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Cross-omics analysis revealed gut microbiome-
related metabolic pathways underlying
atherosclerosis development after antibiotics
treatment
Ben Arpad Kappel 1,2, Lorenzo De Angelis 1, Michael Heiser 3,4, Marta Ballanti 1,5, Robert Stoehr 2,
Claudia Goettsch 2, Maria Mavilio 1, Anna Artati 6, Omero A. Paoluzi 7, Jerzy Adamski 6,8,9,10,
Geltrude Mingrone 11,12,13, Bart Staels 14, Remy Burcelin 15,16, Giovanni Monteleone 1,7, Rossella Menghini 1,
Nikolaus Marx 2, Massimo Federici 1,5,*
ABSTRACT

Objective: The metabolic influence of gut microbiota plays a pivotal role in the pathogenesis of cardiometabolic diseases. Antibiotics affect
intestinal bacterial diversity, and long-term usage has been identified as an independent risk factor for atherosclerosis-driven events. The aim of
this study was to explore the interaction between gut dysbiosis by antibiotics and metabolic pathways with the impact on atherosclerosis
development.
Methods: We combined oral antibiotics with different diets in an Apolipoprotein E-knockout mouse model linking gut microbiota to athero-
sclerotic lesion development via an integrative cross-omics approach including serum metabolomics and cecal 16S rRNA targeted metagenomic
sequencing. We further investigated patients with carotid atherosclerosis compared to control subjects with comparable cardiovascular risk.
Results: Here, we show that increased atherosclerosis by antibiotics was connected to a loss of intestinal diversity and alterations of microbial
metabolic functional capacity with a major impact on the host serum metabolome. Pathways that were modulated by antibiotics and connected to
atherosclerosis included diminished tryptophan and disturbed lipid metabolism. These pathways were related to the reduction of certain members
of Bacteroidetes and Clostridia by antibiotics in the gut. Patients with atherosclerosis presented a similar metabolic signature as those induced by
antibiotics in our mouse model.
Conclusion: Taken together, this work provides insights into the complex interaction between intestinal microbiota and host metabolism. Our
data highlight that detrimental effects of antibiotics on the gut flora are connected to a pro-atherogenic metabolic phenotype beyond classical risk
factors.

� 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Cardiovascular disease is the leading cause of mortality and morbidity
worldwide and is determined by genetic as well as environmental
factors. In recent years, studies have identified the gut microbiome as
an emerging contributor to human metabolism, also affecting the
cardiovascular system [1]. The gut is a complex co-evolved ecosystem
harboring trillions of bacteria. Based on their huge genetic potential,
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they promote many metabolic processes, thus producing a vast array
of bioactive metabolites [2,3]. Particularly, the gut microbiota-
dependent metabolite trimethylamine-N-oxide (TMAO) has been a
major focus of interest due to its association to cardiovascular disease
and mortality in several cohorts [4e7]. While TMAO [8] and the
presence of gut microbiota compared to germ-free conditions in mice
[9,10] have been linked to augmented arterial thrombosis, other
studies in human cohorts and mouse models suggest that loss of
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bacterial diversity and microbial gene richness negatively affects the
cardiovascular disease continuum from risk factors such as blood
lipids, hypertension and obesity/insulin resistance to ischemic heart
disease and heart failure [1,11e18]. Antibiotic treatment reduces
bacterial diversity and has major effects on the host metabolism [19].
Studies have shown that alterations of gut bacteria after antibiotic
usage are long-lasting, with a reduction of bacterial richness even after
a period of up to 2 years after treatment [20]. In childhood, treatment
with antibiotics has been associated with late-onset metabolic dis-
eases such as obesity [21]. Recently, the long-term use of antibiotics in
the middle and late adulthood was identified as an independent pre-
dictor for future cardiovascular events among women [22]. However,
mechanisms linking antibiotics treatment to cardiovascular disease
development have to date remained relatively unexplored [23].
Therefore we aimed to investigate the metabolic impact of gut
microbiota disruption by antibiotics that may underlie atherosclerosis
development. We combined broad oral antibiotics treatment with
different diets in Apolipoprotein E knockout (ApoE�/�) mice and
analyzed metabolic mechanisms via an integrative cross-omics
approach combining serum metabolomics, 16S ribosomal RNA
(rRNA) targeted metagenomic sequencing, and phenotype. To support
our hypothesis, we performed serum metabolomics and fecal 16S
rRNA sequencing in humans with atherosclerotic vascular disease.
Here, we show that antibiotics treatment increased atherosclerotic
lesion size independently of the diet in ApoE�/� mice. We observed
reduced gut microbiota alpha diversity, which was linked to the loss of
metabolic diversity in the serum and further associated to enhanced
atherosclerosis. Weighted correlation network analysis (WGCNA)
combined with phenotype-associated filtering of serum metabolomics
allowed us to identify specific pathways modulated by antibiotics that
were linked to atherogenesis. In detail, these were diminished tryp-
tophan metabolism and altered lipid metabolism. The metabolomics
findings were related to reduced microbial functional capacity with
reduced tryptophan and increased fatty acid biosynthesis shown by
KEGG gene reconstruction of the gut microbiome as well as the loss of
certain members of Bacteroidetes and Clostridia revealed by an inter-
omics model. Supplementation of tryptophan in the diet was able to
restore antibiotics-induced atherosclerosis, thus strengthening the role
of reduced microbial tryptophan biosynthesis in antibiotics-induced
atherosclerosis. Analysis of human subjects with carotid atheroscle-
rosis compared to control subjects without detectable atherosclerosis
with the same cardiovascular risk profile particularly showed dimin-
ished serum tryptophan as well as the loss of the same members of
Bacteroidetes and Clostridia. Together, our study provides insights
between gut microbiota and host metabolism using a non-targeted
cross-omics approach. We suggest that increased atherosclerosis
through antibiotics-induced dysbiosis is mediated by specific meta-
bolic changes in the host metabolism. These findings may explain the
increased cardiovascular risk by long-term use of antibiotics in later
adulthood [22].

2. METHODS

2.1. Experimental animals
Male Apolipoprotein E knockout mice (B6.129P2-Apoetm1Unc/J) were
purchased from Charles River (Wilmington, MA, USA) at the age of 6
weeks. Mice were housed in groups of 3e4 mice in shoebox-sized
filtertop cages in a controlled environment (12h daylight cycle, lights
off at 08:00 p.m.). Data were controlled for cage effect with no impact
on atherosclerotic lesion size, serum metabolome or gut microbiota
composition by 16S rRNA targeted metagenomics sequencing
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(Supplementary Figure S1). Cages were autoclaved and changed twice
weekly, bedding was sterilized. Mice had free access to water and
food. Mice received either normal chow diet (10% calories from fat;
GLP Mucedola Srl, Settimo Milanese, Italy) or a Western diet (45%
calories from fat; D12079B; Research Diets, New Brunswick, NJ, USA).
Orally largely non-absorbable antibiotics (ampicillin 1 g/L, metroni-
dazole 1 g/L, neomycin 1 g/L, vancomycin 0.5 g/L (SigmaeAldrich, St.
Louis, MO, USA)) [4] were administered in drinking water of the
appropriate experimental groups for 10 weeks starting 6 weeks after
initiation of the experiment. Mice were sacrificed after 16 weeks at the
age of 22 weeks. In the supplementary mouse experiment, 1% L-
Tryptophan (SigmaeAldrich, St. Louis, MO, USA) was mixed into the
diet.
All animal procedures are in accordance with the Guide for the Care
and Use of Laboratory Animals published by the NIH (publication no.
85e23, revised 1996), approved by the University Hospital of Tor
Vergata Animal Care Facility.

