundamental parameter 
for the Cphyto computation. Figure 3a shows a moderate correlation between TChla and bbp (r2 equal to 
0.56) in the northwestern Mediterranean Sea. The correlation implies the reliable estimation of bkbp 
coefficient by using all the pixels for the period 1997–2015 [12,13]. In such a context, the bkbp is 8.5 
(±0.2) × 10−4 m−1 (with the OLS method), a value consistent with the order of magnitude found by a 
recent work always based on ocean colour data [13]. With the SMA, the bkbp becomes lower with 
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respect to the computation performed by OLS: 6.3 (±0.3) × 10−4 m−1. Figure 3b shows the subsequent 
crucial application of this coefficient on the satellite averaged bbp time series for the Cphyto 

computation by using Equation (2) (443 nm instead of 700 nm as a wavelength of reference). Figure 
3b shows how both the obtained Cphyto time series follow a similar temporal pattern but with 
different values. Regarding the entire time series, the mean difference between Cphyto,SMA (with 
SMA-based bkbp) and Cphyto,OLS (with OLS-based bkbp) is 2.56 mg C m−3, that is the 28% of the mean 
Cphyto,OLS: Cphyto,SMA overestimates Cphyto,OLS. Therefore, in this specific context, there is a general 
overestimation of Cphyto if one uses the SMA method instead of OLS. This critical point has to be 
taken into account because of its potential impact in the case of phytoplankton carbon studies on 
regional and global scales, mostly in ocean carbon budget studies. 

 
Figure 3. Scatter plot between TChla and bbp from ocean colour data in the northwestern 
Mediterranean Sea with linear fits (continuous lines) calculated with OLS (blue) and SMA (red) 
methods (a). For both the coefficients, intercepts (A) and slopes (B), the standard errors are also 
indicated. Time series of Cphyto (b) based on the bkbp computed by OLS (in blue) and SMA (in red) 
methods.  

3.2. Optical Backscattering vs. Particulate Organic Carbon 

The POC is often linearly related to bbp [6–10,23] as follows: POC =  B ∙ bୠ୮(λ) + A (3) 

where B is the slope and A is the intercept of the linear regression fit following the general Equation 
(1). As suggested by Loisel et al., (2001) [6], sub-micrometer particles are efficient backscatterers, 
such that there is confirmation that the dominant contribution to particulate organic carbon in the 
ocean is due to sub-micrometer particles that are in sufficiently higher concentrations allowing for 
dominance of the bbp in oceanic water determining, therefore causing a strong correlation with POC. 
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The high correlation is caused by the dominance of organic particle concentration in controlling 
changes in both POC and bbp. In such a context, it is possible to interchange POC and bbp for a simple 
comparison aimed at establishing a relationship between them, i.e., not for optimizing slope and 
intercept in view of a further application. 

If the principal goal is to estimate POC, the appropriate method to be used is type-II regression, 
owing to methodological uncertainties in both measurements that have to be accounted for.  

Several works reported results of a linear regression between POC and bbp from both satellite 
and in situ data (Table 2 in Thomalla et al., 2017 [10]). Figure 4 shows the established linear 
relationship between POC and bbp(700) using both SMA and OLS methods. Our estimates of the 
slope and the intercept, computed using both methods, are consistent with previous results from the 
Mediterranean Sea [6], Atlantic and Pacific Oceans [7], Southern Ocean [10] and North Atlantic 
Ocean [23]. 

Figure 4a shows that the slope and intercept computed using OLS are significantly lower than 
that computed with SMA (with a higher intercept point). This is a good example of the extent to 
which the choice of a regression method affects the estimate of the coefficients of the linear fit. As 
previously presented, these properties depend on minimizing y deviations only, for OLS, or the 
combination of x and y deviations for SMA. In the case of SMA, reduced uncertainties on the 
independent variable might balance higher uncertainties on the dependent variable, thus optimizing 
the overall agreement between the regression line and the data points. It is worth noting that the 
determination coefficient (r2, i.e., the variance explained by the linear model) as well as the 
correlation coefficient (r, i.e., a measure of the linear correlation between two variables) are not 
dependent on the regression method. 

