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It has been pointed out that a large non-minimal coupling ξ between the Higgs and the Ricci scalar 
can source higher derivative operators, which may change the predictions of Higgs inflation. A variant, 
called critical Higgs inflation, employs the near-criticality of the top mass to introduce an inflection point 
in the potential and lower drastically the value of ξ . We here study whether critical Higgs inflation 
can occur even if the pre-inflationary initial conditions do not satisfy the slow-roll behavior (retaining 
translation and rotation symmetries). A positive answer is found: inflation turns out to be an attractor 
and therefore no fine-tuning of the initial conditions is necessary. A very large initial Higgs time-
derivative (as compared to the potential energy density) is compensated by a moderate increase in the 
initial field value. These conclusions are reached by solving the exact Higgs equation without using the 
slow-roll approximation. This also allows us to consistently treat the inflection point, where the standard 
slow-roll approximation breaks down. Here we make use of an approach that is independent of the UV 
completion of gravity, by taking initial conditions that always involve sub-planckian energies.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

So far no clear evidence for physics beyond the Standard Model 
at the scales explored by the LHC has been found. In this situation, 
it is useful to look for complementary tests. The extrapolation of 
the SM at energies much above those reachable at colliders offers 
a new way to look for further evidence of new physics (besides 
the already established ones, such as neutrino oscillations and dark 
matter).

Inflation is a natural arena to perform these tests. It was found 
that the Higgs of the SM might play the role of the inflaton pro-
vided that a sizable non-minimal coupling ξ with the Ricci scalar 
R is introduced. Ref. [1] considered originally the case of a very 
large ξ , which corresponds to the SM living well inside the so 
called stability region.1 In this setup two different scales appear, 
the reduced Planck mass M̄Pl � 2.435 × 1018 GeV and M̄Pl/ξ and 
a violation of perturbative unitarity at M̄Pl/ξ has been found by 
considering scatterings of particles viewed as fluctuations around 
the EW vacuum [2,3]. This leads to the necessity of new physics or 
strong coupling methods to analyze that physical situation. While 
this does not undoubtedly exclude Higgs inflation (HI) as the rel-
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1 This is the region of parameter space where the electroweak (EW) vacuum is 
the global minimum of the SM effective potential.
https://doi.org/10.1016/j.physletb.2018.03.009
0370-2693/© 2018 Published by Elsevier B.V. This is an open access article under the CC
evant expansion in that case is around a large Higgs field [4], the 
issue may be avoided by living very close to the boundary between 
stability and metastability,2 the so called criticality. Indeed, a dras-
tic decrease of ξ occurs at criticality [5–7], leading to a single new 
physics scale, M̄Pl, where quantum gravity effects are expected to 
emerge.

Moreover, in [8] another issue of the large-ξ HI was pointed 
out. At the quantum level, it is necessary to tune the high energy 
values of some parameters in order to preserve the inflationary 
predictions: if this is not done large higher derivative terms in the 
effective action, such as R2, are generated, changing the output of 
the model (see also [9]). However, Ref. [8] did not consider the 
critical HI case, which, as stated above, does not require a large ξ .

The aim of this article is to investigate whether critical HI suf-
fers from any tuning in the choice of the high energy parameters. 
This will include in particular the analysis of the dependence of 
critical HI on the initial (pre-inflationary) conditions. Indeed, any
slow-roll model of inflation, such as HI, should provide a mech-
anism that drives generic initial conditions to slow-rolling con-
figurations, i.e. an inflationary attractor. If such an attractor does 
not exist a fine-tuning of the initial conditions is required, which 
makes the whole idea of inflation less attractive, given that its 

2 The metastability region is the region of parameter space where the lifetime of 
the EW vacuum exceeds the age of the universe.
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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main purpose is to solve fine-tuning problems (the horizon and 
flatness problems).

The paper is organized as follows. In Sec. 2 details of HI are 
given, including the classical analysis of inflation and a description 
of the quantum corrections; there, we will address the question of 
whether a fine-tuning of the high energy conditions of the running 
parameters is required in critical HI. In Sec. 3 we will consider ini-
tial conditions violating the slow-roll behavior in order to establish 
the existence of an inflationary attractor in HI; both analytical and 
numerical arguments will be used. Finally, Sec. 4 provides the con-
clusions.

2. The model

Let us define the Higgs inflation model [1]. The action is

S =
∫

d4x
√−g

[
LSM −

(
M̄2

Pl

2
+ ξ |H|2

)
R

]
, (1)

where H is the Higgs doublet, ξ is a real parameter and 
√−gLSM

is the SM Lagrangian minimally coupled to gravity. The part of the 
action that depends on the metric and the Higgs field only (the 
scalar-tensor part) is

Sst =
∫

d4x
√−g

[
|∂ H|2 − V −

(
M̄2

Pl

2
+ ξ |H|2

)
R

]
, (2)

where V = λ(|H |2 − v2/2)2 is the classical Higgs potential, and v
is the EW Higgs vacuum expectation value. We assume a sizable 
non-minimal coupling, ξ > 1, because this is required by inflation 
as we will see.