2.2. Human cohort
Human subjects with data on carotid atherosclerosis were recruited as
part of the FLOROMIDIA cohort. FLOROMIDIA is an exploratory study to
investigate OMICS signatures in subjects with a BMI range of 20e60.
Predefined clinical phenotypes and OMICS are available for:

� BMI n ¼ 42
� HOMA-IR n ¼ 42
� Euglycemic Hyperinsulinemic clamp (EHC) n ¼ 25
� OGTT n ¼ 38
� Liver echography (steatosis grade) n ¼ 35
� Carotid atherosclerosis data n ¼ 30
� Serum metabolome profile n ¼ 42
� Stool 16S gut microbiome profile n ¼ 42
� Colon transcriptomics n ¼ 37

Recruitment of patients and processing of samples: All subjects gave
written informed consent, validated and approved by the ethical
committee of Policlinico Tor Vergata University of Rome (Comitato Etico
Indipendente, approval number 28-05-2009). The human subject
cohort comprised 42 subjects recruited at the Department of Medicine
Policlinico Tor Vergata. Sample size was not determined by statistical
methods, given the exploratory nature of the project, but is comparable
to other studies in the field [15,24e26].
Inclusion criteria: Pre-established inclusion criteria were as follows: all
subjects were of Caucasian origin; the subjects reported a stable body
weight 3 months preceding the study, were free of any infections,
including the use of antibiotics, one month before visit 1 and had no
systemic disease.
Exclusion criteria: Pre-established exclusion criteria were: presence of
liver disease, specifically HBV/HCV infection and tumor disease, and
subjects with thyroid dysfunction were excluded by biochemical work-
up. Alcohol consumption >20 g/day was also an exclusion criterion.
Visit 1: enrollment, colonoscopy and colon biopsy (collected in RNA-
later, fragmented and immediately flash-frozen in liquid nitrogen
before storage at �80�C). Visit 2: one month after visit 1, patients
were subjected to EHC, collection of stool and biofluid samples (stored
at �80�C). Visit 3: one week after visit 2, patients were subjected to
OGTT, liver and carotid echography.
In this manuscript, we used FLOROMIDIA resources to study the link of
serum metabolome profile as well as 16S gut microbiome profile to
carotid atherosclerosis. Therefore only patients with carotid athero-
sclerosis data were included in this study. Patients with atherosclerotic
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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plaques were assigned to atherosclerosis group (n ¼ 10), while all
other subjects served as control group (n ¼ 20). Baseline character-
istics of subjects are displayed in Table 1. Integrated analysis of gut-
microbiome>colon transcriptome>metabolome will be described in
another manuscript.

2.3. Histology (mouse)
To determine extent of atherosclerosis and macrophage infiltration in
the outflow tract and valve area, the top half of the heart was removed,
washed in PBS and transferred into 4% PFA for 48 h. After dehydration
with ethanol, hearts were embedded in paraffin. Serial 5 mm sections
where all three valve leaflets were visible were stained with hema-
toxylin and eosin. The slides were then digitalized and plaque size
measured by two independent observers (B.A.K. and L.D.A.) blinded to
experimental condition using ImageJ software Version 1.50 (NIH, USA;
http://rsb.info.nih.gov/ij/). One sample of normal diet antibiotics group
had to be excluded from the analysis due to the lack of all three valve
leaflets on the same slide.

2.4. Determination of carotid atherosclerosis (human)
Carotid ultrasonography examination was performed by the same trained
physician (M.B.) in 30 subjects. Participants were examined in the
Table 1 e Baseline characteristics of human cohort.

Parameter Unit Ctrl Ath P-
value

Number 20 10
Age years 59.4 � 9.1 64.0 � 5.8 0.105
Gender % female 55 50 0.999
BMI kg/m2 27.7 � 4.5 25.9 � 3.4 0.253
Waist-to-hip ratio meter 0.9 � 0.1 0.9 � 0.1 0.152
GFR (CKD-EPI) mL/min/

1.73m2
89.0 � 16.0 84.5 � 22.1 0.570

Mean arterial pressure mmHg 90.2 � 7.2 90.4 � 8.0 0.956
C-reactive protein nmol/L 173.4 � 299.4 118.9 � 143.8 0.556
Cholesterol, total mmol/L 5.1 � 0.9 5.1 � 1.0 0.927
Cholesterol, HDL mmol/L 1.5 � 0.4 1.6 � 0.4 0.606
Cholesterol, LDL mmol/L 3.0 � 0.9 2.9 � 1.0 0.741
Triglycerides mmol/L 1.2 � 0.7 1.2 � 0.8 0.951
Apo A1 mmol/L 55.2 � 9.2 55.9 � 5.8 0.809
Apo B mmol/L 1.8 � 0.5 1.9 � 0.3 0.454
Fasting blood glucose mmol/L 5.5 � 1.7 5.0 � 0.9 0.315
HBA1c mmol/mol 37.4 � 11.5 35.0 � 6.1 0.471
Insulin mU/mL 11.3 � 6.2 13.4 � 7.3 0.454
HOMA-IR 2.9 � 2.4 3.0 � 1.7 0.952
Hypoglycemic drugs % 5 10 0.999
Metformin % 5 10 0.999
Statins % 20 30 0.657
Ezetimibe % 5 0 0.999
Aspirin % 10 20 0.584
Anticoagulants % 5 0 0.999
ACE inhibitors % 45 30 0.694
Diuretics % 15 30 0.372
Calcium channel blockers % 10 0 0.540
Beta blockers % 5 0 0.999
Alpha blockers % 10 10 0.999
Proton-pump inhibitors % 5 0 0.999
Probiotics % 5 10 0.999

Characteristics of human subjects with data on carotid atherosclerosis as part of the
FLOROMIDIA cohort. Ten patients with carotid atherosclerosis (Ath) and 20 control
subjects (Ctrl) were included. Analysis by two-sided Student’s t-test or Chi-square test
for categorical variables. Glomerular filtration rate (GFR) was calculated based on
serum creatinine, age, sex and ethnicity by CKD-EPI (Chronic Kidney Disease Epide-
miology Collaboration) formula. ACE: Angiotensin-converting enzyme, HOMA-IR: Ho-
meostatic Model Assessment of Insulin Resistance. Data are the mean � S.D. or
percent.

MOLECULAR METABOLISM 36 (2020) 100976 � 2020 The Author(s). Published by Elsevier GmbH. This is an open
www.molecularmetabolism.com
supine position using the same ultrasound system (MyLab70 ESAOTE).
Linear array probes with a transmission frequency of 5e10 MHz were
used. Each common carotid artery, internal carotid artery, external ca-
rotid artery, and bulb was examined and recorded for the presence
atherosclerotic plaques in the longitudinal and transverse planes. Plaque
was defined as a focal structure encroaching into the arterial lumen and
having a maximal thickness �1.5 mm, as measured from the media-
adventitia interface to the intima-lumen [27e29].

2.5. Clinical biochemistry (mouse and human)
Human cohort: Plasma glucose concentrations were measured in
duplicate by the glucose oxidase method using a Beckman glucose
analyzer II (Beckman Instruments, Brea, CA, USA). Total plasma
cholesterol was measured by an enzymatic, colorimetric method
through the cholesterol esteraseecholesterol oxidaseeperoxidase
reaction (Cobas CHOL2, Roche, Basel, Switzerland). HDL (high-density
lipoprotein) cholesterol was quantified by a homogeneous enzymatic
colorimetric assay through the cholesterol esteraseecholesterol oxi-
daseeperoxidase reaction (Cobas HDLC3, Roche, Basel, Switzerland).
Total plasma triglycerides were measured by an enzymatic, colori-
metric method with glycerol phosphate oxidase and peroxidase (Cobas
TRIGL, Roche, Basel, Switzerland). LDL (low-density lipoprotein)
cholesterol was calculated using the Friedewald formula. All other
parameters were analyzed via routine laboratory testing. Glomerular
filtration rate was calculated based on serum creatinine, age, sex, and
ethnicity by CKD-EPI (Chronic Kidney Disease Epidemiology Collabo-
ration) formula [30]. Body surface area was estimated according to
Mosteller [31].
Mouse: Clinical biochemistry was measured on an automated analyzer
(Keylab System, BPC Biosed s.r.l., Rome, Italy): total cholesterol
(CHOLESTEROL F.X., KV1018VET), triglycerides (TRIGLYCERIDES,
KV1052VET), ALT (GPT/ALT Liquid, KV1034VET) (all kits provided by
BPC Biosed s.r.l., Rome, Italy).

2.6. Triglyceride content liver (mouse)
For analysis of triglyceride content of the liver, a triglyceride assay kit
was used according to the manufacture’s protocol (Abcam, Cam-
bridge, UK).

2.7. Intraperitoneal glucose tolerance test (mouse)
Mice were fasted overnight (16 h) before the test. Glucose was injected
intraperitoneally (2 g/kg body weight). Blood samples were taken from
the tail vein before and 30, 60, 90 and 120 min after the injection of
glucose. Blood glucose was determined with a OneTouch glucometer
(Lifescan, Milpitas, CA, USA).

2.8. Flow cytometry analysis (mouse)
Two hundred mL of blood were collected retro-orbitally and anti-
coagulated with heparin. Red blood cells were lysed with eBioscienc
RBC Lysis Buffer (Thermo Fisher Scientific, Waltham, MA, USA) and
then stained with CD115-APC, CD11b-FITC and GR1-PerCP (all Milteny
Biotec, Bergisch Gladbach, Germany). Samples were analyzed using a
FACScalibur (BD Biosciences, San Jose, CA, USA) running BD Cellquest
Pro and analyzed with Flow JO (TreeStar Inc., Ashland, OR, USA).
Monocytes were defined as CD115 positive and CD11b positive. We
used the mouse marker Gr1 (which binds Ly6C) to mark pro-
inflammatory monocytes.

