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The cornerstone of statistical mechanics of complex networks is the idea that the links, and
not the nodes, are the effective particles of the system. Here we formulate a mapping between
weighted networks and lattice gasses, making the conceptual step forward of interpreting weighted
links as particles with a generalized coordinate. This leads to the definition of the grand canonical
ensemble of weighted complex networks. We derive exact expressions for the partition function and
thermodynamic quantities, both in the cases of global and local (i.e., node-specific) constraints on
density and mean energy of particles. We further show that, when modeling real cases of networks,
the binary and weighted statistics of the ensemble can be disentangled, leading to a simplified
framework for a range of practical applications.

What distinguishes a network from the systems typ-
ically studied in physics is the complex heterogeneous
pattern of interactions (links) among its constituent el-
ements (nodes). Indeed, the statistical mechanics ap-
proach to networks has been developed treating the in-
teractions themselves as the degrees of freedom of the
system, pushing forward the interpretation of links as
the actual particles of the system [1]. Under this view,
the maximum number of particles V (i.e., the maximum
number of links) is the equivalent of the volume of a
physical system. For binary networks with fixed num-
ber N of nodes, a number of seminal works [2–4] de-
fined the canonical ensemble by fixing the number of
links L, and the grand canonical ensemble by letting
L fluctuate around its expected value. For instance in
the Erdös-Rényi model, these two cases correspond to
G(L) and G(p) with p = L/V denoting the link proba-
bility. The microcanonical ensemble is retrieved in this
framework upon defining an energy function of network
configurations, which however unlike in physical systems
cannot be derived from first principles [5, 6]. This dif-
ficulty led statistical mechanics of networks to be re-
framed more closely to information theory, according to
Jayne’s formulation [7]. Indeed, nowadays the micro-
canonical ensemble is defined by assigning equal probabil-
ity to the network configurations that satisfy a given set
of structural constraints exactly, whereas, in the canon-
ical ensembles network probabilities are such that the
constraints are met on average over the ensemble [8, 9].
Notably, this framework naturally incorporates networks
with weighted interactions [10], by treating links as multi-
ple particle states. In particular, the canonical ensemble
has been derived for networks with links assuming inte-
ger weights [11, 12] and approximately for networks with
(distinguishable) multilinks [13, 14].

In this work we push forward this idea of considering
links as particles by assuming the weights of existing links
to be generalized coordinates (e.g., energy or magnetic
moment) associated to such particles [15]. This allows
defining the proper statistical mechanics formulation of
the grand canonical ensemble of networks—in strict anal-

ogy with the case of lattice gases. Here for simplicity we
focus our discussion on undirected networks with links
assuming continuous weights.

We define a mapping between a simple undirected
weighted network G with N nodes and a lattice gas as fol-
lows. First we note that each link of G corresponds to an
edge of K, the complete simple graph of N nodes. Thus
we define a lattice using the line graph of K, also called in
this case the triangular graph T of order N [16]. This is
the graph obtained by associating a vertex with each edge
of K, and connecting two vertices with an edge iff the cor-
responding edges of K have a vertex in common. Given
this representation, we map each link of G with weight w
into a particle with internal coordinate w occupying the
corresponding vertex (lattice site) of the graph T (see
Fig. 1). Therefore we have that the binary adjacency
matrix A = {aij}(i,j)∈V of the network fixes the positions
of the gas particles on the lattice T , whereas, its weighted
adjacency matrix W = {wij}(i,j)∈V defines the internal
coordinates of existing particles. Here V denotes the set
of all unordered node pairs, with |V| = V = N(N − 1)/2
being the volume of the system.

