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We introduce a simple model to study movie competition in the recommender systems. Movies of
heterogeneous quality compete against each other through viewers’ reviews and generate interesting
dynamics of box-office. By assuming mean-field interactions between the competing movies, we
show that run-away effect of popularity spreading is triggered by defeating the average review score,
leading to hits in box-office. The average review score thus characterizes the critical movie quality
necessary for transition from box-office bombs to blockbusters. The major factors affecting the
critical review score are examined. By iterating the mean-field dynamical equations, we obtain
qualitative agreements with simulations and real systems in the dynamical forms of box-office,
revealing the significant role of competition in understanding box-office dynamics.

PACS numbers: 02.50.-r, 05.20.-y, 89.20.-a

I. INTRODUCTION

Dynamics underlying movie box-office has been an im-
portant issue for both academic and commercial interest
in the past decades of years [1–3]. As compared to the
traditional advertising campaign, recommender systems
nowadays provide reviews and scores which constitute a
platform for movies to compete among each other di-
rectly. Due to the popularity of the Internet, such com-
petitions play an increasingly significant role in driving
movie box-office. Despite their importance, only single
movie dynamics is considered in conventional approaches
[4, 5], leaving competitions through recommender re-
views unattained. Such movie interactions are in par-
ticular interesting to understand the physics of movie
competitions in influencing box-office dynamics.

Box-office dynamics has been studied using different
approaches ranging from statistics to neural networks.
In early approaches, potential viewers consider the past
total success of a movie [1], or the decision of its prede-
cessor [2], to decide whether to watch the movie. Though
multiple movies are considered in these approaches, com-
petition though modern recommender systems is not ad-
dressed. Movie competitions are considered in [3] but dy-
namics of the competing movies is not examined. On the
other hand, single movie dynamics is studied by differen-
tial equations [4] and the spread of movie awareness by
automata or percolation [5]. To understand and predict
the box-office dynamics, empirical studies are conducted
[6, 7] and statistics based forecast [8] and neural networks
[9, 10] are employed. Some of these approaches consider
individual factors such as nations, genre and star values,
and may overlook the importance of competitions among
movies.

In this paper, we introduce a model in which movies
compete with each other through reviews posted on a
recommender system. Viewers post their reviews and
drive other potential viewers to watch the movie, which
in turn produce new reviews driving another group of

viewers. The present reviews driven mechanism spread
movie popularity and generate interesting dynamics in
movie box-office. Here we consider movie reviews as both
indicators as well as influencers of box-office, as suggested
by empirical data in [6]. To capture only the essential el-
ements, movies in our model are only differentiated by
their quality and time of introduction. As different from
approaches which consider heterogeneous viewers, we as-
sume that potential movie goers are homogeneous and
are only driven to watch movies either by movie reviews
or movie freshness. All these ingredients constitute a
simple model which facilitate the illustration of physical
phenomenon behind movie competitions.

We will show that, by mean-field approximation, the
average review score characterizes the critical movie qual-
ity necessary for booms in movie box-office, and corre-
sponds to a transition from box-office bombs to block-
busters. The physical reason behind the booms is the
success of the movies in spreading popularity through the
recommender systems, creating cascades and dynamical
hits after their introduction. Though we are not able
to provide an accurate estimate of the average review
score, we show that the analytical results have quantita-
tive agreements with simulations and real data, suggest-
ing the present model in describing the fundamentals of
movie competitions. Finally, we generalize the mean-
field approximation to analyze the competitions of two
good movies and show that box-office dynamics of the
competing movies are anti-correlated.

The paper is organized as follows. We describe the for-
mulation of the model in Section II. In Section III, we
employ the mean-field approximation for movie interac-
tion and discuss the dependence of gross box-office and
box-office dynamics on the quality of movies. The com-
petition between two good movies is discussed in Section
III C. We finally compare our approximation with sim-
ulation and empirical results in Section IV. Conclusions
are given in Section V.

http://arxiv.org/abs/1005.2533v2
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II. MODEL FORMULATION