2.9. Metabolomics (mouse and human)
Data generation: After blood draw, the serum was immediately shock-
frozen and stored at �80 �C until metabolomics analysis. Prior to the
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3
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extraction process, samples were thawed and 100 mL of each serum
sample was pipetted into randomly assigned wells of 2 mL 96-well
plates. Human reference plasma samples were pipetted into a well
of each 96-well plate. In addition, human pooled serum (Seralab) or
pool of aliquots of mouse serum samples were pipetted into six wells
of each 96-well plate for human or mouse serum sample sets,
respectively. Those samples were used to assess process variability
and to serve as technical replicates. One hundred mL of water were
pipetted into six wells of each 96-well plate to serve as process blanks.
Protein was precipitated and metabolites were extracted with meth-
anol (475 mL for human serum samples or 500 mL for the mouse
serum samples) containing four recovery standard compounds to
monitor extraction efficiency. After centrifugation, the supernatant was
split into four aliquots (100 mL each for human serum sample set) or
five aliquots (80 mL each for mouse serum sample set) onto 96-well
microplates. To minimize human error, liquid handling was per-
formed on a Hamilton Microlab STAR robot (Hamilton, Reno, NV, USA).
Sample extracts were dried on a TurboVap 96 (Zymark, Hopkinton, MA,
USA).
For the human serum samples, two aliquots were used for reverse
phase (RP)/Ultra Performance Liquid Chromatography-tandem Mass
spectrometry (UPLC-MS/MS) analysis in positive and negative elec-
trospray ionization (ESI) mode, while two aliquots were kept as re-
serves. Prior to UPLC-MS/MS in positive ESI mode, the samples were
reconstituted with 50 mL of 0.1% formic acid (FA) and those analyzed
in negative ESI mode with 50 mL of 6.5 mM ammonium bicarbonate,
pH 8.0. Reconstitution solvents for both ionization modes further
contained a cocktail of QC internal standards to monitor instrument
performance and also to serve as retention reference markers. Ana-
lyses were performed on a linear ion trap LTQ XL mass spectrometer
(Thermo Fisher Scientific GmbH, Dreieich, Germany) coupled with a
Waters Acquity UPLC system (Waters GmbH, Eschborn, Germany). Two
separate columns (2.1 � 100 mm Waters BEH C18 1.7 mm particle)
were used for acidic (solvent A: 0.1% FA in water, solvent B: 0.1% FA
in methanol) and for basic (A: 6.5 mM ammonium bicarbonate pH 8.0,
B: 6.5 mM ammonium bicarbonate in 95% methanol) mobile phase
conditions, optimized for positive and negative ESI modes, respec-
tively. After injection of the sample extracts, the columns were
developed in a gradient of 99.5% A to 98% B in 11 min run time at
350 mL/min flow rate. The eluent flow was directly connected to the
ESI source of the LTQ XL mass spectrometer. Full scan mass spectra
(80e1000 m/z) and data dependent MS/MS scans with dynamic
exclusion were recorded in turns.
For the mouse serum samples, two aliquots of the extract supernatant
were used for analysis by two separate (RP)/UPLC-MS/MS methods with
positive ESI mode, one for analysis by (RP)/UPLC-MS/MS with negative
ESI mode, and one for analysis by (HILIC)/UPLC-MS/MS with negative ESI
mode, and one sample was reserved for backup. Prior to the UPLC-MS/
MS runs the dried extract samples were reconstituted with 80 mL of
solvents compatible to each of the four methods. The reconstitution
solvents contained an internal cocktail of QC standards to monitor in-
strument performance and that also served as retention reference
markers. Analyses were performed on a Waters Acquity UPLC system
(Waters GmbH, Eschborn, Germany) coupled with a Thermo Scientific Q-
Exactive high resolution accurate mass spectrometry interfaced with a
heated electrospray ionization (HESI-II) source and Orbitrap mass
analyzer operated at 35,000 mass resolution (Thermo Fisher Scientific
GmbH, Dreieich, Germany). One of the aliquots was analyzed using
acidic positive ion conditions, chromatographically optimized for more
hydrophilic compounds. In this method, the extract was gradient eluted
from a C18 column (Waters UPLC BEH C18-2.1 � 100 mm, 1.7 mm)
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using water, methanol, 0.05% perfluoropentanoic acid (PFPA), and 0.1%
FA. The second aliquot was analyzed using acidic positive ion conditions,
chromatographically optimized for more hydrophobic compounds. The
extract was gradient eluted from the same aforementioned C18 column
using water, methanol, acetonitrile, 0.05% PFPA and 0.01% FA, and
was operated at an overall higher organic content. The third aliquot was
analyzed using basic negative ion optimized conditions using a separate
dedicated C18 column. The basic extracts were gradient eluted from the
column using water, methanol, and 6.5 mM ammonium bicarbonate pH
8. The fourth aliquot was analyzed via negative ionization following
elution from a HILIC column (Waters UPLC BEH Amide 2.1 � 150 mm,
1.7 mm) using a gradient consisting of water, acetonitrile, and 10 mM
ammonium formate pH 10.8. The MS analysis alternated between MS
and data-dependent MS scans using dynamic exclusion. The scan range
varied slighted between methods but covered 70e1000 m/z.
Raw data were extracted, peak-identified and QC processed using the
hardware and software of Metabolon (Durham, NC, USA). Compounds
were identified using their retention index (RI), accurate mass (þ/�
10 ppm) and MS/MS by comparison to library entries maintained by
Metabolon (Durham, NC, USA). Lastly, compounds were manually
checked and corrected, if necessary, by data analysts at Metabolon
using proprietary visualization and interpretation software to confirm the
consistency of peak identification among the various samples. Data were
delivered with the area under the curve of the compounds’ peak as the
value at its original scale. For further analysis, compounds were filtered
for deficient groups. A compound was removed if it was missing in more
than half of the samples within a group and if it was present above this
threshold in just one treatment group. Missing values were filled with
half the minimum of each compound. For all following analyses, filtered
and imputed metabolome data were log2 transformed.

2.10. 16S targeted metagenomic sequencing (mouse and human)
Data generation: The stool of human subjects was collected at visit 2.
The cecal content from each mouse was collected directly postmor-
tem. All samples were immediately stored at �80 �C in Biopure tubes
(Eppendorf, Hamburg, Germany). DNA was extracted from the cecal
content of mice and human stool using the QIAamp DNAStoolMini
(Qiagen, Venlo, Netherlands). The bacterial 16S rDNA gene was
sequenced (Vaiomer SAS, Labège, France) as previously described
[32]. The quality and quantity of extracted nucleic acids were evaluated
by gel electrophoresis (1% [w/w] agarose in Tris/borate/ethyl-
enediaminetetraacetic acid 0.5 x) and NanoDrop 2000 UV spectro-
photometer (Thermo Fisher Scientific, Waltham, MA, USA). The V3eV4
hyper-variable regions of the 16S rDNA gene were amplified from the
DNA extracts during a first PCR step using universal 16S primers. The
joint pair length was set to encompass 476 base pairs amplicon and
include specificity for the 16S rDNA gene of 95% of the bacteria in the
Ribosomal Database Project. For each sample, a sequencing library
was generated by the addition of sequencing adapters and multi-
plexing indexes during a second PCR step as described previously
[32,33]. The pool was denatured, diluted and loaded onto the Illumina
MiSeq cartridge according to the manufacturer’s instructions using
MiSeq Reagent Kit v3 (2 � 300 bp Paired-End Reads; Illumina, San
Diego, CA, USA). After demultiplexing of the barcoded Illumina paired
reads, single read sequences were cleaned and paired for each sample
independently into longer fragments. After quality-filtering and align-
ment against a 16S reference database, a clustering into operational
taxonomic units (OTU) with a 97% identity threshold, and a taxonomic
assignment were performed in order to determine community profiles.
RDP Mothur formatted RDP training set v9 and SILVA v119 Database
[34] were used for alignment and taxonomic assignment of sequences
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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into OTUs. One sample of the mouse Western diet antibiotics group
was excluded for further analysis as it was a clear outlier and possibly
mislabeled during library generation. The generated OTU table was
imported and further processed in R using the phyloseq package [35].
Filtering: OTUs that occurred less than six times per sample in the
whole dataset were removed. After filtering, 727 OTUs remained in our
mouse model and 529 OTUs in the human subjects. Normalization:
OTU counts were normalized using the Variance Stabilization of the
DESeq2 R package [35,36]. This gave similar results compared to a
log2 transformation. Before the normalization, size factors were esti-
mated using the geometric mean. The normalized values were then
used for subsequent analysis.