This mapping allows formulating in rigorous way the
Grand Canonical ensemble of complex weighted net-
works. We first define the configuration C of an undi-
rected weighted network as the pair (A,W): the set of
existing links (i, j) ∈ L ⊆ V with |L| = L (i.e., the
set of node pairs with aij = 1) and the set of weights
{wij}(i,j)∈L associated to them (meaning that only ex-
isting links/particles contribute to the statistics of the
system). Therefore, the grand canonical probability dis-
tribution is P (C) = P (A,W) ≡ P (L, {wij}(i,j)∈L), and
the sum over configuration is performed as

∑
C
≡
∑
A

L∏
i<j

∫ ∞
0

dwij . (1)

The information entropy associated to the probability
measure P (C) is as usual S = −

∑
C P (C) logP(C), and

the shape of P (C) is found by maximizing S under given
constraints. This is the framework of Exponential Ran-
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FIG. 1. Mapping between an undirected graph GN and a
lattice gas on the corresponding triangular graph TN of KN

(we report the illustrative examples N = 4, 5). Only the exist-
ing links of GN (represented as solid black lines) are placed as
particles on the lattice sites (represented as full dots), and the
weight of such links (given by lines’ thickness) corresponds to
the generalized coordinates of particles (given by dots’ size).
Note that two particles in the lattice gas are neighbors if the
corresponding links in GN have a node in common.

dom Graph models [3, 11, 17].
Global constraints — The simplest nontrivial ensem-

ble of this kind is obtained by imposing the mean to-
tal number of links (particles) 〈L〉 ≡ 〈

∑V
i<j aij〉 =

L∗ and the mean total weight (e.g., energy) 〈W 〉 ≡
〈
∑L
i<j wij〉 = W ∗, where the average is defined by

the measure P (A,W). This is the weighted version
of the Erdös-Rényi model. We get P (A,W, α, β) =
Z−1G (α, β)e−H(A,W,α,β) with the Hamiltonian

H(A,W, α, β) = α

V∑
i<j

aij + β

L∑
i<j

wij , (2)

where α and β are the Lagrange multipliers related to L
and W respectively. ZG(α, β) is, in analogy with statis-
tical mechanics, the grand canonical partition function

ZG(α, β) =
∑
C
e−H(A,W,α,β) =

∑
A

e−α
∑V

i<j aijZC(β)

(3)

where ZC(β) =
∏L
i<j

∫∞
0
dwije

−βwij = β−
∑V

i<j aij =

β−L is the canonical partition function. The
sum in Eq. (3) is easily performed by noting

that
∑

A e
−α

∑V
i<j aijβ−

∑V
i<j aij =

∑V
L=0 nC(L)e−αLβ−L

where nC(L) =
(
V
L

)
is the number of binary configura-

tions with exactly L links. We finally have

ZG(α, β) =

V∑
L=0

(
V

L

)
e−αL

βL
=

[
1 +

e−α

β

]V
. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α logZG(α, β) ≡ V

βeα + 1
= L∗, (5)

〈W 〉 ≡ −∂β logZG(α, β) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗,
i.e., the mean weight, and 1 + eα/w∗ = V/L∗. We thus
see that while β controls for the mean weight (energy) of
existing links (particles), α controls for the mean density
of links (particles). Note that since between each pair of
nodes there can be only a single link/particle, the sys-
tem can be represented with V copies of a Fermi system
having a single energy level ε = 1. Under this analogy,
log β plays the role of the inverse absolute temperature
(kT )−1, whereas, −α is the ratio µ(kT )−1 between chem-
ical potential and temperature.

Remarkably, we can perform the parameter transfor-
mation α′ = α + log β, so that α′ alone determines the
mean link density and, given this density, β alone sets
the mean weight of existing links: we have

P (A,W) =

 V∏
i<j

e−α
′aij

1 + e−α′

 L∏
i<j

βe−βwij

 . (7)

This shows that individual link occupations are all mutu-
ally independent events and that, given a binary config-
uration A, weight values of individual existing links are
also independent events. Besides, moments of link oc-
cupation and of link weight probability distributions can
be independently set in order to satisfy the constraints.
As explicitly shown in the next section, this property is
due to the global nature of the constraints. Note that
as for equilibrium statistical mechanics with short range
interactions, if the system is homogeneous then local and
global measures coincide.