2.1. Classical analysis

The ξ |H |2 R term can be eliminated through a conformal trans-
formation (a.k.a. Weyl transformation):

gμν → �−2 gμν, �2 = 1 + 2ξ |H|2
M̄2

Pl

. (3)

The original frame, where the Lagrangian has the form in Eq. (1), is 
called the Jordan frame, while the one where gravity is canonically 
normalized (obtained with the transformation above) is called the 
Einstein frame. In the unitary gauge, where the only scalar field is 
the radial mode φ ≡ √

2|H |2, we have (after having performed the 
conformal transformation)

Sst =
∫

d4x
√−g

[
K

(∂φ)2

2
− V

�4
− M̄2

Pl

2
R

]
, (4)

and

K = �−4

[
�2 + 3

2

(
d�2

dφ

)2]
. (5)

The non-canonical Higgs kinetic term can be made canonical 
through the field redefinition φ = φ(χ) defined by

dχ

dφ
= �−2

√
�2 + 3

2

(
d�2

dφ

)2

, (6)

with the conventional condition φ(χ = 0) = 0. Note that φ(χ) is 
invertible because Eq. (6) tells us dχ/dφ > 0. Thus, one can extract 
the function φ(χ) by inverting the function χ(φ) defined above.
Note that χ feels a potential

U ≡ V

�4
= λ(φ(χ)2 − v2)2

4(1 + ξφ(χ)2/M̄2
Pl)

2
. (7)

Let us now recall how slow-roll inflation emerges in this con-
text. From (6) and (7) it follows [1] that U is exponentially flat 
when χ � M̄Pl, which is a key property to have inflation. Indeed, 
for such high field values the quantities

εU ≡ M̄2
Pl

2

(
1

U

dU

dχ

)2

, ηU ≡ M̄2
Pl

U

d2U

dχ2
(8)

are guaranteed to be small. Therefore, the region in field configura-
tions where χ � M̄Pl (or equivalently [1] φ � M̄Pl/

√
ξ ) corresponds 

to inflation. In Sec. 3 we will investigate whether successful slow-
roll inflation emerges also for large initial field kinetic energy. In 
this subsection we simply assume that the time derivatives are 
small. In this case, during the whole inflation the slow-roll param-
eters εU and ηU are small and the slow-roll approximation can be 
used.

All the parameters of the model can be determined with good 
accuracy through experiments and observations, including ξ [1,10]. 
ξ can be fixed by requiring that the measured curvature power 
spectrum (at horizon exit3 q = aH) [11],4

P R(q) � (2.14 ± 0.06) × 10−9, (9)

is reproduced for a field value φ = φb corresponding to an appro-
priate number of e-folds [10]:

N =
φb∫

φe

U

M̄2
Pl

(
dU

dφ

)−1 (
dχ

dφ

)2

dφ � 59, (10)

where φe is the field value at the end of inflation, computed by 
requiring

ε(φe) � 1. (11)

In the slow-roll approximation (used in this subsection) such con-
straint can be imposed by using the standard formula

P R(k) = U/εU

24π2M̄4
Pl

. (12)

For N = 59, this procedure leads to

ξ � (5.02 ∓ 0.06) × 104
√

λ, (N = 59) (13)

where the uncertainty corresponds to the experimental uncer-
tainty quoted in Eq. (9). Note that ξ depends on N:

ξ � (4.61 ∓ 0.06) × 104
√

λ (N = 54), (14)

ξ � (5.43 ∓ 0.06) × 104
√

λ (N = 64). (15)

Given that λ ∼ 0.1, ξ has to be much larger than one at the classi-
cal level. The need of a very large ξ can be avoided when quantum 
corrections are included [5–7], as we will see in the next subsec-
tion.

3 We use a standard notation: a is the cosmological scale factor, H ≡ ȧ/a and a 
dot denotes the derivative with respect to (cosmic) time, t .

4 See for instance Table 3 of the second paper in Ref. [11] (P R is denoted with 
As in that table). The value quoted here corresponds to the one with the smallest 
uncertainty in that table.
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We can also extract the scalar spectral index ns and the tensor-
to-scalar ratio r: in the slow-roll approximation we are using in 
this subsection the formulæ are r = 16εU and ns = 1 − 6εU + 2ηU . 
These parameters are of interest as they are constrained by obser-
vations.

2.2. Quantum corrections

Here we take into account quantum corrections to the Higgs 
potential. We would like to include both the large-ξ inflation-
ary scenario of [1] and the critical Higgs inflation proposed in 
[5–7], which employs a value of the top mass close to the fron-
tier between stability and metastability of the electroweak vac-
uum. The latter case allows for a drastic decrease of the required 
value of ξ with respect to the result of the classical analysis (see 
Eqs. (13)–(15).). This indicates that we cannot rely on large-ξ ap-
proximations to analyze this case. We therefore do not use such 
approximations here. However, we do assume in the following that 
ξ > 1 as this condition is present both in the original formulation 
of HI and in critical HI.