2.11. Bioinformatics analyses

2.11.1. 16S rRNA-based metagenomic and metabolomic alpha
diversity indices (mouse)
For the metabolomic diversity area, values were not imputed, filtered or
log transformed. The area represents the integrated curve of ion intensity
counts and is used analogous to the OTU counts. This violates a few
assumptions of the alpha diversity indices: 1) areas are continuous
values not ordinal like OTU counts, 2) a high area does not correspond to
a high concentration of the metabolite, as metabolites are ionized at
different efficiencies by the ESI in the Mass spectrometer, 3) ions without
a library entry were excluded in this analysis, so the whole population
might not be covered. Only the Observed index can in theory be accu-
rately applied to these data, where the presence of different metabolites
can be counted by checking if their area is above zero and not missing.
Generation of alpha diversities for metabolomic data was done using
the same way as the metagenomic alpha diversity indices using the
diversity function of the vegan package. The calculated diversity
indices were:
Observed:
Is the number of metabolites with area >0 and not missing.
Shannon:

H ¼ �
XR

i ¼ 1

pi ln pi

where pi is the proportional abundance of the area and R the number of
metabolites.

2.11.2. Metabolite cluster generation via WGCNA (mouse)
As a method to reduce the dimensionality of the metabolomics data
weighted correlation network analysis (WGCNA) was done using the R
WGCNA package [37]. A soft-thresholding power of 4 was chosen based
on the scale-free topology fit index-curve. Using this value the unsigned
correlation network adjacency was calculated. The topological overlap
matrix dissimilarity (TOM) of the adjacency matrix was then clustered
using the ‘ward.D2’ method. The resulting tree was cut using a hybrid
tree-cutting algorithm that was implemented in the cutreeDynamic
function using a deepSplit of 3 and minClusterSize of 20. This resulted in
15 clusters, with no unassigned compounds. The names of the clusters
were chosen arbitrarily as colors. The eigenvalues in each sample of the
resulting clusters were used for further analyses.

2.11.3. Pathway enrichment analysis (mouse)
Compounds that were clustered into a WGCNA cluster were subjected
to pathway enrichment analysis. The pathway information for each
compound was reported by Metabolon (Durham, NC, USA). A one-
sided Fisher test was used to determine if a pathway was enriched
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within a cluster. P-values were then adjusted using Benjamini-
Hochberg method and a cut-off of P < 0.05 and q < 0.2 were cho-
sen to determine if a pathway was significantly enriched.

2.11.4. PICRUSt/HUMAnN analysis (mouse)
HMP Unified Metabolic Analysis Network (HUMAnN) [38] is a tool to
infer the metabolic pathway information from a microbial community.
PICRUSt was used to predict the functional content of the microbiome
using 16S rRNA genes [39]. PICRUSt requires annotations from the
Green Genes database. OTUs were mapped accroding to Green Genes
Database. Following the MiSEQ SOP ([40], visited https://www.mothur.
org/wiki/MiSeq_SOP on 01/06/2016) Green Genes (gg_13_8_99) [41]
was used as an input to classifiy.seqs of Mothur [40]. Clustering was
then done using cluster.split with a cutoff of 0.15 at taxlevel 4 (Order).
The sequences were then classified into OTUs via classify.otu at a
cutoff of 0.03 and the biom file was generated using make.biom, with
gg_13_8_99 as the reference taxonomy. The resulting biom file was
then used for PICRUSt. PICRUSt (Version 1.0.0) was run on a Google
Cloud Compute Engine instance. The OTUs in the Green genes biom file
were normalized by their copy number. The normalized counts were
then used to predict the metagenomes with PICRUSt. The resulting
biom file from PICRUSt was converted to a tsv file and used for
HUMAnN. HUMAnN2 (version 0.7.0) was run on a Google Cloud
Compute Engine instance. Each sample was processed with humann2,
the results were joined and reported as relative abundances.

2.11.5. Cross-omics correlation network analysis (mouse)
Correlations between aortic lesion size assessed by histology, WGCNA
serum metabolite cluster eigenvalues and OTUs were calculated using
the spearman correlation coefficient and the cor.test function of the R
psych package. OTUs with less than four distinct observations were
excluded, so 522 out of 727 OTUs remained. Significance was
assessed using Benjamini & Hochberg P-value correction with a cutoff
of 0.05. For visualization the 10 WGCNA serum metabolite clusters
with the most significant OTU interactions were chosen. In addition to
the correlation coefficients, -log10 P-values from the main-effects of
the 2-way ANOVA using cluster eigenvalues against the treatment
groups were added to show the effect of diet and antibiotics treatment
in the clusters. To better visualize interactions only significant corre-
lations between OTU and clusters and between clusters and aortic
lesion were kept in the final network. The line thickness is based on the
P-value or correlation coefficient, values between atherosclerotic
lesion size and the clusters were scaled by the factor 10 to increase
readability. The network was constructed and modified via igraph in R
and exported to Cytoscape for final adjustment.

2.11.6. Differential analysis of OTU count (human)
OTU counts were transformed for DESeq2 with the phyloseq_to_de-
seq2 function of the phyloseq package. The DESeq2 package was then
used to perform a Wald test to compare differences in OTUs between
control versus atherosclerosis subjects [36]. In brief, a generalized
linear model is fitted to give the log2 fold change using a negative
binomial distribution with estimated sample-specific size factors and
gene-specific dispersion parameters. The Wald test (nbiomWaldTest of
DESeq2) was then used to test for significance of the log2 fold change.

2.11.7. LEfSe analysis (mouse)
Linear discriminant analysis Effect Size (LEfSe) [42] was used to
identify microbial communities that interacted consistently with our
treatments. LEfSe was performed using the LEfSe Docker container of
the biobakery account (biobakery/LEfSe). The raw counts of the filtered
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OTU table was used as an input. LEfSE parameters were left at their
defaults: alpha for ANOVA and Wilcoxon tests at 0.05, threshold of the
logarithmic LDA score at 2.0.

2.11.8. Random Forest of metabolomics (mouse)
Random Forest is a supervised learning algorithm suitable for high
dimensional data analysis. It uses an ensemble of classification trees,
each of which is grown by random feature selection from a bootstrap
sample at each branch. Class prediction is based on the majority vote
of the ensemble. Random Forest analysis of murine serum metab-
olomics was performed using the randomForest R package [43] and
visualized by MetaboAnalyst 4.0 [44].

2.11.9. Data availability
The mouse cecal 16S rRNA sequence data can be found under http://
www.ncbi.nlm.nih.gov/bioproject/PRJNA595367.
The human stool 16S rRNA sequence data can be found under http://
www.ncbi.nlm.nih.gov/bioproject/PRJNA595382.

2.12. Statistical analysis
Statistical approach of bioinformatic analyses is described in the
appropriate sections above. Data were analyzed using GraphPad
Prism, R and SPSS. The statistical analyses were carried out using
unpaired two-tailed Student’s t-test, one-way analysis of variance
(ANOVA) or ANOVA with repeated measures when appropriate. Data
are presented as means� standard deviation (S.D.). A P-value< 0.05
was considered to be statistically significant.

2.13. Software used

- R version 3.4.4 (2018-03-15)
- R packages

� Vegan 2.5e5
� WGCNA 1.63
� phyloseq 1.22.3
� DESeq2 1.18.1
� randomForest
� ggplot2 3.2.1
� psych 1.8.12

- LefSE
- Python 2.7.12
- Google Cloud Compute Engine instances: n1-standard-1 with ubuntu
14.04

- FastQC v0.11.3
- Cytoscape 3.7.0
- Mothur v1.34.4
- FROGS v1.4.0
- MetaboAnalyst 4.0
- GraphPad Prism 7.0a
- IBM SPSS Statistics Version 25
- Image J Version 1.50