Local constraints — We now impose for each node
i the mean degree or number of incident links 〈ki〉 ≡
〈
∑V
j(6=i) aij〉 = k∗i and the mean strength or total weight

of incident links 〈si〉 = 〈
∑L
j(6=i) wij〉 = s∗i . This grand

canonical ensemble is analogous to the continuous ver-
sion of the enhanced configuration model [12], whence we
use the acronym CECM. We have P (A,W, {αi, βi}Ni=1) =

Z−1G
(
{αi, βi}Ni=1

)
e−H(A,W,{αi,βi}Ni=1) with

H(A,W, {αi, βi}Ni=1) =

V∑
i<j

(αi+αj)aij +

L∑
i<j

(βi+βj)wij ,

(8)

ZG
(
{αi, βi}Ni=1

)
=
∑
C
e−H(A,W,{αi,βi}Ni=1) =

=
∑
A

e−
∑V

i<j(αi+αj)aijZC
(
{β}Ni=1

)
,(9)

and ZC
(
{β}Ni=1

)
=
∏L
i<j(βi + βj)

−1. Performing the
sum over all binary configurations leads to
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ZG
(
{αi, βi}Ni=1

)
=
∑
A

e−
∑V

i<j(αi+αj)aij∏L
i<j(βi + βj)

=
∑
A

L∏
i<j

e−(αi+αj)aij

βi + βj
= 1+

∑
U⊂V

U∏
i<j

e−(αi+αj)

βi + βj
=

V∏
i<j

(
1 +

e−(αi+αj)

βi + βj

)
(10)

where U is a generic subset of V. The values of the multipliers are then found through the constraints equations:

〈ki〉 ≡ −∂αi
logZG

(
{αl, βl}Nl=1

)
≡

V∑
j( 6=i)

1

1 + (βi + βj)eαi+αj
= k∗i , (11)

〈si〉 ≡ −∂βi
logZG

(
{αl, βl}Nl=1

)
≡

V∑
j(6=i)

(βi + βj)
−1

1 + (βi + βj)eαi+αj
= s∗i , (12)

∀i. Note that after some algebra we can rewrite P (A,W) as

P (A,W) =

 V∏
i<j

e−[αi+αj+log(βi+βj)]aij

1 + e−[αi+αj+log(βi+βj)]

 L∏
i<j

(βi + βj)e
−(βi+βj)wij

 = π(A)q(WL) (13)

with π(A) being the unconditional probability distribu-
tion of the binary configuration A, and q(WL) the proba-
bility density function of the weights of the existing links
(i.e., the set L) conditional to A. The form of q(WL) is
exponential, differently from the geometric and Poisso-
nian forms obtained in [12] and [14] respectively, due to
the continuous nature of the weights.

At this point some considerations are in order. I) Both
π(A) and q(WL) factorize into the product of single link
probability distributions: occupations of different links
are independent events and, conditional to the binary
configuration, weights of different links are also indepen-
dent. II) However the parameters defining single link
probabilities and weights are entangled, which means
that local link densities cannot be set independently on
local weights, because of the simultaneous conservations
of mean node degrees and strengths. Such an interplay
allows better clarifying the role of nodes (and in partic-
ular of node heterogeneity), which play the role of in-
teractions between links (particles). Indeed only if node
properties are homogeneous, like when we impose global
constraints, such topological interactions disappear: the
system is spatially homogeneous in terms of density of
particles and of energy, which can be thus set indepen-
dently. The statistical mechanical case analogous to a
heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities,
n(x) and ε(x), to be heterogeneous, i.e., both dependent
on x. This case is typically not encountered in ordinary
equilibrium statistical mechanics, with the possible ex-
ception of glassy disordered systems and long range in-
teractions. III) If we look at the generic link occupation
probability

pij =
e−[αi+αj+log(βi+βj)]

1 + e−[αi+αj+log(βi+βj)]
(14)

from the viewpoint of statistical mechanics, we can again

interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local tem-
perature (kTij)

−1 = log(βi + βj), and local chemical po-
tential µij = −kTij(αi + αj). However, differently from
the homogeneous case, different links are not indepen-
dent copies of the same problem, but topologically in-
teracting single-level Fermi systems with different local
temperatures and chemical potentials—which are mutu-
ally related by local heterogeneous constraints.

