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Abstract: The Bayesian information criterion (BIC), the Akaike information criterion (AIC), and
some other indicators derived from them are widely used for model selection. In their original form,
they contain the likelihood of the data given the models. Unfortunately, in many applications, it is
practically impossible to calculate the likelihood, and, therefore, the criteria have been reformulated
in terms of descriptive statistics of the residual distribution: the variance and the mean-squared error
of the residuals. These alternative versions are strictly valid only in the presence of additive noise
of Gaussian distribution, not a completely satisfactory assumption in many applications in science
and engineering. Moreover, the variance and the mean-squared error are quite crude statistics of
the residual distributions. More sophisticated statistical indicators, capable of better quantifying
how close the residual distribution is to the noise, can be profitably used. In particular, specific
goodness of fit tests have been included in the expressions of the traditional criteria and have proved
to be very effective in improving their discriminating capability. These improved performances have
been demonstrated with a systematic series of simulations using synthetic data for various classes of
functions and different noise statistics.

Keywords: model selection criteria; Bayesian information criterion (BIC); Akaike information criterion
(AIC); Shannon entropy; goodness of fit tests; Kolmogorov–Smirnov test

1. Introduction to Model Selection Criteria Based On Bayes and Information Theory

The selection of the most appropriate model, to describe the phenomena under study, is a major
concern of modern science [1,2]. Statisticians have naturally been involved in this task, and so it
is not surprising that many statistical approaches have been proposed over the years for dealing
with this key issue. Indeed, model selection has been investigated extensively from both frequentist
and Bayesian perspectives. Many tools for identifying the “best model” among a set of candidates
have been suggested in the literature [3,4]. Two of the most widely used model selection families
of indicators are the Akaike information criterion (AIC) [5] and the Bayesian information criterion
(BIC) [6]. The AIC is an information-theoretic indicator based on the Kullback–Leibler Divergence [7];
it essentially quantifies the information lost by a given model. Therefore, the basic principle underlying
the AIC criterion is the assumption that the less information a model loses, the higher is its quality.
Bayesian theory informs the BIC criterion, which is designed to maximize the posterior probability of a
model given the data [7].

The theoretical derivations of these metrics result in the following unbiased forms of the criteria:

AIC = −2 ln(L) + 2k (1)
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BIC = −2 ln(L) + k ln(n) (2)

where L is the likelihood of the model given the data, k the number of estimated parameters in the
model, and n the number of entries in the database. Both AIC and BIC metrics are basically cost
functions, which have to be minimized; they favor models with a high likelihood but implement a
penalty for complexity (the term proportional to k).

The AIC and BIC criteria are very well known and have found many interesting applications. On
the other hand, their original formulation is not necessarily easy to implement in practice. A very
delicate part is the likelihood of the models, which can be virtually impossible to calculate. This
difficulty can be due to various causes, ranging from the type of noise affecting the data to the nature
of the models to be tested and the “a priori “information about their properties [8]. To overcome
the practical difficulties of calculating the likelihood, one typically makes recourse to the traditional
assumption that the model and data errors are identically distributed and independently sampled
from a normal distribution. If this hypothesis is valid, it can be demonstrated that the AIC can be
written (up to an additive constant, which depends only on the number of entries in the database and
not on the model):

AIC = n · ln(MSE) + 2k (3)

where σ(ε)2 is the variance of the residuals.
Similar assumptions allow expressing the BIC criterion as:

BIC = n · ln
(
σ(ε)

2
)
+ k · ln(n) (4)

where MSE is the mean-squared error of the residuals.
In Equations (3) and (4), derived, for example, in [7], the MSE and variance are calculated based

on the residuals and the differences between the data and the estimates of the models.
As can be easily appreciated by inspection of Equations (3) and (4), which constitute the most

widely used forms of AIC and BIC, the statistical information, originally provided by the likelihood, is
reduced to the MSE and variance of the residuals. The natural question is, therefore, whether some
additional statistical information about the distribution of the residuals could be taken into account
and improve the performance of the two criteria. The practical importance of this question is not to be
underestimated because, in many applications, the assumptions leading to expressions (3) and (4) are
clearly violated. The first attempt in this direction, reported in [9], relied on the Shannon entropy as
an indicator of the residual distribution. The encouraging results, obtained with this upgrade, has
motivated the insertion of more sophisticated summary statistics of the distribution of the residuals into
the AIC and BIC, to see whether they could further increase their performance. The paper described
this line of investigation in detail and is structured as follows. The goodness of fit tests, implemented
to improve AIC and BIC, are described in Section 2. The families of models and the typologies of
statistical noise investigated are the subjects of Section 3. The following Section 4 describes the results
obtained for three very important families of models: exponential functions, polynomials, and power
laws. Section 5 reports the results for a scan of the noise amplitude. Summary and future developments
are the subjects of the last Section 6.