We consider a community of N agents aiming to watch
movies of high quality. At each time step, a fraction p
of the agents are chosen to be the potential viewers, out
of which a fraction ω, which we call the trendiness, in-
tend to watch a new movie. A new movie is introduced
at each step. Each movie α, introduced at time tα, is
characterized by quality Qα randomly drawn from the
distribution ρ(Qα). Starting from the second step af-
ter their introduction, movies are considered to be old

and are recommended to agents by a centralized recom-
mender system, which is in the form of a review list as
shown in Table I. The remaining potential viewers (who
have no intention to watch the new movie) select an old
movie from the list. Thus, a high ω also corresponds to
a small dependence of movie goers on the reviews. For
a particular movie α, we denote the number of viewers,
i.e. the box-office revenues, at time t to be kα(t).
In reality, potential viewers of a new movie sense

the quality of movie from advertisements. We thus as-
sume that they watch the new movie α with probability
πα ∝ Qs

α, such that the “opening” kα(tα) ∝ NpωQs
α. A

suitable proportionality constant would be Q−s
max, where

Q ≤ Qmax as restricted by ρ(Q). When s = 0, potential
viewers watch the new movie regardless of its quality. We
set s > 0 when agents have a good sense of movie quali-
ties to make potential viewers inclined to movies of high
quality. Thus, we call s the quality sensitivity.
On the other hand, potential viewers of old movies de-

cide to watch an old movie by gathering information from
websites of movie reviews, movie magazines or word-of-
mouth recommendations from peer viewers. We express
this kind of centralized recommendations by a list of
movie reviews as shown in Table I. Movie popularity
thus spread among the agents through the list. For sim-
plicity, the reviews are expressed in the form of scalar
scores. At a particular time, we denote the total num-
ber of reviews on the list as L and reviews are labeled
by r = 1, . . . , L. The movie and its corresponding score
on the l-th reviews are denoted respectively as mr and
ur. For a potential viewer i, the probability to choose a
movie α from the list is

πi,α =

∑L
r=1(1 − ai,mr

)urδmr,α
∑L

r=1(1− ai,mr
)ur

, (1)

where ai,α = 1 if viewer i has already watched movie
α and otherwise 0. Eq. (1) characterizes the competi-
tion of on-list movies. Only reviews from the previous
step are shown on the list, i.e. reviews before the previ-
ous step are deleted. The up-to-date reviews lead to the
natural evolution of box-office. It can be shown that by
this clearing mechanism, the total number of viewer for
a movie is independent of its time of introduction (given
that the observed time is longer than the lifespan of the
movie), as different from the first-mover effect in citation
of scientific papers [11]. This is of particular importance

Movie ID Movie Score
α 5
γ 3
β 4
γ 2
α 5
...

...

TABLE I: Examples of movie reviews on the recommender
system.

for the recommendation of objects where in the long run
freshness is important.

As viewers may provide generous or harsh critics, we
assume that they post their reviews with probability
ηα ∝ Qg

α. When g = 0, they review the movie regardless
of its quality. The volume of reviews is thus an indicator
of the box-office. When g > 0, they tend to give good
comments and review movie of high quality. By contrast,
g < 0 represents an opposite phenomenon as reviewers
tend to give bad comments, making bad movies more
popular (by number of reviews) than good movies in the
recommender system. We thus interpret g to be the gen-
erosity of the viewers. In this paper, we define popularity
of a movie to be the fraction of reviews on the movie
(over all current reviews).

To further simplify the model, we combine Eq. (1) and
the generosity, and assume that the score uα of a movie
is simply its quality Qα, which implies that all agents in
the model are rational and homogeneous. Note that in
this case uα is continuous and can be considered as the
average estimated quality by the reviewers. Eq. (1) thus
becomes

πi,α =

∑L

r=1(1− ai,mr
)Qg+1

mr
δmr,α

∑L
r=1(1 − ai,mr

)Qg+1
mr

. (2)

When g = −1, viewers select a movie merely by popular-
ity on the list, regardless of quality, which is suggested
by the results of empirical study in [6].

III. BOX OFFICE DYNAMICS - THE

MEAN-FIELD APPROXIMATION

We start to investigate the box-office dynamics of
movies by mean-field approximation. As mentioned,
movies compete with each other by interaction through
the review list, as potential viewers select one of the on-
list movies by comparing their quality and popularity. In
the mean-field approximation, we assume a mean inter-
action between movies and denote 〈u〉o to be the average
score over reviews of on-list movies, which have been in-
troduced for at least two steps on the recommender sys-
tem. In other words, at time t with mr denoting the r-th
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movie on the list, 〈u〉o is given by

〈u〉o =

∑L
r=1 θ(t− tmr

+ 2)umr

∑L

r=1 θ(t− tmr
+ 2)