To quantify how the estimate of POC changes when using OLS or SMA, we have applied the 
relationships reported in Figure 4a to a time series of bbp(700) vertical profiles acquired from 
BGC-Argo floats in the same area sampled to establish the linear models. Figure 4b shows the 
anomalies of POC as the difference between POC estimated using linear models based on OLS and 
SMA methods (POCOLS and POCSMA respectively). The anomalies, in general, are weak; however, 
several areas of large differences have impacted the computation of the POC budget over the time 
series. In detail, at the end of spring 2014 the largest anomalies are between 5.0 and 20.0 mg m−3 in 
surface waters. In other periods, the anomalies are between −10.0 and +5.0 mg m−3. When evaluating 
the integral of POC along the water column and over time, the RPD between POCOLS and POCSMA is 
13.3%, showing the importance of selecting the correct regression method which avoids an incorrect 
estimate of the POC budget. In this example, the use of OLS (the unsuitable method) causes an 
overestimation of POC. 

In both of the examples analyzed here (i.e., Figures 2 and 4), the differences in slope and 
intercept estimates obtained from OLS and SMA methods are quite substantial. These differences 
could be even greater for data sets with a lower correlation between the two variables [2]. This 
highlights that the selection of a statistical method not fitted to the data set may introduce 
substantial errors when the derived linear model is used to estimate the dependent variable from a 
direct or indirect measurement of the independent variable. The same effect is also evident in the 
empirical algorithms applied to satellite ocean colour imagery [6,8] or on BCG-Argo vertical profiles 
[10], which therefore should be assessed by applying the appropriate linear regression method. 
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Figure 4. Scatter-plot and linear fits calculated with OLS (blue) and SMA (red) methods in the 
bbp-POC relationship at the BOUSSOLE site (a). For both the coefficients, intercepts (A) and slopes 
(B), the standar errors are also indicated. Time series anomalies of particulate organic carbon (POC) 
derived from BGC-Argo bbp vertical profiles (0–250 m) using OLS and SMA and relationships (b). 

4. Conclusion 

In this study, we have used both type-I (i.e., OLS) and type-II (i.e., SMA) methods with 
bio-optical data collected over three years of monthly oceanographic cruises at the BOUSSOLE site 
(Figure 1) to derive linear regression coefficients (i.e., slopes and intercepts) that were then applied 
to BGC-Argo vertical profiles for the estimations of phytoplankton carbon biomass and particulate 
organic carbon. In addition, a specific analysis using ocean colour data is addressed. The main goal 
is to quantify the impact of the linear regression methods in satellite optical oceanography. Our 
analysis has shown that: 

• The phytoplankton carbon biomass based on the TChla-bbp relationship needs to be computed 
using the OLS method due to the asymmetry assumption between the two variables. In such a 
context, the intercept of the linear fit between TChla and bbp, which is necessary to compute the 
Cphyto, represents the fraction of bbp that does not co-vary with TChla, confirming that the 
dependent and independent parameters cannot be interchanged from a theoretical perspective. 
Only in this specific case, the application of the SMA is unsuitable, as it assumes symmetry of 
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the parameters. Its application always determines an overestimation of phytoplankton carbon 
biomass. 

• For all linear regression analysis in which the main aim is to compare two parameters (e.g., 
bbp-POC or TChla-bbp), the most appropriate method is SMA due to its theoretical symmetry, 
and because of the uncertainties that affect both variables. It is thus possible to interchange the x 
and y axes without any impact on the interpretation of the results. 