2. Model Selection and Goodness of Fit Tests

As mentioned in the introduction, a previous attempt to improve the practical implementation of
AIC and BIC was based on the Shannon entropy of the residuals. The main idea behind that approach
was the observation that, if a model was perfect, the residuals should reflect the statistics of the noise
affecting the data. Assuming additive random noise and other things being equal, models, whose
residuals present a more uniform probability density function (pdf), should, therefore, be preferred.
Indeed, the residuals of inferior models should contain patterns present in the data and not properly
identified by the models. The Shannon entropy H can be interpreted as an indicator of how uniform is
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the distribution of the residuals and can, therefore, be included in the AIC and BIC to favor models
with higher values of H. In this perspective, the following versions of the BIC and AIC criteria were
tested:

BICH = n · ln

σ(ε)2

H

+ k · ln(n) (5)

AICH = n · ln
(MSE

H

)
+ 2k (6)

where H = −
∑

i pi lnpi indicates the Shannon entropy of the residuals, and pi is the probability of the
i-th residual.

These new versions of the criteria clearly outperformed the traditional version of the AIC and BIC,
and they had also asymptotic convergence [9]. On the other hand, entropy is a quite crude indicator of
the residual distributions. Moreover, in many practical applications, the statistics of the noise is not
necessarily Gaussian. It was, therefore, reasonable to investigate whether more sophisticated tests
could further improve the discriminatory power of the AIC and BIC criteria. To this end, various
goodness of fit tests had been implemented. The main rationale was that, very often, it was possible
to determine experimentally the actual statistics of the noise affecting the data. At this point, better
models should present residuals with a distribution more similar to the one of the noise.

The goodness of fit tests investigated in this work were:

1. Chi-squared;
2. Anderson Darling;
3. Kolmogorov–Smirnov.

The null distribution of all these statistics is calculated under the null hypothesis that the sample
is drawn from the reference distribution, the pdf of the noise in our case.

The “chi-squared test”, or χ2 test, implemented in this paper was the Pearson’s chi-squared
test [10], which is often used to determine whether there is a statistically significant difference between
two probability distribution functions (pdfs). In our application, as already discussed, the two
distributions to be compared were one of the residuals and one of the noises affecting the data.

The “Anderson–Darling” test can also be used to assess whether a sample is drawn from a
specified distribution function [11]. It is based on the fact that, assuming the data does arise from
this distribution, its cumulative distribution function (CDF) is expected to follow the one, which can
be derived by the original distribution. In our application, the residuals could be then tested for
uniformity with a distance test [12]. The test statistics could then be compared with the critical values
of the distribution expected on the basis of the knowledge of the noise.

The “Kolmogorov–Smirnov” test (K–S test) is another nonparametric test to determine the equality
between one-dimensional probability distributions or, as in our case, between a pdf and a sample [13].
The statistic of the K–S quantifies a distance between the empirical distribution function of the sample
and the cumulative distribution function of the reference distribution. The null distribution of this
statistic is calculated under the null hypothesis that the sample is drawn from the reference distribution.

The results of the goodness of fit tests could be summarized with their Z score; the lower its value,
the closer the residuals to the expected pdf of the noise. Since the AIC and BIC criteria were indicators
to be minimized, the Z scores of the goodness of fit tests could be included in their mathematical
expressions as follows:

AICGF = n· ln
(MSE

H

(
1 + Z2

score

))
+ 2k (7)

BICGF = n· ln
(
σ2
ε

H

(
1 + Z2

score

))
+ kln(n) (8)

The interpretation of this new version of the AIC and BIC criteria was very intuitive. The better the
model, the lower the Z score of the residuals (since they are closer to the pdf of the noise) and, therefore,
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the lower the numerical value of the criteria. Equations (7) and (8) suggested also a consideration
about the asymptote stability of AICGF and BICGF (where GF means Goodness of Fit); if the model
was perfect, the Z score would tend to zero with increasing the number of points, and the AICGF and
BICGF would converge to AICH and BICH. The asymptotic converge of the criteria using the entropy
of the residuals has already been demonstrated in [9], proving the asymptotic convergence of AICGF

and BICGF as well. The AICGF and BICGF of Equations (7) and (8) were, therefore, the new versions of
the model selection criteria that had been tested and whose performance is described in the rest of
the paper.