(3)

where the heaviside function θ(y) = 1 for y ≥ 0 and
otherwise 0. As we have set the review score to be the

movie quality, 〈u〉o = 〈Q〉o. We then approximate Eq. (2)
for movie α introduced at time tα by

πi,α(t) =















(1− ai,α)
kα(tα)Q

g+1
α

kα(tα)Q
g+1
α +Np(1− ω)〈Qg+1〉o

for t = tα + 1,

(1− ai,α)
kα(t− 1)Qg+1

α

kα(t− 1)Qg+1
α + kγ(tγ)Q

g+1
γ + [Np(1− ω)− kα(t− 1)]〈Qg+1〉o

for t > tα + 1,
(4)

where movie γ corresponds to the movie being introduced
at time tγ = t− 1. Readers may argue that the average
of πi,α(t) instead of Qα would be a better approximation
than Eq. (4). Nevertheless, we keep the present form of
approximation as it greatly simplifies the analysis, while
capturing the essential features and facilitating physical
interpretations. Justification is given in Section IV and
the discrepancy between the present approach and the
simulation results is described.
From Eq. (4), we write down the iterative equations

which describe the box-office dynamics kα(t). To sim-

plify the notation, we define fα(t) = kα(t+ tα)/Np, cor-
responding to its popularity. Thus, popularity of an on-
list movie is proportional to its box-office at every step.
The initial popularity fα(0) is proportional to ωQs

α. We
further approximate 〈Qg+1〉o by 〈Q〉g+1

o , which turns out
to be a good approximation as the review list is usually
dominated by several good movies which have similar
quality. The expression for subsequent fα(t) is given by

fα(t) =























(1 − ω)[1− pfα(0)]

[

1 +
1− ω

fα(0)

( 〈Q〉o
Qα

)g+1
]

−1

for t = tα + 1,

(1 − ω)

[

1− p

t−1
∑

t′=0

fα(t
′)

] [

1 +
fγ(0)

fα(t− 1)

(

Qγ

Qα

)g+1

+

(

1− ω

fα(t− 1)
− 1

)( 〈Q〉o
Qα

)g+1
]

−1

for t > tα + 1.

(5)

These equations can be iterated numerically to generate
the dynamics of box-office.

A. Booms in gross box-office

To obtain the relation between gross box-office and
movie quality, we adopt again the mean-field approxi-
mation for interactions with new movies, and approx-
imate fγ(0)Q

g+1
γ by ω〈Q1+s+g〉ρ/Qs

max, which is the
value averaged over the distribution ρ(Q) in the relation
fγ(0) ∝ ωQs

γ , subject to the proportionality constant

Q−s
max. The quantity 〈Q〉o is dependent on the dynamics

of box-office and competition between on-list movies, and
hence is difficult to compute. Nevertheless, we approxi-

mate 〈Q〉o by

〈Q〉o ≈
∫

dQρ(Q)Qs+g+2

∫

dQρ(Q)Qs+g+1
, (6)

where Qs+g is proportional to the probability for the
movie to appear on the recommender list after its in-
troduction. We do not claim that the above expression
is a good approximation of 〈Q〉o, but we will see that a
rough estimate of 〈Q〉o is sufficient to generate the fea-
tures of the model. We then iterate Eq. (5) numerically
to obtain

∑

t fα(t), which is proportional to the gross
box-office Kα.
The rescaled gross box-office Kα/N is shown in Fig. 1

as a function ofQα. The gross box-office of a movie shows
a drastic rise, i.e. a boom, when its quality is beyond the
average review score 〈Q〉o of existing competitors. 〈Q〉o



4

0 0.5 1 1.5
Qα/〈Q〉

o

0

0.4

0.8

K
α/N

asymptote (8)
 with ω = 0.9
asymptote (9)

0 0.5 1 1.5
0

0.02

0.04

ω = 0.1
ω = 0.5
ω = 0.9

pfα(0)

FIG. 1: (Color online) The gross box-office of a movie α as a
function of Qα. Parameters: p = 0.05, s = 1 and g = 1. 〈Q〉o
are obtained with ρ(Q) ∼ Q−2 with Qmax = 50. Inset: The
same graph in magnified vertical scale.