3. RESULTS

3.1. Exacerbated atherosclerosis by antibiotics is linked to reduced
microbial and metabolic diversity
To examine the effect of long-term antibiotics treatment on athero-
sclerosis development, mice were subjected to a mix of orally largely
non-absorbable antibiotics (ABX) treated either with normal chow diet
6 MOLECULAR METABOLISM 36 (2020) 100976 � 2020 The Author(s). Published by Elsevier GmbH. T
(ND) or a Western-type diet (WD) (Figure 1A). As expected, we
observed that WD increased atherosclerosis development at aortic root
level (Figure 1B). Independently of the diet, ABX further augmented
atherosclerotic lesion size, while no interaction effect between diet and
ABX was noticed (Figure 1B). Metabolic phenotyping including body
weight, glucose tolerance, standard fasting lipid profile and liver
analysis did not reveal a specific effect explaining antibiotics-induced
atherosclerosis progression in our model (Supplementary Figure S2A-
F). No impact of antibiotics on circulating M1/M2 macrophages dif-
ferentiation was observed by flow cytometry (Supplementary
Figure S2G,H).
Given the major impact of ABX on the bacterial gut flora, we next
evaluated the antibiotics effect on gut bacteria. Mice treated by ABX
had increased weight of cecal content with a more liquid consistency
(Supplementary Figure S3A), which has been described in antibiotics-
treated and germ-free mice before [45]. Quantitative analysis of cecal
content DNA e as an indicator of bacterial count e exhibited large
reductions of DNA by ABX in both diets (Figure 1C). We performed 16S
ribosomal rRNA targeted metagenomic sequencing of cecal content for
deeper analysis of gut microbiome composition. Clear separation be-
tween all four groups was revealed by principal coordinate analysis
(Figure 1F) as well as low variance within the different groups iden-
tified, for example, by relative abundance on family level (Figure 1D).
To obtain a picture of gut bacterial diversity, we estimated alpha di-
versity by different indices, which revealed loss of diversity by anti-
biotics treatment (Figure 1E,G). Both the loss of bacterial quantity and
microbial alpha diversity in the cecum had a strong negative correlation
to atherosclerotic lesion size (Figure 1C,E,G).
Linear discriminant analysis (LDA) Effect Size (LEfSe) algorithm [42,46]
(to gain deeper insights into the gut microbiome differences between
the groups taking account of the complex taxonomic levels) revealed
that ND untreated group was mainly characterized by Porphyr-
omonadaceae and Prevotellaceae of class Bacteroidetes, as well as
Ruminococcaceae and Lachnospiraceae, members of class Clostridia.
All of the latter but Prevotellaceae were also among the top bacteria in
untreated WD mice (Supplementary Figure S3B and Supplementary
Table S1). LEfSe analysis of antibiotics-treated groups exposed a
highly dysbiotic microbiome including members of Actinobacteria,
Bacilli, Tenericutes, Alpha-, Beta- and Gammaproteobacteria as pre-
dominant bacterial classes. Ruminococcaceae as well as some
members of Bacteroidetes had significant LDA scores in ND-ABX, but
not in the WD-ABX group (Supplementary Figure S3B and
Supplementary Table S1), therefore suggesting a potential protective
effect regarding dysbiosis of normal compared to Western diet in
antibiotics-treated animals.
We further aimed to evaluate the metabolic impact of reduced mi-
crobial diversity by antibiotics. The blood metabolome has been used
to predict gut microbiota diversity before [47]. Therefore we per-
formed non-targeted serum metabolomics in the mice
(Supplementary Table S2). Principle component analysis as well as
Random Forest classification of serum metabolomics (Figure 1G and
Supplementary Figure S4) showed a distinct separation of all groups
indicating a strong effect of diet on the metabolome, but also of
antibiotic treatment. Next, we investigated the alpha diversity of the
metabolome by calculation of Observed index, the only applicable
alpha diversity index for metabolomics data. We found a clear
reduction of metabolome alpha diversity by diet as well as antibiotics
treatment analogous to the decrease of microbial diversity
(Figure 1G,I). Gut microbiota and serum metabolome alpha diversity
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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presented a strong correlation to atherosclerotic lesion size
(Figure 1E,G,I) as well as to each other (Figure 1J).

3.2. A distinct metabolic signature links gut flora metabolism to
atherosclerosis
We then asked which particular metabolic changes underlie
antibiotics-induced atherosclerosis exacerbation. To identify spe-
cific metabolic pathways that explain atherosclerosis progression
by antibiotics, co-abundance clustering by weighted correlation
network analysis (WGCNA) of metabolites was performed [24,48].
A total of 619 chemically-identified metabolites were clustered and
a set of 15 metabolite clusters could be established (Figure 2A).
Cluster names were chosen arbitrarily as colors. Significant over-
represented pathways in the clusters were identified (Figure 2A).
Manhattan plots of single metabolites of each cluster as well as 2-
way ANOVA analysis of eigenvalues of the metabolite clusters
allowed us to identify clusters that were impacted by diet, anti-
biotics or both (Figure 2A and Supplementary Table S3). Diet had a
significant influence on all metabolite clusters shown by the 2-way
ANOVA analysis with the greatest impact on clusters related to lipid
metabolism (Figure 2A and Supplementary Table S3). Analysis of
antibiotics treatment effect revealed an impact on 10 of the 15
clusters with the strongest effect on metabolite cluster magenta
(tryptophan metabolism and secondary bile acid metabolism), as
well as blue (pyrimidine metabolism, cytidine containing) and
yellow (polyunsaturated fatty acids and food component/plant)
(Figure 2A and Supplementary Table S3). To identify pathways that
were modulated by antibiotics and associated to atherosclerosis,
we subjected the metabolite clusters to phenotype-associated
filtering [48]. To discover strong candidates that may modulate
atherosclerosis, only metabolite clusters with a high correlation to
lesion size (r2 � 0.5; Benjamini-Hochberg-adjusted P < 0.05)
were selected as well as those with a significant impact of anti-
biotics as shown by 2-way ANOVA (Benjamini-Hochberg-adjusted P
< 0.05) (Figure 2B and Supplementary Table S3). The algorithm
identified five metabolite clusters matching these criteria: two with
positive correlation (greenyellow; green) and three with negative
correlation to aortic lesion size (magenta; salmon; purple). Cluster
magenta, previously identified as the cluster with the highest
impact of antibiotics, was enriched by tryptophan metabolism and
secondary bile acid metabolism (Figure 2A). Top metabolites of
magenta particularly belonged to gut flora-derived tryptophan de-
rivatives, which was exposed by their chemical indole-structure
(Supplementary Figure S5 and Supplementary Table S2) [2].
Tryptophan degradation products by human enzymes, kynurenate
and kynurenine, were not among the metabolites in cluster
magenta and were not altered by antibiotics treatment
(Supplementary Table S2).
Clusters salmon and purple were also influenced by antibiotics, but to a
lesser extent. Enriched pathways were guanidino and acetamido
metabolism/gamma-glutamyl amino acids (cluster salmon) and dihy-
droxy fatty acids (cluster purple) (Figure 2A, Supplementary Figure S5
and Supplementary Table S2). Pathways significantly enriched in
cluster greenyellow and green were particularly associated to lipid
metabolism (Figure 2A, Supplementary Figure S5 and Supplementary
Table S2).
To validate that the observed metabolic changes by antibiotics in our
model are based on modulation of gut microbiota, we analyzed bac-
terial KEGG gene pathways in the cecal content. Given the limitation
MOLECULAR METABOLISM 36 (2020) 100976 � 2020 The Author(s). Published by Elsevier GmbH. This is an open
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that full sequencing data were not available, we reconstructed the
microbial metabolic KEGG pathways of 16S rRNA sequencing data via
PICRUSt/HUMAnN [24,46,49]. We found that KEGG pathway ko00061
fatty acid synthesis fit our findings of metabolite cluster green and
greenyellow, whereas ko00400 phenylalanine, tyrosine and tryptophan
biosynthesis matched our metabolomics findings of cluster magenta,
thus providing evidence for a direct link between microbial functional
capacity and the serum metabolome (Figure 2C and Supplementary
Table S4).

3.3. Atherosclerosis-linked serum metabolome is associated to
reduction of certain Bacteroidetes and Clostridia in the gut
To connect specific changes in the gut microbiome to atherosclerosis
via serum metabolome, we created an integrative cross-omics model
including serum metabolite clusters, bacterial OTUs and atheroscle-
rotic lesion size (Figure 3AeC). Visual inspection and Coinertia analysis
with MonteeCarlo test (P ¼ 0.01) confirmed a general overlap of the
datasets (Figure 3A). The visualized integrative cross-omics model
included the 10 clusters with the most OTU significant interactions and
additionally atherosclerotic lesion size by histology as phenotype and
type of treatment (Figure 3C).
Metabolite cluster magenta, which was previously identified as the
cluster with highest impact of antibiotics treatment, also revealed the
highest number of correlations between bacterial OTUs and metabo-
lites of the cluster shown by Manhattan plot (Figure 3B). Our cross-
omics analysis discovered that cluster magenta had positive correla-
tions to certain Clostridia (Lachnospiraceae, Ruminococcaceae) and
Bacteroidetes (Porphyromonadaceae, Rikenellaceae) (Figure 3B,C).
Streptococcacae, Staphylococcacae, Propionibactericaeae and
Enterobacteriaceae OTUs showed a weak negative correlation to the
cluster. However, magenta was mainly characterized by gut-derived
metabolites that have been associated to gut alpha diversity before
[47]. Therefore we hypothesized that the loss of certain bacterial
species rather than the increase of others by antibiotics is responsible
for a reduction of metabolites of the cluster magenta. Blue, another
cluster highly impacted by antibiotics, also exhibited a high number of
correlations between its metabolites and OTUs (Figure 3B,C). However,
no relationship to atherosclerosis was observed.
Analysis of the other metabolic clusters related to lesion size disclosed
less diverse correlations to bacterial OTUs (Figure 3B,C). Both
metabolite clusters, which were positively associated with athero-
sclerosis (green; greenyellow) and mainly characterized by lipid
metabolism, showed negative correlations, particularly to Lachno-
spiraceae (Figure 3B,C). Clusters purple and salmon exhibited similar
correlations to OTU as magenta, but additionally to Prevotellaceae of
class Bacteroidetes.
In summary, our model proposes that mainly three bacterial families
contributed to an altered serum metabolome associated to antibiotics-
induced atherosclerosis. In detail, these were two members of class
Clostridia, Lachnospiraceae and Ruminococcaceae, as well as a
member of Bacteroidetes, Porphyromonadaceae.