Note that Eqs. (3)–(6) hold also if ξ is field-dependent, as dic-
tated by quantum corrections [12]. A second step we should do 
now is the computation of the effective potential. In defining the 
quantum theory there are well-known ambiguities [13,14,6,15,16]. 
We follow here Ref. [6] and choose to determine the loop correc-
tions to the effective potential – a.k.a. Coleman–Weinberg potential 
– in the Einstein frame (after having performed the conformal 
transformation (3)); the effective potential is also RG-improved 
by using the RGEs5 of the SM properly modified to take into ac-
count ξ . The way ξ affects the running is through the appearance 
of a factor s that suppresses the contribution of the physical Higgs 
field to the RGEs [17]. Ref. [17] found

s = 1 + ξφ2/M̄2
Pl

1 + (1 + 6ξ)ξφ2/M̄2
Pl

. (16)

For small enough φ one has s ≈ 1, while in the large-φ limit s ≈
1/(1 + 6ξ). This result does not really depend on the size of ξ , but, 
of course, the larger ξ is the more effective the suppression is.

Such procedure to compute the effective potential is known as 
Prescription I and it leads to the following value of the renormal-
ization group scale

μ̄(φ) = φ/κ√
1 + ξφ2/M̄2

Pl

, (17)

where κ is an order one factor. This formula follows from the fact 
that the loop corrections to the effective potential are determined 
in the Einstein frame.6 The function μ̄(φ) can also be inverted to 
obtain φ(μ̄) and used in (16) to express s as a function of μ̄ only, 
as appropriate for the RGEs.

The SM RGEs modified by the s-factor can be found in the ap-
pendix of Ref. [19], where the RGE of ξ is also provided. We will 
employ these formulæ in the numerical calculation of Sec. 3.2.

Furthermore, we will use the RG-improved potential neglecting 
the loop corrections: this means that we will take as effective po-
tential the one in (7) with the constants λ and ξ substituted with 
the corresponding running parameters. There are good reasons to 

5 We use dimensional regularization (DR) to regularize the loop integrals and the 
modified minimal subtraction (MS) scheme to renormalize away the divergences. 
This, as usual, leads to a renormalization scale, μ̄.

6 The explicit detailed expression of the 1-loop correction can be found in 
Ref. [18].
use this approximation. First, our main objective is to see if the 
initial conditions with large time-derivatives of the Higgs field are 
attracted towards a slow-roll regime. In order to know if there is 
this qualitative behavior we do not need a very precise determina-
tion of the effective potential (which is beyond the scope of the 
present work). Note, moreover, that taking into account the loop 
corrections to the potential would only be more precise if supple-
mented by the loop corrections to the kinetic term of the inflaton; 
such corrections have not been included in the analysis of HI and 
are expected to be comparable to the loop corrections to the po-
tential for moderate values of ξ , unlike what happens for large ξ
[14]: the large value of ξ allowed [14] to show that the corrections 
to the kinetic term in the effective action are negligible, but the 
smaller value of ξ of critical HI does not permit to trust this ap-
proximation anymore. Another reason to employ the RG-improved 
potential is its gauge independence, which is not shared by the 
loop corrections to the effective potential. Therefore, the use of the 
RG-improved potential allows for a more transparent physical in-
terpretation.

As boundary conditions to solve the RGEs of the SM couplings 
we use the currently most precise determinations of their values 
at the top pole mass Mt , which were computed in Ref. [20]. These 
values are functions of some observables: Mt , the Higgs and W
pole masses Mh and MW , respectively, and α3(M Z ). For MW and 
α3(M Z ) we take the same values quoted in Ref. [20], while for 
Mh we take the more precise determination presented in Ref. [21], 
that is Mh = 125.09 ± 0.21 ± 0.11 GeV. The boundary condition 
for ξ is instead fixed to reproduce the experimental values of the 
inflationary observables. The top pole mass is a variable in this 
work.

Now, Eqs. (8), (10) and (12) of Sec. 2.1 are still valid as long 
as one is in the slow-roll regime, but one should now interpret U
as the effective potential, not just as the classical potential. How-
ever, as we will see in Sec. 3, in critical Higgs inflation, because 
of the presence of an inflection point in the potential (see Fig. 2), 
the standard slow-roll condition may not be always satisfied; in 
particular it can break down around the inflection point, where 
the inertial term in the inflaton equation may not be negligible 
with respect to the friction term [24,12,22,23]. We will discuss fur-
ther this point in Sec. 3. Nevertheless, already at this level we can 
observe that the slow-roll condition is violated also at the begin-
ning of the inflaton path if we start from initial conditions with 
large time derivative of the Higgs field. Therefore, the framework 
to analyze the pre-inflationary dynamics with such initial condi-
tion (which will be discussed in Sec. 3) will be applicable to the 
period when the Higgs crossed the inflection point too.

Having determined the effective potential we can now estimate 
the relevant inflationary scales. In HI the energy density during 
inflation U I is roughly given by7 U I ∼ λM̄4

Pl/ξ
2, as clear from 

Eq. (7) and the discussion below that formula. This is related to 
the inflationary Hubble scale H I through the Einstein equations, 
H I ∼ √

U I/M̄Pl. The scale H I is much lower than the new physics 
scale M̄Pl/ξ in critical HI thanks to the smallness of λ at the infla-
tionary scale. Furthermore, the smallness of λ also leads to a small 
U I in Planck units, which allows us to treat gravity classically, as 
we will discuss in Sec. 3. For example, in Fig. 2, U I ∼ 10−9M̄4