thus characterizes the critical quality of movies to become
blockbusters. We note that different forms of ρ(Q) alter
〈Q〉o, but not the general picture of booms. Remarkably,
the gross box-office does not show a large dependence on
ω, the ratio of agents who intend to watch a new movie.
However, we will see that the dynamics of fα does show
a dependence on ω.
To get a better understanding of Fig. 1, we obtain

an explicit asymptotic form of the gross box-office by
considering Eq. (5) in the large t limit. In this case,
O(fα(t)) ≪ 1 and the terms with fα

−1(t − 1) becomes
dominant in the denominator. We thus ignores terms of
O(1) and rewrite Eq. (5) as

fα(t) =
(1− ω)

[

1− p
∑t−1

t′=0 fα(t
′)
]

fα(t− 1)Qg+1
α

fγ(0)Q
g+1
γ + (1 − ω)〈Q〉g+1

o

. (7)

For movies of low quality,
∑

t fα(t) is negligible and fα(t)
follows an exponential decay. For movies of high quality,
their popularity on the recommender system is long last-
ing, and fα(t) ≈ fα(t − 1) when t is large. The gross
box-office of the movie is thus given by

Kα

N
≈ 1−

ω〈Qs+g+1
γ 〉ρ/Qs

max + (1− ω)〈Q〉g+1
o

(1 − ω)Qg+1
α

(8)

≈ 1−
( 〈Q〉o

Qα

)g+1

, (9)

where the last line is valid only when the second
term dominates in the numerator, i.e. the average
on-list movie quality is high such that 〈Q〉g+1

o ≫
〈Qs+g+1〉ρ/Qs

max. We thus see that when on-list movies
are of high quality, the gross box-office is only weakly
dependent on ω through 〈Q〉o. As Qα → ∞, Kα/N → 1.
From Fig. 1 and Eq. (8), we can estimate the critical
quality Qc for box-office boom to be

Qc ≈ 〈Q〉o, (10)

0 10 20 30 40 50
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1.5

Q
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fα(1) > fα(0)

fα(2) > fα(1)

Qα/〈Q〉
o

Q
c

Q
c

(I) (II)

FIG. 2: (Color online) fα(t) as a function of t for movies of
various quality Qα. Parameters: p = 0.05, ω = 0.3, s = 1 and
g = 1. 〈Q〉o are obtained with ρ(Q) ∼ Q−2 with Qmax = 50.
Inset: The phase diagram for hits in box-office. The critical

quality Q
(I)
c and Q

(II)
c as shown respectively by the solid and

dashed lines, as a function of ω.

which implies blockbusters appear at lower quality given
that competitors are bad movies.
To obtain the degree distribution of movies, we exam-

ine
∑

t fα(t) for movies with low Qα. As shown in the
inset of Fig. 1, Kα/N ≈ pfα(0) for movies with very low
quality, due to the fast decay of their popularity after
introduction. Assuming movie quality is distributed as
ρ(Q) ∼ Q−γ , the distribution of gross box-office K is
given by

P (K) ∼ K−
γ+s−1

s , (11)

which is valid for movies of low quality. P (K) shows a
long tail for large K, due to the boom in gross box-office
for Q > Qc.

B. Hits in box-office dynamics

To examine the box-office dynamics, we show in Fig. 2
how fα(t) evolves with time. For movies of high quality,
their popularity increases after their introduction, corre-
sponding to an immediate hit in box-office (see for in-
stance the line with Qα/〈Q〉o = 1.4). We thus consider
fα(1) > fα(0) which implies Qα greater than a critical

quality Q
(I)
c , given by the positive root of equation

ω(1− pω + p)

(

Q
(I)
c

〈Q〉o

)s+g+1

−(1− ω)

(

Qmax

〈Q〉o

)s
(

Q
(I)
c

〈Q〉o

)g+1

+ (1− ω)

(

Qmax

〈Q〉o

)s

= 0. (12)

The corresponding Q
(I)
c /〈Q〉o for different values of ω are

shown by the solid line in the inset of Fig. 2, which im-
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plies that immediate hit occurs for movies with quality

in the shaded region. Though explicit solution for Q
(I)
c is

difficult to obtain, we see from Eq. (12) that when s = 0,

only the rescaled quantity Q
(I)
c /〈Q〉o is relevant. Thus,

defeating existing movies on the reviews list is a major
physical origin for an immediate hit in the box-office dy-
namics. Moreover, a hit is more likely to occur at time
with bad movies in the list, i.e with low 〈Q〉o.