3.4. Tryptophan supplementation reverses in part antibiotics-
induced atherosclerosis
Phenotype-associated filtering revealed five different clusters that may
drive antibiotics-induced atherosclerosis progression (Figure 2B).
Magenta was identified as the metabolite cluster with the strongest
impact of antibiotics and majorly linked to changes in gut bacteria. The
top ranked metabolites in this cluster belonged to tryptophan
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Figure 1: Exacerbated atherosclerosis by antibiotics is linked to reduced microbial and metabolic diversity. (A) Flowchart showing the cross-omics approach to reveal gut
microbiome related pathways underlying atherosclerosis progression after antibiotics treatment ND: normal diet, WD: Western diet, ABX: antibiotics treatment. (B) Micrographs of
aortic roots stained with hematoxylin and eosin stain to evaluate extend of atherosclerosis (representative images) and quantification of aortic lesion size (data are the mean � S.D.,
n ¼ 5e7 per group). (C) DNA concentration of cecal content as indicator of gut bacteria quantity (data are the mean � S.D, n ¼ 6e7 per group) and Pearson correlation to aortic
lesion size. (D) Relative abundance of cecal bacteria at family level. (E) Alpha diversity of cecal microbiome by Shannon index (data are the mean � S.D., n ¼ 6e7 per group) and
Pearson correlation to aortic lesion size. (F) Principal coordinate analysis plot of 16S rRNA sequencing data of cecal content. (G) Alpha diversity of cecal microbiome by Observed
index (data are the mean � S.D., n ¼ 6e7 per group) and Pearson correlation to aortic lesion size. (H) Principal component analysis of serum metabolomics. (I) Alpha diversity of
serum metabolome measured by Observed index (data are the mean � S.D., n ¼ 6e7 per group) and Pearson correlation to aortic lesion size. (J) Correlation between serum
metabolome alpha diversity and cecal microbiome alpha diversity (both measured by Observed index).
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metabolism (Supplementary Figure S5), while we observed that mi-
crobial tryptophan biosynthesis was reduced by antibiotics (Figure 2C).
Therefore we asked if reduced microbial tryptophan biosynthesis by
antibiotics contributes to atherosclerosis and whether supplementation
of tryptophan could restore the atherosclerotic phenotype induced by
antibiotics. To test this hypothesis, a separate set of ApoE �/� mice
was treated by the same protocol as before either on ND or WD
receiving the same antibiotics cocktail. Groups were further divided
into 1% tryptophan supplementation in their diet and no supplemen-
tation during the time of antibiotics treatment. Histology of aortic roots
was assessed after 16 weeks of the experiment in analogy with the
previous mouse experiment. In a 3-way ANOVA model including an-
tibiotics treatment, with diet and tryptophan supplementation as in-
dependent variables and lesion size as a dependent variable, we
observed in accordance to our previous experiment that antibiotics
treatment (P¼ 0.005) and diet (P< 0.001) had independent effects on
the degree of atherosclerosis (Figure 4A,B). Tryptophan supplemen-
tation alone did not have any impact on atherosclerosis (P¼ 0.231). By
contrast, our model revealed a significant interaction effect of antibi-
otics treatment and tryptophan supplementation on the reduction of
aortic lesion size (P ¼ 0.028) (Figure 4AeC). Hence, taking in account
that more than a single pathway is involved in atherosclerosis pro-
gression by antibiotics, this model provides evidence that tryptophan
supplementation is in part able to restore the antibiotics-induced
phenotype.

3.5. Antibiotics-linked atherogenic metabolic pathways and fecal
bacteria are altered in patients with carotid artery disease
To endorse that pro-atherogenic metabolic pathways modulated by
antibiotics in our mouse model are also linked to atherosclerosis in
humans, we performed the same metabolomics approach in a cohort
of 10 patients with carotid atherosclerosis diagnosed by duplex so-
nography and 20 control subjects (Figure 5A) with no significant
difference in baseline characteristics including age, gender, body
mass index and renal function, blood pressure, diabetes-related
parameters, medication, and standard serum lipid profile (Table 1).
Our metabolomics approach detected 319 chemically identified
metabolites (Supplementary Table S5). In patients with carotid
atherosclerosis, our analyses revealed a similar metabolic phenotype
as the one induced by antibiotics in our mouse model. Particularly,
patients with atherosclerosis exhibited lower levels of tryptophan
(Figure 5B).
We also observed metabolic changes in correspondence to other
pathways identified in our mouse model. Long-chain fatty acids were
increased in the atherosclerosis group (Figure 5B) comparable to the
findings in mouse WGCNA metabolite cluster green and bacterial KEGG
pathway ko00061 (Figure 2A,C). We found monohydroxy fatty acids
also to be modulated in our patients cohort (Figure 5B) as well as
mouse WGCNA metabolite cluster green (Figure 2A,C). In addition, 4-
guanidinobutanoate, a metabolite of guanidino metabolism, was found
to be reduced in patients with carotid atherosclerosis (Figure 5B) and
among the top metabolites of WGCNA cluster salmon in our mouse
model (Figure 2A and Supplementary Figure S5).
Analysis of fecal 16S sequencing data in our human cohort revealed
only a trend towards lower alpha diversity in the diseased group
(Supplementary Figure S6). However, among the top 10 bacteria
differing between both groups shown by Wald test [50], we found a
reduction of the members of four bacterial families, which have been
diminished by antibiotics and linked to increased atherosclerosis:
Lachnospiraceae, Ruminococcaceae, Porphyromonadaceae and Pre-
votellaceae (Figure 5C and Supplementary Table S6).
MOLECULAR METABOLISM 36 (2020) 100976 � 2020 The Author(s). Published by Elsevier GmbH. This is an open
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4. DISCUSSION