Pl, 
which gives H I ∼ 10−5 M̄Pl, a Hubble scale much smaller than the 
new physics scale M̄Pl/ξ for the corresponding value of the non-
minimal coupling: M̄Pl/ξ ∼ 10−1 M̄Pl. Therefore, although new de-

7 One thing we learn then is that, once the observed P R is reproduced, a relation 
between λ and ξ emerges; it is this relation that reduces the value of ξ in critical 
Higgs inflation: what matters in reproducing P R is only the overall constant, λ/ξ2, 
therefore, a smaller λ allows us to have a smaller ξ .
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Fig. 1. Running of the SM couplings and ξ for Mt ≈ 171.04 GeV with the 
s-insertions. (For interpretation of the colors in the figures, the reader is referred 
to the web version of this article.)

grees of freedom or strong coupling should eventually appear at 
M̄Pl/ξ , the relevant inflationary scale H I is lower than M̄Pl/ξ .

We now recall an important result of Ref. [8]: a large ξ natu-
rally induces large higher dimensional operators that can in turn 
change the physical predictions. The coefficient α of a radiatively 
induced 

√−g R2 term in the Lagrangian was shown in Ref. [8] to 
be subject to the following strong naturalness8 bound

|α| � ξ2

8π2
. (18)

A large value of ξ is necessary at the classical level (see Eq. (13)
and the corresponding discussion there). However, in critical Higgs 
inflation ξ does not have to be very large and a value of ξ of order 10 
is possible [5–7]. Such value would lead to the trivial9 bound α � 1.
Therefore, the critical Higgs inflation does not suffer from a fine-tuning 
of the high energy condition for the running couplings.

3. Pre-inflationary dynamics

Let us now analyze the dynamics of this system in the homo-
geneous case without making any assumption on the initial value 
of the time derivative χ̇ . This analysis has been performed in [8]
for Higgs inflation at the classical level. Here we take into account 
quantum corrections to the potential. We will focus on the critical 
Higgs inflation for the reasons we discussed above.

In the Einstein frame Sst is

Sst =
∫

d4x
√−g

[
(∂χ)2

2
− U − M̄2

Pl

2
R

]
(19)

(U is the RG-improved Einstein frame effective potential).
Let us assume a universe with 3-dimensional translation and 

rotation symmetries, that is a homogeneous and isotropic FRW 

8 Naturalness implies that condition because if one starts from an |α| much be-
low that threshold the renormalization group flow generates an |α| comparable to 
it, unless very fine-tuned initial conditions are chosen.

9 This bound is trivial in view of the fact that an α of order 1 leads to negligible 
corrections to Einstein gravity for energies much below the Planck scale (instead, 
for energies approaching this value we cannot have a model independent argument 
because Einstein gravity breaks down).
geometry. We do not regard this as a fine-tuning of the initial con-
dition as it is implied by the requirement of having an enhanced 
symmetry (translation and rotation symmetries in this case). In 
other words, it is natural to assume that initially there was neither 
any special point in space nor any preferred direction. Further-
more, we will neglect the spatial curvature in the FRW metric as 
the energy density is expected to be dominated by the inflaton 
during inflation.

Then the equations for the spatially homogeneous field χ(t)
and a(t) are

χ̈ +
√

3χ̇2 + 6U√
2M̄Pl

χ̇ + U ′ = 0 (20)

and

ȧ2

a2
= χ̇2 + 2U

6M̄2
Pl

. (21)

From (20) and (21) one can also derive the useful

Ḣ = − χ̇2

2M̄2
Pl

. (22)

Note that, once we have a solution to Eq. (20) we can immediately 
determine a(t) through Eq. (21). Therefore, our job now is to solve 
Eq. (20) with appropriate initial conditions

�(t̄) = � χ(t̄) = χ, (23)

where t̄ is some initial time before inflation and χ and � are the 
initial conditions for the dynamical variables10 at t = t̄ .

Since we do not want to commit ourselves to any UV comple-
tion of Einstein gravity, we confine our attention to the regime 
where quantum gravity corrections are expected to be small,

U � M̄4
Pl, χ̇2 � M̄4

Pl, (24)

such that we can ignore the details of the UV completion. How-
ever, we do not require here to be initially in a slow-roll regime. 
The conditions in (24) come from the requirement that the energy-
momentum tensor be small (compared to the Planck scale) so that 
a large curvature is not generated. The first condition in (24) is 
automatically fulfilled by the Higgs inflation potential: the quartic 
coupling λ is small [25,20,26,27]; note that λ is particularly small 
in the critical HI [5–7], which is our main interest here. The second 
condition in (24) is implied by the requirement of starting from 
an (approximately) de Sitter space, which is maximally symmetric; 
therefore we do not consider that as fine-tuning of the initial con-
ditions. Indeed, in de Sitter we have to set Ḣ = 0, which leads to 
χ̇ = 0 given Eq. (22).

However, note that we cannot start from an exact de Sitter 
space given Eq. (20): the potential U is indeed not exactly flat. 
Given that the extra symmetries of de Sitter space (besides ro-
tation and translation symmetries) are anyhow broken, there is 
no remaining symmetry that forces the field kinetic energy to be 
small compared to the potential energy or that forces the inertial 
term in the inflaton equation to be negligible with respect to the 
friction term. This motivates our study of initial conditions with 
generic kinetic energy.