The solution of Q
(I)
c exists only when the trendiness is

smaller than some threshold ωc given by the root of the
following equation

− Ξpω2
c + [Ξ(1 + p) + 1]ωc − 1 = 0, (13)

when s = g = 1, where Ξ = 3
√
3〈Q〉so/2Qmax. Beyond

the threshold, an immediate hit does not occur regardless
of movie quality. It implies that this phenomenon is less
likely to occur when viewers have high intention to watch
new movies. From Eq. (13), we see that ωc increases with
decreasing 〈Q〉o, implying that an immediate hits occur
at high trendiness when on-list movies are bad.

Another interesting behavior is observed in the range

of Q
(II)
c < Qα < Q

(I)
c as shown in striped region of

the inset of Fig. 2. This range of quality corresponds
to movies with quality above 〈Q〉o, where their popu-
larity shows an immediate drop after introduction and
rises afterwards (see for instance the lines in Fig. 2 with
Qα/〈Q〉o = 1.1 and 1.2). Physically, at the first step after
introduction the immediate drop in popularity is induced
by the high trendiness, together with competitions with
existing good movies. At the second step, the popularity
rises as a new movie which is usually of lower quality is
reviewed by the viewers. Such behaviors are observed in
simulations and real data of Netflix in Fig. 6, a website
for movie recommendation.

These hits are formed by the successful spreading in
the recommender systems, as similar to other forms of
cascade, such as information cascade [2]. Early viewers
post their positive reviews and attract more viewers, re-
inforcing the “good gets richer” effect [12]. After the hits,
many users watched the movie and its on-list popularity
ultimately drops.

We expect such hits in box-office, either at the first or
second step, to be the main cause for the gross box-office
boom in Fig. 1. Despite a small change in Qα/〈Q〉o from
0.9 to 1.1, a comparison of fα(t) in Fig. 2 reveals that the
hits result in large

∑

t fα(t), which is consistent with the
result shown in Fig. 1. We thus expect that Qc for boom

coincide with Q
(II)
c for hits. These results show that the

outcomes of the competitions with on-list movies are cru-
cial in box-office dynamics and gross box-office. Defeat-
ing existing movies in reviews creates hits and lead to
boom, while losing the competition suppresses popular-
ity and results in small box-office.
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FIG. 3: (Color online) Upper penal: fα(t) and fβ(t) as a
function of t for movie α and β respectively introduced at time
tα and tα + 1 with quality Qα = Qβ = 1.4〈Q〉o. Parameters:
p = 0.05, ω = 0.4, s = 1 and g = 1. 〈Q〉o are obtained with
ρ(Q) ∼ Q−2 with Qmax = 50. Inset: The same figure with
Qα = 1.5〈Q〉o and Qβ = 1.4〈Q〉o. Lower penal: detrended
fα(t) and fβ(t), by subtraction of moving average.

C. Competition between good movies

Slight modifications of Eq. (5) allow us to write down
the box-office dynamics of two movies introduced one
after another, and enable us to study more directly the
competition. We consider movie β introduced after movie
α, i.e. tβ = tα + 1. As the derivation is similar to the
that of Eq. (5), the coupled equations for fα(t) and fβ(t)
are given in the appendix.
We first examine the competition between two good

movies with equal quality. As shown in the upper pe-
nal of Fig. 3, with Qα = Qβ = 1.4〈Q〉o, both fα(t)
and fβ(t) show small oscillations intervening with each
other. A simple detrending, e.g. subtraction of moving
average (lower penal of Fig. 3), reveals that their box
offices are anti-correlated, implying that they are com-
peting for viewers through the review list. As compared
to the case with a single movie in the mean-field approx-
imation, both fα(t) and fβ(t) show a small or no hit
shortly after its introduction, but their popularities last
longer as they have higher tails. Remarkably, we found
that the gross box-office of the competing movies show
only a small drop when compared to its counterpart in
the single movie case, as the tails are long for both fα(t)
and fβ(t). Such behaviors are not observed in finite size
systems, as small fα(t) and fβ(t) in the tail is not suffi-
cient to spread popularity, when kα(t), kβ(t) < 1.
For movies of identical quality, we can simplify

Eq. (A1) to get a simple relation between fα(t) and fβ(t)
when t > tα + 2, as given by

fα(t)

fβ(t)
=

(

1− p
∑t−1

t′=0 fα(t
′)