The relationship between gut microbiota and host metabolism remains
largely elusive, but recent breakthrough data suggest a significant role
in the progression of cardiovascular disease [1,51]. A major emerging
concept is the multi-faceted role of the microbiome playing either a
positive or negative role, depending on the circumstances. Gut-derived
TMAO has been identified as a biomarker of cardiovascular mortality
[6,7] and microbiota-associated pathways have been linked to
augmented arterial thrombosis [8e10]. On the other hand, the use of
antibiotics has long-term effects on bacterial richness [20] and
negatively affects metabolic parameters such as insulin sensitivity and
obesity [21,52]. Recently, exposure to antibiotics has been identified as
novel risk factor for cardiovascular events [22].
To explore gut microbiota-related metabolic pathways connected to
atherosclerosis progression, we integrated data on phenotype, gut
microbiome and serum metabolome in a murine model of athero-
sclerosis challenged with oral antibiotics. Our model points towards
exacerbated atherosclerosis by antibiotics-induced dysbiosis, partic-
ularly due to a decrease of tryptophan metabolites, but also other
pathways, mainly related to lipid metabolism. These metabolic alter-
ations were largely facilitated by loss of few bacterial families only,
notably Ruminococcaceae and Lachnospiraceae (both Clostridia) as
well as Porphyromonadaceae (Bacteroidetes). Functional reconstruc-
tion of targeted 16S rRNA metagenomic sequencing data confirmed
reduced tryptophan and increased fatty acid biosynthesis in the gut
microbiome, thus indicating a direct impact on the serum pool of these
metabolites. In patients with carotid atherosclerosis compared to
subjects with a similar cardiovascular risk profile, our serum metab-
olome analyses revealed a similar metabolic phenotype as the one
induced by antibiotics in our mouse model. This included reduced
tryptophan and increased long-chain fatty acids. Clustering of serum
metabolites by WGCNA and phenotype-associated filtering identified a
metabolite cluster, magenta, mainly characterized by tryptophan
metabolism, that was highly affected by antibiotics treatment and
inversely correlated to atherosclerotic lesion size. Based on these
findings and reduced microbial tryptophan biosynthesis by antibiotics
treatment, we showed that tryptophan supplementation was in part
able to restore the antibiotics-induced atherosclerosis phenotype. Our
functional mouse experiment therefore suggests a previously unknown
protective effect of tryptophan supplementation in antibiotics-induced
atherosclerosis progression.
Our work complements other mouse studies investigating the influ-
ence of gut microbiota on atherosclerosis. While our study revealed a
diet-independent effect of antibiotics on atherosclerosis development
with no effect on the fasting standard lipid profile, Lindskog Jonsson
et al. as well as Stepankova et al. revealed increased atherosclerosis
accompanied by elevations in serum cholesterol in germ-free
compared to conventionally-raised ApoE�/� mice [53,54]. This ef-
fect was observed only in a normal chow diet, but not in a Western diet.
Similar observations were made in the low-density lipoprotein receptor
knockout (LDLR�/�) mouse model [10]. In contrast, others studies
using ApoE�/� mice found either no effect of germ-free conditions on
atherosclerosis (on Western diet) [55], or even reduced lesion size (on
a chow diet) [56]. Neither study detected alterations in serum
cholesterol. Studies with antibiotics also revealed conflicting results.
Rune et al. observed reduced plaque size and cholesterol levels by
ampicillin treatment in Western diet-treated ApoE�/� mice [57],
whereas Gosh et al. found reduced lesion and cholesterol by combi-
nation of neomycin and polymyxin B in LDLR�/� mice [58]. In
contrast, another study found an increase of serum cholesterol by
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Figure 2: A distinct metabolic signature links gut flora metabolism to atherosclerosis. (A) Clustering of serum metabolites by weighted correlation network analysis
(WGCNA) resulting in 15 metabolites clusters (names of the clusters were chosen arbitrarily as colors). Manhattan plots show impact of treatments (diet and antibiotics) on single
metabolites of each metabolite cluster. The dashed lines indicate a Benjamini-Hochberg-adjusted P-value <0.05. Eigenvalues of clusters were used for Pearson correlation
analysis to atherosclerotic lesion size assessed by histology. Pathway enrichment analysis was performed by a one sided Fisher test based on the pathway annotations. All n ¼ 6e
7 per group. Treatment effect of single metabolites by Benjamini-Hochberg-adjusted 2-way-ANOVA. Pearson correlation between WGCNA metabolite eigenvalues to lesion size (P-
values Benjamini-Hochberg-adjusted). Pathway enrichment analysis by one sided Fisher test (P-values were adjusted using Benjamini-Hochberg method and a cut-off of q < 0.2
was chosen to determine if a pathway was significantly enriched). ND: normal diet, WD: Western diet, ABX: antibiotics treatment. (B) Phenotype-associated filtering of WGCNA
metabolite clusters by significant impact of antibiotics treatment and high correlation to atherosclerotic lesion size revealed 5 metabolite clusters matching these criteria. Upper
graphs: eigenvalues of clusters. Benjamini-Hochberg-adjusted P-values indicate impact of ABX by 2-way-ANOVA (Boxplots: Center line: median; box limits: 25-75th percentiles;
whiskers: min. to max., n ¼ 6e7 per group). Lower graphs: Pearson correlation of eigenvalues of clusters to aortic lesion size (n ¼ 5e7 per group). All P-values were corrected for
multiple testing using the BenjaminieHochberg criterion. (C) Prediction of functional content of the cecal content microbiome using HMP Unified Metabolic Analysis Network
(HUMAnN) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Two KEGG pathways matching the metabolomics findings are shown.
Benjamini-Hochberg-adjusted P-values indicate impact of ABX by 2-way-ANOVA (Boxplots: Center line: median; box limits: 25-75th percentiles; whiskers: min. to max., n ¼ 6 e 7
per group).
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broad-spectrum antibiotics in both knockout models, but did not
evaluate atherosclerotic lesion size [59]. Using the same antibiotics
protocol as in our study (ampicillin, metronidazole, neomycin and
vancomycin), Wang and colleagues demonstrated reduced lesion size
by antibiotics in ApoE�/� mice fed with a choline-rich chow diet,
presumably by reducing gut microbiota-derived TMAO. However, in
mice receiving a chow diet without choline supplementation, antibi-
otics treatment resulted in a trend towards increased lesion size, which
was similar to our study [4]. In contrast to the findings of Wang,
Lindskog Jonsson et al. found no effect of choline supplementation on
atherosclerotic lesion size in ApoE�/� mice on a normal chow diet,
although TMAO levels were significantly elevated by choline treatment
in conventionally-raised mice. As expected, we found markedly
reduced levels of TMAO by antibiotics (Supplementary Figure S5), thus
suggesting no contribution of TMAO to the phenotype in our study.
Various factors may explain these potentially conflicting results.
Although most studies have been performed on the same background
(C57BL/6), different breeding/housing conditions, age, diet and feeding
regime as well as experimental protocol might lead to substantial
differences in the gut microbiome. Those experimental difference
might impact the microbiota composition of conventionally-raised/non-
antibiotics-treated control groups in different studies [45,60].
Furthermore, broad-spectrum antibiotics effectively deplete gut
microbiota, but do not establish germ-free conditions. Overgrowth of
antibiotic-resistant species rather than loss of commensal bacteria by
antibiotics might explain differences between antibiotics-treated and
germ-free mice [61]. In our study, antibiotic treatment resulted in a
remarkably increase of Brucellaceae relative abundance in normal diet
and Streptococcacae in Western diet (Figure 1D). Our functional KEGG
gene reconstruction revealed increased capacity of fatty acid biosyn-
thesis (Figure 2C). Thus, bacterial overgrowth of species with
increased capacity of fatty acid biosynthesis might contribute to
increased plaque size by antibiotics in our study.
However, our data are in line with human studies showing that dys-
biosis, such as through antibiotics treatment, is associated with an
unfavorable metabolic phenotype [18,52] as well as cardiovascular
outcome [22,62]. Lately, the same antibiotics cocktail used in our
study induced detrimental effects in a mouse model of myocardial
infarction [63].
As expected, antibiotics had a major impact on gut bacteria leading to
major dysbiosis. This finding was highly correlated with the extent of
atherosclerosis. There is increasing evidence that dysbiotic changes in
the gut microbiome are linked to cardiovascular disease [16,64]. In our
study, we observed a loss of bacterial diversity and an increase of
some Proteobacteria in antibiotics-treated mice. In a cohort of almost
4000 patients, blood measurements of 16S markers for common
bacteria phyla correlated negatively and 16S markers for Proteobac-
teria positively with the onset of cardiovascular events [62]. In another
study including 617 middle-aged women, pulse wave velocity (PWV) as
a marker for arterial stiffness was negatively correlated with intestinal
alpha diversity. The main bacterial family with a negative association to
PWV after adjusting for covariates was Ruminococcaceae [14].
Intriguingly, loss of Ruminococcaceae was one of the main drivers of
metabolic changes linked to atherosclerosis in our mouse model and
among the top 10 bacteria differing between patients with and without
atherosclerosis in our cohort.
Antibiotics treatment highly affects the host serum metabolome and
has been linked to metabolic perturbations in humans and mice
[52,65,66]. Here, however, we show first that the loss of gut
microbiota diversity by antibiotics is directly associated with the loss
of metabolic diversity in the host. Previous studies found a link
MOLECULAR METABOLISM 36 (2020) 100976 � 2020 The Author(s). Published by Elsevier GmbH. This is an open
www.molecularmetabolism.com
between diminished short-chain fatty acids by antibiotics and the
cardiometabolic phenotype [63,65]. In accordance, others suggested
a protective role of gut-derived short-chain fatty acids, particularly
butyrate, on atherosclerosis [67e69]. We observed a trend towards
reduction of short-chain fatty acid metabolites by antibiotics in mice
on normal diet, but not on Western diet (Supplementary Figure S7).
The low fiber content of the Western diet might account for these
diet-specific differences. We cannot exclude that diminished short-
chain fatty acids by antibiotics contribute to increased atheroscle-
rosis in normal diet-treated animals, but this finding does not explain
the diet-independent effect of antibiotics on atherosclerosis in our
study.
Our non-targeted cross-omics approach identified particularly
tryptophan metabolism, as well as alteration in lipid metabolism
including long-chain fatty acids as main, diet-independent, facili-
tators of antibiotics-induced atherosclerosis progression. Our
additional data in humans are limited in power and do not allow a
full integrative analysis. Considering this limitation, our study
suggests that reduced tryptophan and increased long-chain fatty
acid metabolism are respectively linked to atherosclerosis in
humans as well. These results are in agreement with previous
studies. Low levels of serum tryptophan have been shown to
predict cardiovascular mortality in patients with coronary heart
disease [70], while diminished tryptophan and microbiota-linked
tryptophan derivatives levels have been linked to advanced
atherosclerosis in study by Cason et al. [71]. In this study, tryp-
tophan and indolepropionate, one of the top 10 metabolites in the
cluster magenta in our study, were further negatively correlated
with ankle-brachial index as a surrogate for overall atherosclerotic
disease burden [71]. In a combined host-gut bacteria model based
on available genome annotation information on human intestinal
bacteria, tryptophan metabolites have been predicted as major
bioactive microbiota metabolites [2]. Our results highlight a link
between atherosclerosis and reduced bacterial tryptophan synthesis
accompanied by diminished microbiota tryptophan serum metabo-
lites. Gut-derived tryptophan derivatives have been recognized as
essential microbial interspecies as well interkingdom signaling
molecules to communicate with the host [72]. In end-stage chronic
kidney disease, some tryptophan derivatives such as indoxyl sulfate
and indoleacetate reach high concentrations due to a lack of renal
clearance and are associated with cardiovascular mortality [73,74].
However, our data contribute to the concept, in which an equilib-
rium of tryptophan derivatives from microbiota is essential to
maintain host integrity. Lately, it has be shown that exacerbation of
blood pressure by high salt intake was facilitated by changes in the
gut microbiome linked to the reduction of gut-derived tryptophan
metabolites affecting Th17 response [75].
Molecular targets of indoles that may affect atherosclerosis remain to
be defined. Several microbial tryptophan catabolites have been iden-
tified as modulators of aryl hydrocarbon receptor (Ahr) [76,77]. Ahr
expression has been linked to atherosclerosis in humans and mice
[78,79]. However, the effects of Ahr activation on the vasculature
remain ambiguous and depend on the type of agonist, experimental
model as well as species [76,77,80]. In an ApoE�/� mouse model,
activation of Ahr increased atherosclerosis [81], whereas loss of Ahr
was protective on vascular aging [82]. On the other side, activation of
Ahr by indoles has been shown to balance intestinal mucosal reactivity
via interleukin-22 [76]. In a complementary study, Fatkhullina et al.
were able to demonstrate that interleukin-22 response reduced diet-
induced atherosclerosis in LDL�/� mice by repressing pro-
atherogenic gut bacteria [83]. In summary, these studies indicate a
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 11