10 The initial condition for a is not needed as the normalization of a does not 
have a physical meaning for vanishing spatial curvature: indeed, given a solution a
of (21), c a is also a solution, for any constant c.



A. Salvio / Physics Letters B 780 (2018) 111–117 115
3.1. Analytic discussion

Since we do not know if and when exactly an inflationary slow-
roll phase occurs it is essential for our purposes to have a descrip-
tion of the inflationary path that does not rely on the slow-roll 
approximation. Inflation in general takes place when

ε ≡ − Ḣ

H2
< 1, (25)

which generalizes the usual definition of the slow-roll parameter 
εU (given in Eq. (8)) to situations where the slow-roll does not 
occur. In addition to ε , one can introduce another parameter

δ ≡ − χ̈

Hχ̇
. (26)

If δ � 1 one can neglect the inertial term in the inflaton equa-
tion (20) and reduce the problem to a single first order differential 
equation. The necessary and sufficient condition for inflation is 
only ε < 1. The condition δ � 1 is by no means necessary, al-
though it leads to great simplifications. As we mentioned before 
and we will discuss in more detail in Sec. 3.2, in the critical Higgs 
inflation the condition δ � 1 is not always satisfied because of the 
presence of an inflection point in the potential. Both because we 
will consider initial conditions with large kinetic energies and be-
cause of the inflection point, it is therefore important to solve the 
exact equation in (20) without using the slow-roll approximation. 
Note that this also means that we cannot use now the slow-roll 
formula

N =
φb∫

φe

U

M̄2
Pl

(
dU

dφ

)−1 (
dχ

dφ

)2

dφ (27)

that we used before in Eq. (10) to compute the number of e-
folds N . We will use instead the exact formula

N =
te∫

tb

dt H(t), (28)

where te is the time at the end of inflation and tb is the time when 
the inflationary observables P R , ns and r are measured.

One of the main purposes of the present work is to consider 
large initial kinetic energies, χ̇2 � U , and study whether inflation 
is an attractor. This problem can be treated analytically during the 
first phase of the inflaton motion when χ̇2 � U , such that the 
potential energy can be neglected. In this case, combining Eqs. (21)
and (22) gives

Ḣ + 3H2 = 0, (χ̇2 � U ), (29)

which leads to

H(t) = H̄

1 + 3H̄(t − t̄)
, (χ̇2 � U ), (30)

where H̄ ≡ H(t̄) and t̄ is again some initial time. By inserting this 
result into Eq. (22) we find

χ̇2 = 6M̄2
Pl H̄

2[
1 + 3H̄(t − t̄)

]2
, (χ̇2 � U ). (31)

This means that the kinetic energy density scales as 1/t2 if one 
takes into account the time dependence of H . This result [28] tells 
us that an initial condition with large kinetic energy is attracted 
Fig. 2. SM effective potential (as defined in the text) with the ξ -coupling chosen as 
in Fig. 1.

towards one with smaller kinetic energy, but it also shows that 
neglecting the potential energy cannot be a good approximation 
for very large times. Moreover, notice that Eqs. (30) and (31) im-
ply χ̈ = −3Hχ̇ , so the dynamics is not approaching the usually 
assumed slow-roll condition δ � 1 that allows to drop the inertial 
term in the inflaton equation of motion. Therefore, the argument 
above is not conclusive and one needs to solve the equations tak-
ing into account U in order to see if inflation is really an attractor. 
We will do so numerically in the next subsection.

3.2. Numerical studies

In this section we present the numerical studies. We set here 
the reference value κ ≈ 2 for the parameter appearing in the opti-
mal value of μ̄ for the RG-improving, Eq. (17). As we will see, this 
leads to a realistic inflation.

In Fig. 1 we give the running of the largest SM couplings and ξ
with the s-insertions (see the discussion around Eq. (16)). In that 
plot we use a value of Mt close to criticality Mt ≈ 171.04 GeV: 
the quartic coupling λ nearly vanishes at high energies. There the 
minimum of λ occurs at around 0.15M̄Pl. In Fig. 2 we provide 
the corresponding SM effective potential including the effect of 
ξ . We see that by varying Mt by only 10 keV around the criti-
cal value the potential changes significantly. This gives us an idea 
of the level of adjustment of Mt required to have an inflection 
point in the potential, which is an important issue of the critical 
Higgs inflation. We could regard this either as a drawback or as 
an attractive feature of the model, depending on whether we re-
gard this adjustment as a fine-tuning or a prediction of the model. 
A possible problem here is the tension between the critical Mt
and the measured value: Mt = 172.51 ± 0.50 GeV (ATLAS) and 
Mt = 172.44 ± 0.49 GeV (CMS) [29], which is, separately, at the 
2–3σ level.11 If future measurements and calculations will con-
firm this difference, new physics could be invoked to reconcile the 
two values of Mt , such as the well-motivated scenario of Ref. [30].

We studied numerically the exact Higgs equation in (20). In 
Fig. 3 we provide the canonically normalized field χ as a func-
tion of time. We observe that even if start from a large kinetic 

11 If we had quantized the system in the Jordan frame before performing the 
conformal transformation (a definition of the theory known as prescription II) we 
would have found an even stronger tension [13,14]. This is our main reason to 
choose prescription I. The extension of these calculations to prescription II is, there-
fore, beyond the scope of this article, but we expect that similar qualitative proper-
ties can be found with the alternative prescription.
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Fig. 3. Canonically normalized field χ as a function of time. The values of the pa-
rameters that are not quoted in the plot are chosen as in Figs. 1 and 2 and as 
explained in the text.