1− p
∑t−1

t′=0 fβ(t
′)

)

fα(t− 1)

fβ(t− 1)
. (14)

The relation shows that during the competition, popu-
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FIG. 4: The average quality and the number of movies on
the recommender list in simulations, as a function of g. Pa-
rameters: p = 0.05, ω = 0.5, s = 1 and g = 1. Quality of
movies is drawn from ρ(Q) ∼ Q−2 with Qmax = 50. Inset:
the fraction of relevant reviews as a function of g.

larity is influenced by two factors: (1) the number of

accumulated popularity
∑t−1

t′=0 f(t
′), and (2) the popu-

larity f(t− 1) in the previous step. Physically, it implies
that when two movies of equal quality are competing,
the one which accumulated less box-office get a slight
bias in popularity, as a higher portion of agents did not
watch the movie. This increases the popularity of the
biased movie at this step and has a reinforcing effect for
its popularity in the next step. However, such effect does
not last forever as the number of accumulated popularity
ultimately increases and an opposite trend starts. This
phenomenon causes a balancing effect on the popular-
ity of the competing movies, and results in intervening
between the movies’ popularity, leading to similar gross
box-office for the two movies. Such intervening is more
prominent when the two movies differ in their quality, as
shown in the inset of Fig. 3.

IV. COMPARISON WITH SIMULATION AND

EMPIRICAL RESULTS

Finally, we compare our theoretical mean-field approx-
imation with simulation and empirical results, and look
at details which are not captured by the mean-field ap-
proach.
In Fig. 4, we show the average quality of movies and

the number of movies on the review list in simulations.
As expected, when g increases, the quality of movies on
the list increases. However, the number of on-list movies
decreases: choice becomes more limited when reviewers
tend to review good movies. It corresponds to a trade-
off of quality with diversity, which is found in other rec-
ommendation systems [13]. Note that 〈Q〉 corresponds
to the average over all on-list movies, which is different
from 〈Q〉o in the mean-field approximation. Neverthe-
less, 〈Q〉o shows the same trend as 〈Q〉.

0 10 20 30 40 50
Qα

0

0.2
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0.6

0.8
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K
α

approximate 〈Q〉ο
semi-empricial 〈Q〉ο
fitting 〈Q〉ο
simulation
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0.5

f(
t)

Q = 20
Q = 30
Q = 40

FIG. 5: (Color online) The popularity f(t) from simulations
(symbols) and mean-field approximation with semi-empirical
〈Q〉o (dashed lines). Parameters: p = 0.05, ω = 0.5, s = 1
and g = 1. Quality of movies is drawn from ρ(Q) ∼ Q−2 with
Qmax = 50. Inset: gross box-office as a function of movie
quality. The corresponding values of 〈Q〉o for analytic, semi-
empirical and fitting are 33.7, 27.9 and 15.

We further define the fraction of on-list reviews from
movies which have not been watched by a potential
viewer i at time t to be φi(t), given by

φi(t) = 1−
L
∑

r=0

θ(t− tmr
+ 2)ai,mr

. (15)

The average value of φ over users and time is shown in the
inset of Fig. 4, As g increases, 〈φ〉 decreases which show
that when diversity decreases, viewers are more likely
to find a watched movie on the list. This makes the
recommender system less effective.
In the inset of Fig. 5, we then compare the K − Q

relation between the mean-field results (9) and the simu-
lation results. Despite the fit with the approximate 〈Q〉o
(from Eq. (6)) does not agree with the simulation results,
it does capture the features of the drastic increase in Kα

when Qα is beyond a critical quality. We thus incorpo-
rate the simulated values of 〈Q〉o in Eq. (9), which is
shown by the green dashed line as semi-empirical predic-
tion. Though capturing the trend of the drastic rise, the
prediction is below most of the data points. We have ex-
amined the origin of the discrepancy by comparing πi,α(t)
in simulations and the predicted values in the mean-field
approximation, which shows that averaging πi,α(t) in-
stead of only its denominator (as in the present approach)
would yield a better approximation. Nevertheless, incor-
porating a smaller 〈Q〉o than the simulated value gives
the red solid line in the inset of Fig. 5, which agrees well
with simulations. It implies that the present approach
captures the major features of the model, given an es-
timate of effective 〈Q〉o. As a result, competition with
the effective 〈Q〉o is thus the major factor in driving box-
office dynamics.
We then compare the simulated with the predicted f(t)

incorporated with semi-empirical values of 〈Q〉o in Fig. 5.
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FIG. 6: (Color online) The popularity f(t) from 5000 movies
on Netflix in the period from Oct 1998 to Dec 2005, with K,
the total number of viewers as indicated in the range. The
number of active users is 4.8×105 in this period. The symbol
× indicate the average weekly “opening” of movies.