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Figure 3: Atherosclerosis-linked serum metabolome is associated to reduction of certain Bacteroidetes and Clostridia in the gut. (A) Sample and variable space between
serum metabolomics and cecal 16S rRNA sequencing data sets showing a good overlap of both data sets. (B) Number of significant positive (blue)/negative (red) Spearman
correlations (Benjamini-Hochberg adjusted p-value < 0.05) between log transformed metabolite areas and OTU counts, grouped by WGCNA cluster assignment (y-axis) and OTU
family (x-axis). To the right: Manhattan plot showing Benjamini-Hochberg adjusted P-values of Spearman correlations between serum metabolites assigned to WGCNA metabolite
clusters and cecal OTU counts (n ¼ 6e7 per group). The dashed line indicates an adjusted P-value <0.05. (C) Integrative cross-omics analysis including aortic lesion size by
histology as phenotype, OTUs with more than four distinct observations (522/727), aortic lesion size and cluster eigenvalues were analyzed using Spearman correlation. P-values
were adjusted using Benjamini-Hochberg and significance was assessed at adjusted P-value < 0.05. The 10 metabolite clusters with the most OTU significant interactions were
kept. Only OTU e cluster and cluster e aortic lesion interactions are displayed. -log10 P-values from the main-effect ANOVA using cluster eigenvalues against the treatment groups
were added to show the effect of diet and antibiotics in the clusters. The line thickness is based on the -log10 P-value of the ANOVA or the correlation coefficient, values between
aortic lesion size and the clusters were scaled by the factor 10 to increase readability. Solid lines: Spearman correlation; dashed lines: -log10 P-value of ANOVA; Triangle: main
effect of ANOVA; Octagon: phenotype; squares: WGNCA metabolite clusters; dots: OTUs; red lines: negative correlation/main effect; green lines: positive correlation/main effect.
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Figure 4: Tryptophan supplementation reverses in part antibiotics-induced atherosclerosis. (A) Micrographs of aortic roots stained with hematoxylin and eosin stain to
evaluate extend of atherosclerosis of mice with or without supplementation of tryptophan (representative images). ND: normal diet, WD: Western diet, ABX: antibiotics treatment. (B)
Quantification of aortic lesion size (data are the mean � S.D., n ¼ 4e7 per group). The displayed P-value represents the interaction between tryptophan and antibiotics using a 3-
way ANOVA model including diet, antibiotics and tryptophan supplementation as independent variables and aortic lesion size as dependent variable. (C) Estimated marginal means
between antibiotics- and tryptophan-treated mice.
protective effect of certain indoles on atherosclerosis via interleukin-22
upon activation of Ahr.
Similar conflicting results have been revealed for the xenobiotic sensor
pregnane X receptor (PXR), which can be activated by gut microbiota-
derived indolepropionate [84]. In a mouse model of colitis, a Clos-
tridium strain mediated protective effects via indolepropionate pro-
duction and consecutive PXR activation [84]. Administration of
indolepropionate in a rat model of steatohepatitis was able to restore gut
dysbiosis and reduce endotoxin leakage, a mechanism that has been
linked to atherosclerosis before [85]. On the contrary, studies with
ApoE�/� mice indicate a detrimental effect of PXR activation by a
specific agonists, respectively a protective role of PXR knockout [86,87].
Together, these data suggest that xenobiotic receptors such as PXR
and Ahr exhibit either positive or negative effects depending on the
circumstances. Further, species differences in receptor activation must
be taken in account [80,84]. Hence, data in mice should be interpreted
with caution and might not be fully translatable to humans.
Our study has limitations. The scope of our study was to give insights
in metabolic changes that may underlie atherosclerosis development
by antibiotics via a multi-omics model. Although we could show that
disturbed tryptophan metabolism is in part responsible for increased
atherosclerosis by antibiotics, we were not able to provide a full
MOLECULAR METABOLISM 36 (2020) 100976 � 2020 The Author(s). Published by Elsevier GmbH. This is an open
www.molecularmetabolism.com
mechanistic model due to the multifaceted impact of gut microbiota on
the host metabolism. We propose a metabolic effect of antibiotics on
atherosclerosis, but the impact of the immune system has been
studied only to a minor extend. Future studies must integrate the
cross-talk between metabolic alterations, immune response, molec-
ular targets and atherosclerosis. In addition, other pathways that were
correlated to atherosclerosis in our study should be validated in future
works to obtain a complete picture. In fact, secondary bile acid
metabolism was another pathway reduced in cluster magenta and
negatively correlated to atherosclerotic plaque size. Secondary bile
acids are able to modulate pro-inflammatory cytokine response as well
as hepatic glucose and lipoprotein metabolism in part through acti-
vation of the Takeda G protein-coupled receptor 5 and farnesoid X
receptor [88]. A direct link between secondary bile acid metabolism
and atherosclerosis remains to be established, but a specific agonist
for both bile acid receptors was able to reduce atherosclerotic burden
in an ApoE�/� mouse model [89].
Further, our human study was of exploratory nature to investigate
metabolic pathways linked to atherosclerosis beyond classical risk
factors. These findings need to be validated in a larger cohort and any
intervention strategies including antibiotics treatment must also be
addressed in future studies.
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Figure 5: Antibiotics-linked atherogenic metabolic pathways and fecal bacteria are altered in patients with carotid artery disease. (A) Serum and feces of patients with
carotid atherosclerosis (Ath, n ¼ 10) diagnosed by duplex sonography and control subjects (Ctrl, n ¼ 20) were analyzed via metabolomics and 16S rRNA targeted sequencing. (B)
319 chemically-identified metabolites were compared to the previously identified atherosclerosis-linked pathways impacted by antibiotics treatment in the mouse mode (Boxplots:
Center line: median; box limits: 25-75th percentiles; whiskers: min. to max.). Colors indicate corresponding WGCNA metabolite cluster in the mouse model. (C) Top 10 operational
taxonomic units (OTU) of fecal 16S analysis differing between control and atherosclerosis group revealed by Wald test (Data are variance stabilized OTU counts. Boxplots: Center
line: median; box limits: 25-75th percentiles; whiskers: min. to max.)
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5. CONCLUSION

In summary, our data show detrimental effects of antibiotics on
atherosclerosis development independently of diet. Taking advantage
of the negative impact of antibiotics on atherogenesis, we provide
comprehensive data on the complex interaction between gut micro-
biome and host metabolism. Our study supports the evidence that
dysbiotic changes, such as by antibiotics, are linked to metabolic
diseases and increased cardiovascular risk. Therefore, restrictive use
of antibiotics might not only be important with regards to antimicrobial
resistance, but also to maintain gut microbiota integrity to prevent
cardiometabolic diseases.
We advise others to interpret our data in the context of other mouse
studies with various results. Our study contributes to the concept of a
multi-faceted role of microbiota on cardiovascular disease, which
depends on different circumstances such as diet, species, and
experimental protocol.
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