Fig. 4. The parameters ε and δ during a period of inflation. The values of the param-
eters that are not quoted in the plot are chosen as in Figs. 1 and 2 and as explained 
in the text.

energy12 the field quickly reaches the slow-roll regime; the ultra-
slow-roll regime [31,23] quoted in that plot corresponds to the 
period when the Higgs passed through the inflection point (see 
also Fig. 2) where the potential is flatter. In Fig. 4 the parameters 
ε and δ are shown during a period of inflation. The main point of 
that plot is to show that, because of the inflection point [12] and 
the large initial kinetic energy, the parameter δ is not always very 
small, which indicates that one could not always neglect the iner-
tial term in the inflaton equation during the whole inflation. The 
inflection point is reached at the time when δ = 0 as it can be 
checked by looking at Figs. 2 and 3.

Fig. 3 already indicates that inflation is an attractor in the crit-
ical SM. We performed a more general analysis by varying the 
initial momentum � in Fig. 5. There, as well as in Figs. 3 and 4, the 

12 In that plot � = −10−3 M̄2
Pl , therefore the kinetic energy �2

/2 is much larger 
than the potential energy, as it can be checked by looking at Fig. 2.
Fig. 5. Initial conditions χ and � for the canonically normalized Higgs field χ and 
its momentum � ≡ χ̇ respectively. The values of the parameters that are not quoted 
in the plot are chosen as in Figs. 1 and 2 and as explained in the text. The values of 
inflationary parameters N e-folds before the end of inflation are also provided (the 
values of N inside the brackets indicate instead the total number of e-folds since 
the earliest time, when the initial conditions χ and � are given).

initial conditions for � have been chosen to be negative because 
positive values favor inflation even respect to the case where the 
initial kinetic energy is much smaller than the potential energy: 
this is because the potential, Eq. (7), is an increasing function of χ
(for χ � v). We observe that a very large initial kinetic energy13

can be compensated by a very modest increase (not even of one 
order of magnitude) in the initial field value of the Higgs. This con-
firms that inflation is a strong attractor in this model. The situation 
is similar (and even slightly better) then the one of classical Higgs 
inflation [8] in this respect. In the same plot we also show that the 
inflationary observables ns , r and P R are within the observational 
bounds [11].

Therefore, the critical Higgs inflation does not suffer from a 
fine-tuning problem for the initial conditions.

4. Conclusions

In this paper we have studied whether Higgs inflation (HI) suf-
fers from a fine-tuning of the high energy values of the parame-
ters. In particular, it has been investigated the dependence of HI 
on the initial (pre-inflationary) conditions. In our analysis we as-
sumed a spatially homogeneous and isotropic geometry pointing 
out the naturalness of this choice. As shown in [8], although the 
large-ξ HI [1] does not suffer from any tuning of the initial con-
ditions at the classical level, at the quantum level a fine-tuning of 
the high energy values of some running parameters has to be per-
formed, as discussed at the end of Sec. 2.2. For this reason the 
main focus of this article has been critical HI [5–7], which allows 
a drastic decrease of ξ . Moreover, critical HI, unlike the large-ξ
original version, has a single cut-off scale, M̄Pl, where quantum 
gravity effects are expected to emerge, and is free from a much 
lower scale, where perturbative unitarity theory breaks down.

We pointed out that critical HI does not suffer from any fine-
tuning of the high energy parameters, such as the one of large-ξ
HI noted in [8]. The main result of this paper was that critical HI enjoys 

13 In that plot we considered values of � up to −0.05M̄2
Pl which corresponds to an 

initial kinetic energy density of order 10−3 M̄4
Pl . We regard this value as the maximal 

kinetic energy density allowed to have negligible quantum gravity corrections (see 
also (24)).
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a robust inflationary attractor: even starting from a large kinetic energy 
density of the Higgs field (as compared to the potential energy density), 
the inflaton rapidly reaches the slow-roll behavior.

Acknowledgements

I thank J. Garcia-Bellido and M. Shaposhnikov for useful discus-
sions. This work was supported by the grant 669668 – NEO-NAT – 
ERC-AdG-2014.

References

[1] F.L. Bezrukov, M. Shaposhnikov, The Standard Model Higgs boson as the infla-
tion, Phys. Lett. B 659 (2008) 703, arXiv:0710 .3755.

[2] C.P. Burgess, H.M. Lee, M. Trott, Power-counting and the validity of the classical 
approximation during inflation, J. High Energy Phys. 0909 (2009) 103, arXiv:
0902 .4465;
J.L.F. Barbon, J.R. Espinosa, On the naturalness of Higgs inflation, Phys. Rev. D 
79 (2009) 081302, arXiv:0903 .0355;
M.P. Hertzberg, On inflation with non-minimal coupling, J. High Energy Phys. 
1011 (2010) 023, arXiv:1002 .2995;
C.P. Burgess, S.P. Patil, M. Trott, On the predictiveness of single-field inflationary 
models, J. High Energy Phys. 1406 (2014) 010, arXiv:1402 .1476.