We have improved the mean-field prediction by incorpo-
rating the simulated 〈φ〉 as a coefficient for 〈Qg+1〉o in
Eq. (4). The simulated f(t)’s are obtained by averaging
box-office of movies within a small range centered at the
indicated Qα. As can been seen, the predicted f(t) fits
well for large value of Q, and the simulated f(t) show
also the hits starting from the second step. We remind
readers that physical origins of such hits are discussed in
Section III B. These simulation results also show that the
hits in dynamics is the reason for gross box-office boom,
as predicted from our analysis.
Finally we show the popularity f(t) of movies as ob-

tained from Netflix. The number of reviewers Nr on Net-
flix increases with time due to the its increasing popular-
ity, we thus put fα(t) = kα(t)/Nr(t) which corresponds
to the share of reviews on movie α at time t. As the
intrinsic quality of movies are not known, we suggest to
distinguish movie quality by the number of total viewers
K, and plot in Fig. 6 the average fα(t) from movie α with
Kα falling in a particular range. From Fig. 6, the two up-
per curves show a high “opening” and an immediate drop
in the second weeks, while a prominent hit occurs after-
wards. They correspond to f(t) from movies with large
K, i.e. movies of high quality. For movies with small K,
the inset of Fig. 6 shows in expanded vertical scale that
hit is only observed for movies with 103 ≤ K < 104, but
not for movies in the groups of lower K. These empirical
results show qualitative agreements with the results ob-
tained in the present model, which suggest the validity
of the present description for the fundamental box-office
dynamics.

V. CONCLUSION

We studied the competition of movies through reviews
in a simple model of recommender system. By adopt-

ing the mean-field approximation for movie interaction,
we show that, for movies defeating the average review
score, their popularity spreads through the review sys-
tems as similar to other forms of cascade. Popularity
hits are formed either at the first or second steps after
the introduction of these movies, and result in booms in
gross box-office. The average review score thus character-
izes the critical quality of movies to become blockbusters.
Such average score represents the average quality of peer
competitors which implies hits are more likely to occur
when competitors are bad movies. On the other hand,
less generous reviewers and low intention for watching
new movies create more prominent hits. These results
show that the outcomes of the competitions with on-
list movies are crucial in box-office dynamics and gross
box-office. Defeating existing movies in reviews creates
hits and lead to boom, while losing the competition sup-
presses popularity and results in small box-office.

Generalizing the mean-field approximation allow us to
analyze and show that the box offices of two compet-
ing good movies are anti-correlated, which produce long
lasting awareness as compared to the case of single good
movies. The model reveals the significant role of movie
competition in understanding box-office dynamics.

We remark that the model can be modified to study
dynamics of movie viewers. For example, more reviews
can be shown on the list by storing reviews of older than
one day, according to popularity movie quality or a suit-
able decay function. Agents and movies of heterogeneous
taste and attribute can be modelled, while review scores
are given according to the corresponding overlap. Such
modifications may reveal more fundamental aspects and
interesting dynamics driving movie box-office.
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Appendix A: Dynamical equations of correlated

popularity

In this appendix, we write down the dynamical equa-
tions for fα(t) and fβ(t) discussed in Section III C, re-
garding the competition between movie α and β intro-
duced one after the other. The coupled equations are
given by
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fα(t) =



































































(1− ω)[1− pfα(0)]
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Qα
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for t = tα + 1,
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+
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− 1
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Qα
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] [

1 +
fγ(0)
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+
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Qα

)g+1
]

−1

for t > tα + 2.

(A1)

fβ(t) =















































(1− ω)[1− pfβ(0)]

[

1 +
fα(t− 1)

fβ(0)

( 〈Q〉α
Qβ

)g+1

+
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1− ω − fα(t− 1)
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)( 〈Q〉o
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for t = tα + 2,

(1− ω)

[

1− p
t−1
∑

t′=0

fβ(t
′)
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for t > tα + 2.

(A2)
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