The main outcome of these examples is that the choice of method to determine the coefficients 
of the linear model significantly impacts Cphyto and POC retrievals. The introduction of sizeable 
errors is a key factor in the carbon budget estimates when linear models are used on a global scale. 
Indeed, the total Cphyto:POC ratio utilizing the time series of bbp(700) vertical profiles give an RPD of 
13.6% overestimation using Cphyto,SMA to POCOLS (the ratio computed using both unsuitable 
approaches) with respect to the ratio Cphyto,OLS to POCSMA (the appropriate methods to be used). It has 
to be kept in mind that two single relationships are applied to the full time-series of the BGC-Argo 
floats in the example shown here. It is understood however that spatio-temporal variations of the 
two relationships exist and could have an impact on the budget estimates. In this work, we thus 
highlighted the importance of the selection and use of the correct regression method. The choice of 
the model, and hence the method, has to be done a priori relative to any computation based on the 
data set properties. Given that, it cannot be overlooked that a fraction of the variation of the data 
around a linear regression fit can also be due to biogeochemical variability rather than error 
measurements. This type of error represents that portion of variability unresolved by the fitting 
function adopted, especially in case of ocean color data, where retrieval models are ofter 
oversimplified. Furthermore, in case of high correlation between variables, both slope and intercept 
estimations computed by type-I and type-II regression methods do not show large differences 
between. Therefore, for a correct application of linear regression methods in optical and satellite 
oceanography, a deeper study of the relationship between the two variables from a theoretical point 
of view needs to be performed. In fact, as demonstrated, the influence of the unsuitable method in 
cases of carbon estimations can be considerable and potentially impactful in the context of global 
carbon budget studies from space or by using field measurements. 
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Appendix A. Mathematical Details 

In this section, the differences between OLS and SMA methods are described with 
mathematical detail and from a theoretical point of view. 

The linear regression is used to compute the parameters of a first-degree equation relating 
variables y and x. The equation for a simple linear regression is defined as: 𝑦ො  =  𝐵 ∙  𝑥 +  𝐴 (A1) 
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This corresponds to the equation of a straight line that fitting a cloud of points, on a Cartesian 
coordinate system, in some optimal way, and establish a model to predict 𝑦ො for any value of 𝑥. A is 
the estimate of the intercept of the regression line with the y axis and B is the slope of the regression 
line or regression coefficient. When using this type of regression, one must be aware of the fact that a 
linear model is imposed on the dataset. In other words, one assumes that the relationship between 
the two variables may be well described by a straight line and that the vertical dispersion of 
observed values above and below the line is the result of a random process. The difference between 
the observed and estimated values along 𝑦 is: 

௜ = (𝑦௜ − 𝑦ො) (A2) 

for each observation i and may be positive or negative. The term ௜ is called the residual value of 
observation 𝑦௜ after fitting the regression line. If we include the ௜ term in the Equation (A1), it 
allows one to describe exactly the ordinate value 𝑦௜ of each point (𝑥௜, 𝑦௜) of the dataset; 𝑦௜ is equal 
to the value 𝑦పෝ  , as predicted by the regression equation plus the residual ௜, as follows: 𝑦௜ =  𝑦ො௜ + ௜  =  𝐵 ∙  𝑥௜  +  𝐴 + ௜ (A3) 

This equation is the linear model of the relationship. The term 𝑦ො௜ is the predicted or fitted value 
corresponding to each observation i. The model assumes that deviations from the linear relationship 
are only on the vertical axis (i.e., “errors” ௜ are only associated to the response variable 𝑦௜; “errors” 
associated with the estimation of 𝑥, ௜ , are equal to zero). The term “error” is the term traditionally 
used to indicate the deviations of all kinds due to random processes, and including those linked to 
measurements or methodology. 

In simple linear regression, one is looking for the straight line with equation 𝑦ො  =  𝐵 ∙  𝑥 +  𝐴 
that minimizes the sum of square of the vertical residuals ௜, between the observed values and the 
regression line (see Figure A1a). This is the principle of the least squares method. This sum of square 
residuals, Σ (𝑦௜ − 𝑦పෝ)ଶ (as in case of the OLS method), offers the advantage of providing a unique 
solution, which would not be the case if one chose to minimize, for example Σ |𝑦௜ − 𝑦పෝ|. On the other 
hand, the SMA method minimizes the sum of the product of the 𝑥  and 𝑦  deviations, Σ (𝑥௜ −𝑥పෝ ) (𝑦௜ − 𝑦పෝ) which is the equivalent to the area of triangles formed by the deviations of a point from 
the line in the 𝑥 and 𝑦 directions (see Figure A1a). Figure A1b shows how the slopes and intercepts 
change after the application of OLS and SMA methods. 