[3] C.P. Burgess, H.M. Lee, M. Trott, Comment on Higgs inflation and naturalness, 
J. High Energy Phys. 1007 (2010) 007, arXiv:1002 .2730.

[4] F. Bezrukov, A. Magnin, M. Shaposhnikov, S. Sibiryakov, Higgs inflation: con-
sistency and generalisations, J. High Energy Phys. 1101 (2011) 016, arXiv:
1008 .5157.

[5] Y. Hamada, H. Kawai, K.y. Oda, S.C. Park, Higgs inflation is still alive after the 
results from BICEP2, Phys. Rev. Lett. 112 (24) (2014) 241301, arXiv:1403 .5043.

[6] F. Bezrukov, M. Shaposhnikov, Higgs inflation at the critical point, Phys. Lett. B 
734 (2014) 249, arXiv:1403 .6078.

[7] Y. Hamada, H. Kawai, K.y. Oda, S.C. Park, Higgs inflation from Standard Model 
criticality, Phys. Rev. D 91 (2015) 053008, arXiv:1408 .4864.

[8] A. Salvio, A. Mazumdar, Classical and quantum initial conditions for Higgs in-
flation, Phys. Lett. B 750 (2015) 194, arXiv:1506 .07520.

[9] K. Kannike, G. Hütsi, L. Pizza, A. Racioppi, M. Raidal, A. Salvio, A. Strumia, Dy-
namically induced Planck scale and inflation, J. High Energy Phys. 1505 (2015) 
065, arXiv:1502 .01334;
K. Kannike, G. Hutsi, L. Pizza, A. Racioppi, M. Raidal, A. Salvio, A. Strumia, PoS 
EPS HEP2015 (2015) 379;
A. Salvio, A. Mazumdar, Higgs stability and the 750 GeV diphoton excess, Phys. 
Lett. B 755 (2016) 469, arXiv:1512 .08184;
A. Salvio, Solving the Standard Model problems in softened gravity, Phys. Rev. 
D 94 (9) (2016) 096007, arXiv:1608 .01194;
A. Salvio, Inflationary perturbations in no-scale theories, Eur. Phys. J. C 77 (4) 
(2017) 267, arXiv:1703 .08012;
A. Salvio, A. Strumia, Agravity, J. High Energy Phys. 1406 (2014) 080, arXiv:
1403 .4226.

[10] F. Bezrukov, D. Gorbunov, M. Shaposhnikov, On initial conditions for the Hot 
Big Bang, J. Cosmol. Astropart. Phys. 0906 (2009) 029, arXiv:0812 .3622;
J. Garcia-Bellido, D.G. Figueroa, J. Rubio, Preheating in the Standard Model with 
the Higgs-inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531, arXiv:
0812 .4624.
[11] P.A.R. Ade, et al., Planck Collaboration, Planck 2015 results. XIII. Cosmological 
parameters, arXiv:1502 .01589;
P.A.R. Ade, et al., Planck Collaboration, Planck 2015 results. XX. Constraints on 
inflation, arXiv:1502 .02114.

[12] J.M. Ezquiaga, J. Garcia-Bellido, E. Ruiz Morales, Primordial Black Hole produc-
tion in Critical Higgs Inflation, Phys. Lett. B 776 (2018) 345, arXiv:1705 .04861.

[13] F.L. Bezrukov, A. Magnin, M. Shaposhnikov, Standard Model Higgs boson mass 
from inflation, Phys. Lett. B 675 (2009) 88, arXiv:0812 .4950.

[14] F. Bezrukov, M. Shaposhnikov, Standard Model Higgs boson mass from infla-
tion: two loop analysis, J. High Energy Phys. 0907 (2009) 089, arXiv:0904 .1537.

[15] F. Bezrukov, J. Rubio, M. Shaposhnikov, Living beyond the edge: Higgs inflation 
and vacuum metastability, Phys. Rev. D 92 (8) (2015) 083512, arXiv:1412 .3811.

[16] F. Bezrukov, M. Pauly, J. Rubio, On the robustness of the primordial power spec-
trum in renormalized Higgs inflation, arXiv:1706 .05007.

[17] A. De Simone, M.P. Hertzberg, F. Wilczek, Running inflation in the Standard 
Model, Phys. Lett. B 678 (2009) 1, arXiv:0812 .4946.

[18] A. Salvio, Higgs inflation at NNLO after the boson discovery, Phys. Lett. B 727 
(2013) 234, arXiv:1308 .2244.

[19] K. Allison, Higgs xi-inflation for the 125–126 GeV Higgs: a two-loop analysis, 
J. High Energy Phys. 1402 (2014) 040, arXiv:1306 .6931.

[20] D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala, A. Salvio, A. Strumia, 
Investigating the near-criticality of the Higgs boson, J. High Energy Phys. 1312 
(2013) 089, arXiv:1307.3536.

[21] G. Aad, et al., ATLAS, CMS Collaborations, Combined measurement of the Higgs 
boson mass in pp collisions at √s = 7 and 8 TeV with the ATLAS and CMS 
experiments, Phys. Rev. Lett. 114 (2015) 191803, arXiv:1503 .07589.