Separability of binary and weighted statistics — We fi-
nally explore the separability of local links densities and
weights distribution also for the case of local constraints
[21]. To this end we introduce a two-step entropy maxi-
mization procedure, the separable enhanced configuration
model (SECM):

1. We first constrain the mean node degrees only, ob-
taining the probability of the binary configuration
A as for the standard configuration model [3]:

π(A) =

V∏
i<j

e−(α
′
i+α

′
j)aij

1 + e−(α
′
i+α

′
j)
, (15)

2. Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the
link weights conditional to A (coinciding with that
of the CECM):

q(WL) =

L∏
i<j

(βi + βj)e
−(βi+βj)wij . (16)

The SECM is thus defined by the constraint equations

〈ki〉≡
V∑

j(6=i)

1

1 + eα
′
i+α

′
j

= k∗i , (17)

〈si〉≡
V∑

j( 6=i)

(βi + βj)
−1

1 + eα
′
i+α

′
j

= s∗i , (18)
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FIG. 2. Properties of CECM and SECM ensembles in four real networks: the World Trade Web [12], the eMID interbank
network [12], the neural network of C. elegans [18] and the human functional brain network (HFBN) [19]. The upper part of
the figure shows the comparison of link probabilities (first row) and of expected weights (second row) obtained by CECM and
SECM. The lower part of the figure instead shows how the two ensembles reproduce higher-order statistics of the real networks
(defined in [20]): nearest neighbors degree knn (third row), clustering coefficient c (fourth row), nearest neighbors strength snn

(fifth row) and weighted clustering cw (sixth row).
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∀i, and by the joint probability distribution

P (A,W) =

 V∏
i<j

e−(α
′
i+α

′
j)aij

1 + e−(α
′
i+α

′
j)

 L∏
i<j

(βi + βj)e
−(βi+βj)wij

 .
(19)

By definition, in the SECM the parameters defining link
probabilities and weights are disentangled, so that the
local statistics for these quantities can be set indepen-
dently. In the CECM instead the parameters controlling
for link weights also play a role in determining connection
probabilities—see eq. (14). Indeed in the CECM a link
(i, j) with high expected weight (βi+βj → 0) is forced to
be realized (pij → 1), and viceversa a link with low ex-
pected weight (βi+βj →∞) becomes unlikely (pij → 0).
Thanks to the interplay of its parameters, the CECM
better captures the dispersion of higher order properties
of the network with respect to the SECM, as shown in
Fig. 2). However, in the CECM connection probabili-
ties, the contribution of parameters {βi}Ni=1 is logarith-
mic with respect to that of parameters {αi}Ni=1: weighted
properties in general give only small perturbations to the
Lagrange multipliers of node degrees. As such, CECM
and SECM define similar link probabilities and expected
weights (Fig. 2), and are almost interchangeable for all
practical purposes—the advantage of SECM being an
easier numerical implementation. Finally, it is notewor-
thy that CECM and SECM coincide when the constraints
on strengths and degrees satisfy s∗i = γk∗i ∀i for constant
γ. Indeed in this case βi = β0 ∀i, and thus we have the
exact correspondence α′i ≡ αi+ 1

2 log(2β0) ∀i. This is for
instance the case of HFBN of Fig. 2.

Final remarks — Ensembles of random graphs with
given structural properties like those discussed here typ-
ically find a twofold application [1, 22]. On one hand,
they can be taken as null network models and thus be
used to assess the significance of patterns observed for a
real network. On the other hand, when details on the mi-
croscopic structure of a real network are unknown, they
can be used to reconstruct the most likely network config-
uration. The grand canonical ensemble introduced here
represents, both in its rigorous version and separable ap-
proximation, a very versatile tool for these tasks, being
defined for the most general class of networks with con-
tinuous weights. For instance, the fitness-induced config-
uration model [20] used to reconstruct networks without
degree information is easily implemented in our grand
canonical framework [23]. Extensions of the framework
to the case of multiplex networks [24] as well as to include
higher order interactions between generalized coordinates
will be covered in future work.
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