3. Families of Functions and Noise Statistics

To investigate and quantify the performance of the alternative formulations of the model selection
criteria, AICGF and BICGF, a series of systematic tests were performed. The analysis was focused
mainly on three classes of models, which were among the most useful and used in practice. They
were the class of exponential functions, polynomials, and power laws. For each class, a representative
example is discussed in the following. All the analyses were performed on bidimensional functions
(z = f (x, y)).

The exponential functions investigated in this paper had the form:

z(x, y) = axe(bx+cy) + dxe(ex+ f y) + g (9)

Polynomials are mathematical expressions that contain two or more algebraic terms, which can be
added, subtracted, or multiplied. In general, polynomial expressions include at least one variable and
typically also constants and positive exponents. Polynomial functions had the following form:

z(x, y) = p00 + p10x + p20x2 + p01y + p02y2 + p03y3 + p11x + p21x2y + p12xy2 (10)

The power laws considered in this paper were monomials of the form:

z(x, y) = cxayb (11)

where the exponents could be either positive or negative.
With regard to the noise statistics, four of the most relevant distribution functions have been

tested: Gaussian, uniform, Poisson, and gamma-distributed noise [14]. For the reader convenience, the
mathematical formulation of these types of noise is reported in the following, while one representative
case for each distribution is shown graphically in Figure 1.

Gaussian distribution:
f (x) =

1

σ
√

2π
e−

1
2 (

x−µ
σ )

2

Uniform distribution:
f (x) =

1
b− a

f or a ≤ x ≤ b

f (x) = 0 otherwise

Poisson distribution:
f (x) =

λn

n!
e−λ ∀ n ∈ N

Gamma distribution:

f (x) =
xk−1e−x/θ

θkΓ(k)
∀x > 0 and k, θ ∈ N

The parameters chosen for the examples reported in the paper were:
Gaussian distribution: µ = 0 e σ = 3.
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Uniform distribution: a = −1 e b = 1;
Poisson distribution: λ = 10;
Gamma distribution: k = 3 e θ = 2.

Figure 1. The probability density function of the four distributions used in the analyses reported in
this paper.

4. Results for Exponential Functions, Polynomials, and Power Laws

All the analyses were performed by means of numerical tests. A systematic analysis of many cases
for each class of functions had been performed. Given a domain of x and y, the function z = f (x, y) was
built. Then, the noise with a specific distribution was added to the function. These data represented
the points to fit.

To summarize the results in a concise way, in the following, for each class of functions, a
representative case was reported. The values of the traditional AIC and BIC (Equations (3) and (4))
and of AICH and BICH were compared with those of AICGF and BICGF for two cases: the actual
correct model, called “Correct”, and a very competitive alternative equation, called “Alternative”. The
alternative equation had been obtained by fitting a different function to the data in such a way that the
traditional indicator of the quality of the fit—RMSE and variance—were very competitive with the ones
of the correct model. This fit had been performed with a nonlinear least-squares minimization method,
which finds the parameters of a nonlinear equation by an iterative approach [15]. Being this method
based on the minimization of the least squares, the function found was the one, which minimized also
the classic versions of BIC and AIC. Therefore, the quality of the alternative criteria could be analyzed
to see whether they showed better performance in the convergence to the right model, the one actually
used to generate the synthetic data. The domain of each example was 0 < x < 10 and −10 < y < 10. A
scan in the number of entries had been performed for all four types of noise distributions.

The exponential function used to generate the data was:

z(x, y) = 100(x + y)e−x (12)
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while the function for the fit was the one given in Equation (9). A plot of the original function and with
added noise of Poisson distribution is shown in Figure 2.

Figure 2. Exponential function scatter plot in the case of the no noise (left) and Poisson noise (right).

Figure 3 reports the results for the exponential functions. In the plots of this figure, as in those of
Figures 4–6, the x-axis reported the number of points generated from the original function and used to
test the various criteria. Moreover, each result was an average of over 10 repetitions of the calculations.
The smoothness of the obtained curves was, of course, an implicit demonstration of their stability.
Again on the nomenclature, the ”Correct” function referred to the original function used to generate
the data (Equation (12)), while “Alternative” represented the function calculated by a regression tool,
which was based on the minimization of the classic BIC and AIC. The tool used for the regression was
the Curve Fitting Toolbox of Matlab, which allows performing both linear and non-linear fitting by
using the least-square minimization method. For non-linear least squares, the robustness of the model
could be achieved by the LAR (Least Absolute Residuals) or Bisquare approach, while the algorithms
implemented were the Trust-Region and the Lavemberg–Marquardt.