[22] K. Kannike, L. Marzola, M. Raidal, H. Veermäe, J. Cosmol. Astropart. Phys. 
1709 (09) (2017) 020, arXiv:1705 .06225.

[23] C. Germani, T. Prokopec, On primordial black holes from an inflection point, 
Phys. Dark Universe 18 (2017) 6, arXiv:1706 .04226.

[24] J. Garcia-Bellido, E. Ruiz Morales, Primordial black holes from single field mod-
els of inflation, Phys. Dark Universe 18 (2017) 47, arXiv:1702 .03901.

[25] F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl, M. Shaposhnikov, Higgs boson mass 
and new physics, J. High Energy Phys. 1210 (2012) 140, arXiv:1205 .2893.

[26] A. Andreassen, W. Frost, M.D. Schwartz, Scale invariant instantons and the com-
plete lifetime of the Standard Model, arXiv:1707.08124.

[27] A. Salvio, The electroweak vacuum decay and the gravitational contribution, 
arXiv:1711.06594.

[28] A.D. Linde, Initial conditions for inflation, Phys. Lett. B 162 (1985) 281.
[29] B. Pearson, talk at top2017;

A. Castro, talk at top2017.
[30] A. Salvio, A simple motivated completion of the Standard Model below the 

Planck scale: axions and right-handed neutrinos, Phys. Lett. B 743 (2015) 428, 
arXiv:1501.03781.

[31] W.H. Kinney, Horizon crossing and inflation with large eta, Phys. Rev. D 72 
(2005) 023515, arXiv:gr-qc /0503017;
J. Martin, H. Motohashi, T. Suyama, Ultra slow-roll inflation and the non-
Gaussianity consistency relation, Phys. Rev. D 87 (2) (2013) 023514, arXiv:
1211.0083;
A.E. Romano, S. Mooij, M. Sasaki, Global adiabaticity and non-Gaussianity con-
sistency condition, Phys. Lett. B 761 (2016) 119, arXiv:1606 .04906;
K. Dimopoulos, Ultra slow-roll inflation demystified, Phys. Lett. B 775 (2017) 
262, arXiv:1707.05644.

http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030376570s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030376570s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib63726974s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib63726974s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib63726974s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib63726974s2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib63726974s2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib63726974s3
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib63726974s3
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib63726974s4
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib63726974s4
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib427572676573733A323031307A71s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib427572676573733A323031307A71s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323031306A7As1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323031306A7As1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323031306A7As1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib48616D6164613A32303134696761s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib48616D6164613A32303134696761s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A32303134627261s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A32303134627261s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib48616D6164613A32303134776E61s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib48616D6164613A32303134776E61s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib53616C76696F3A323031356B6B61s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib53616C76696F3A323031356B6B61s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s3
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s3
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s4
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s4
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s5
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s5
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s6
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A32303135617061s6
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030387574s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030387574s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030387574s2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030387574s2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030387574s2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4164653A32303135787561s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4164653A32303135787561s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4164653A32303135787561s2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4164653A32303135787561s2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib457A7175696167613A32303137667669s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib457A7175696167613A32303137667669s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030396462s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030396462s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030392D32s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323030392D32s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A32303134697061s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A32303134697061s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A32303137647976s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A32303137647976s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib446553696D6F6E653A323030386569s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib446553696D6F6E653A323030386569s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib53616C76696F2D696E66s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib53616C76696F2D696E66s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib416C6C69736F6E3A32303133756161s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib416C6C69736F6E3A32303133756161s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42757474617A7A6F3A32303133757961s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42757474617A7A6F3A32303133757961s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42757474617A7A6F3A32303133757961s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4161643A323031357A686Cs1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4161643A323031357A686Cs1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4161643A323031357A686Cs1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A3230313762786Es1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B616E6E696B653A3230313762786Es1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4765726D616E693A32303137626373s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4765726D616E693A32303137626373s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4761726369612D42656C6C69646F3A323031376D6477s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4761726369612D42656C6C69646F3A323031376D6477s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323031327361s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib42657A72756B6F763A323031327361s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib416E647265617373656E3A32303137727A71s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib416E647265617373656E3A32303137727A71s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib53616C76696F3A32303137656361s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib53616C76696F3A32303137656361s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4C696E64653A313938357562s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib53616C76696F3A32303135636A61s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib53616C76696F3A32303135636A61s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib53616C76696F3A32303135636A61s1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B696E6E65793A32303035766As1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B696E6E65793A32303035766As1
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B696E6E65793A32303035766As2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B696E6E65793A32303035766As2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B696E6E65793A32303035766As2
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B696E6E65793A32303035766As3
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B696E6E65793A32303035766As3
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B696E6E65793A32303035766As4
http://refhub.elsevier.com/S0370-2693(18)30196-5/bib4B696E6E65793A32303035766As4

	Initial conditions for critical Higgs inﬂation
	1 Introduction
	2 The model
	2.1 Classical analysis
	2.2 Quantum corrections

	3 Pre-inﬂationary dynamics
	3.1 Analytic discussion
	3.2 Numerical studies

	4 Conclusions
	Acknowledgements
	References