 

Figure A1. For an OLS line, the error is defined as the vertical dispersion of a point from the straight 
line (distance 1 to 2) and the quantity minimized is the sum of squares of these linear distances. In 
case of SMA, on the other hand, the error is defined as the area of the triangle 3-4-5 and the quantity 
minimized is the sum of these area (redrawn from Smith et al., 2009 [30]) (a). Scatter plot and linear 
fits calculated with OLS (blue) and SMA (red) methods by using a syntehtical datasets with a normal 
distributed error added to both X and Y variables (b). 
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The solution for Equation (A1), satisfying the least square criterion can be found using partial 
derivatives and is: 𝐵ை௅ௌ = 𝑠𝑥𝑦𝑠𝑥2  ; 𝐴 =  𝑦ത − 𝐵ை௅ௌ  ∙  𝑥̅ (A4) 

in which 𝑠௫௬ and 𝑠௫ଶ are estimates of the covariances and variance, respectively. 
In case of SMA, or reduce major axis (e.g., a specific case of type-II model), the slope is 

computed as: 

𝐵ௌெ஺ =  ඩ𝑠𝑦2𝑠𝑥2 = ± (௦೤௦ೣ) (A5) 

This formula is obtained from the classical and more general formula: 

𝐵 =  𝑠𝑦2 −  𝑠𝑥2 + ඨ(𝑠𝑦2 −  𝑠𝑥2)2 + 4𝑠𝑥𝑦2  2𝑠𝑥𝑦  (A6) 

where 𝑠௬ଶ and 𝑠௫ଶ are the estimated variances of 𝑦 and 𝑥, respectively, 𝑠௫௬ is their covariance and 

 is the ratio between the variances of the two errors terms, 
మ


మ. The formula of the slope of the SMA 

method is a specific case of the more general Equation (A6). In the SMA slope computation, it is 
assumed that the error variances ଶ and ଶ  of 𝑦 and 𝑥, respectively, are proportional to their 
respective variances ௫ଶ and ௬ଶ . This means that: 

మ
೤మ  = 

మ
మೣ  (A7) 

Replacing the variances, ଶ and ଶ, with their unbiased estimates, 𝑠௬ଶ and 𝑠௫ଶ, gives a value of 

 equal to 
௦೤మ௦మೣ. 

Since the square root ට௦೤మ௦మೣ can be positive or negative, the sign of the slope estimate is given 

by the sign of the Pearson correlation coefficient (r) which is the same as that of the covariance 𝑠௫௬ in 
the denominator of the Equation (A7) or numerator of Equation (A5). The 𝐵ௌெ஺ is also the geometric 
mean of the OLS regression coefficient of 𝑦 on 𝑥, thus it can be also defined as: 

𝐵ௌெ஺ =  𝐵𝑂𝐿𝑆𝑟𝑥𝑦  𝑤ℎ𝑒𝑛 𝑟௫௬ ≠ 0 (A8) 

Therefore, one can compute 𝐵ௌெ஺  using the value of 𝐵ை௅ௌ  and 𝑟௫௬  provided by an OLS 
regression algorithm. This equation also shows that when the variables are highly correlated (r tends 
to 1), 𝐵ௌெ஺ tends to 𝐵ை௅ௌ. When they are not, 𝐵ௌெ஺ is always larger than 𝐵ை௅ௌ for positive values of 
r, and smaller for negative values of r, in other words, 𝐵ை௅ௌ is always closer to 0 than 𝐵ௌெ஺. For 
additional details about the theory, mathematical features and a deeper description of regression 
models and methods, see also [1,26,30,31]. 
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