The same analysis had been performed for polynomial type functions. The function used to
generate the data was:

z(x, y) = 3x + x2 + y + 3y4 (13)

while the fit function was reported in Equation (10). The results are reported graphically in Figure 4.
The same analysis had been performed for power-law type functions. The function used to

generate the data was:
z(x, y) = cx3y−1 (14)

While the fit function was reported in Equation (11). The results are reported graphically in
Figure 5.
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Figure 3. BIC (Bayesian information criterion) and AIC (Akaike information criterion) for the two fit
functions in the case of the four different types of noise for the exponential function.
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Figure 4. BIC and AIC for the two fit functions in the case of the four different types of noise for the
polynomial function.
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Figure 5. BIC and AIC for the two fit functions in the case of the four different types of noise for the
power-law function.
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Figure 6. BIC and AIC for the two fit functions in the case of the four different types of noise for the
power-law function.

The interpretation of the previously reported results was the same for all the classes of functions.
For Gaussian and flat distributed noise, all versions of both AIC and the BIC (traditional formulation,
Shannon entropy, and goodness of fit) returned basically equal values in all cases. As shown in [9], for
these cases, the upgraded versions—AICH, BICH and AICGF, BICGF—improve only the convergence
to the right model in limited and very difficult cases. For the other two types of noise, the situation
was dramatically different. The use of the “goodness of fit” approach gave a much smaller BICGF

and AICGF in the case of the correct function, improving systematically the convergence to the right
model. Basically, this result was due to the fact that, in the traditional AIC and BIC, the minimization
of the errors automatically implies that the fit acts with the purpose of minimizing the mean of the
errors (by bringing it as close as possible to zero). This requirement was not appropriate in the case
of data affected by the noise of Poisson and gamma distributions, which were non-symmetric with
respect to zero. For these cases, the goodness of fit tests significantly improved the capability of the
criteria to select the right model. In general, BICGF and AICGF are expected to provide appreciable
better performance in all cases whose data are affected by no zero-sum distributed noise. Concerning
the rate of convergence and the effects of data size, the most important thing to consider is that all
goodness of fit tests need an adequate amount of data in order to return a reliable Z-score. On the
other hand, from the plots in the previous figures, it could be seen how AICGF and BICGF provided
better performance than AIC and BIC, even for a quite limited number of points, of the order of 100,
which is a very real demand in most practical applications. Therefore, the rate of convergence of the
proposed criteria seemed also to be quite satisfactory.

5. Effect of Noise Intensity

Figure 6 compares the various BIC and AIC definitions in the case of the exponential function,
changing the intensity of two types of noise, Gaussian and Poisson. In the case of the Gaussian
distribution, the parameter was the standard deviation of the distribution, while in the case of the
Poisson, the parameter λ.

The parametric analysis validated the previous results for any tested noise intensity. In the case
of Gaussian distributions, the use of the GF approach did not lead to real improvements. In the
case of the Poisson distribution, both AICGF and BICGF significantly improved the selection criteria,
leading to a large difference between the “Correct” and the “Alternative” cases, independently from
the noise intensity.
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6. Conclusions

The most widely used versions of the model selection criteria AIC and BIC are valid under the
assumption that the data are affected by Gaussian, zero-sum additive noise. This is a consequence
of the fact that, in most practical applications in science and engineering, often it is very difficult, if
not impossible, to compute the likelihood of the data given the model. In this situation, the AIC and
BIC have been reformulated as reported in Equations (3) and (4), in which the statistical information
about the residuals is completely summarized by their MSE and variance. If the data is affected by
noise non-symmetric with respect to zero, these versions of the criteria can fail badly because they
favor models with zero-sum residuals. On the contrary, the new proposed versions of the selection
criteria, AICGF and BICGF, present significantly better performance because they take into account the
fact that the residuals should present a probability distribution function as close as possible to the one
of the noise. Indeed, all the numerical tests performed indicate that, if the noise distribution is known
and sufficient amount of data are availed to compute reliably the Z scores, AICGF and BICGF are the
versions of the criteria to rely on. Under these conditions, they have always proved to have much
better convergence properties in all respects. As a consequence, the proposed new versions of the
selection criteria are expected to be deployed quite systematically in various fields of complex science,
ranging from high-temperature plasmas [16–23] to atmospheric physics [24,25]. Another interesting
application could be found in the regularization of recent tomographic inversion methods [26–28].

From a methodological standpoint, it should be mentioned that the upgraded versions, AICGF

and BICGF, include frequentist indicators in information-theoretic and Bayesian criteria. This approach
seems quite promising and worth further investigations. The proposed criteria could also be further
improved by implementing more advanced metrics, such as the geometric distance and the Venn
definition of probability [29–31]. In this perspective, a combination of the proposed upgrades with
recently developed extensions of the AIC criterion, using a class of pseudo distances instead of the
Kullback-Leiber divergence, should also be seriously pursued [32].
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