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Identifying and removing spurious links in complex networks is a meaningful problem for many
real applications and is crucial for improving the reliability of network data, which in turn can
lead to a better understanding of the highly interconnected nature of various social, biological and
communication systems. In this work we study the features of different simple spurious link elimina-
tion methods, revealing that they may lead to the distortion of networks’ structural and dynamical
properties. Accordingly, we propose a hybrid method which combines similarity-based index and
edge-betweenness centrality. We show that our method can effectively eliminate the spurious inter-
actions while leaving the network connected and preserving the network’s functionalities.

PACS numbers: 89.75.Hc, 89.75.-k, 89.20.-a

I. INTRODUCTION

Many social, biological and information systems are
naturally described by networks, where nodes represent
individuals, proteins, genes, computers, web pages, and
so on, and links denote the relations or interactions be-
tween nodes. Network analysis has hence become a cru-
cial focus in many fields including biology, ecology, tech-
nology and sociology [1]. However, the reliability of net-
work data is not always guaranteed: constructed bio-
logical and social networks may contain inaccurate and
misleading information, resulting in missing and spurious
links [2, 3].
The problem of identifying missing interactions, known

as link prediction, consists in estimating the likelihood of
the existence of a link between two nodes according to
the observed links and node’s attributes [4]. Link predic-
tion has already attracted much attention from disparate
research communities due to its broad applicability. For
instance, in many biological networks (such as food webs,
protein-protein interactions and metabolic networks) the
discovery of interactions is often difficult and expensive,
hence accurate predictions can reduce the experimental
costs and speed the pace of uncovering the truth [5, 6].
Applications in social networks include the prediction of
the actors co-starring in acts [7] and of the collaborations
in co-authorship networks [8], the detection of the un-
derground relationships between terrorists [5], and many
others. In addition, the process of recommending items
to users can be considered as a link prediction problem in
a user-item bipartite graph [9], so that similarity-based
link prediction techniques have been applied to personal-
ized recommendation [10]. Moreover, the link prediction
approach can be used to solve the classification problem
in partially labeled networks, such as predicting protein
functions [11], detecting anomalous email [12], distin-
guishing the research areas of scientific publications [13]
and finding out the fraud and legit users in cell phone
networks [14]. For a review of the field, see [15].
On the other hand, the problem of identifying spurious

interactions has received less attention despite its numer-
ous potential applications. For instance, the identifica-

tion of inactive connections in social networks or spam
hyperlinks in the WWW may improve the efficiency of
link-based ranking algorithms [16], and the detection of
redundant interactions in biological, communication or
citation networks may find applications in community-
detection, in constructing networks’ backbones [17] or
in other connection optimization problems. A possible
reason for the lack of effective methods to deal with this
problem is that a spurious link removal error has far more
serious consequences than a missing link addition one. If
some “unexpected” links are incorrectly identified as spu-
rious and removed from the network, the system’s struc-
ture and function may be altered significantly or even
compromised. For instance, the network may break up
into separate components so that the system’s function-
ality is destroyed. In power grids, only the power plants
in the giant component can work [18]. In traffic systems,
only the cities in the giant component can mutually com-
municate [19]. In neural systems, only neurons in the
giant component can reach a synchronized state and ef-
fectively process signals [20]. The main challenge for a
spurious link detection method is hence to identify the
spurious interactions and at the same time to construct
a network with close functionalities to the original one.
In this work we show that many simple spurious links

detection methods have indeed the serious drawback to
remove real and important links, which causes the net-
works’ structure to be altered significantly. Hence we
propose a hybrid algorithm which combines a similarity-
based index known as common neighbors with the edge-
betweenness centrality. We show that this method can
not only effectively identify and remove spurious links
but also preserve the size of the giant component and
many important structural and dynamical properties of
the network at the same time.

II. METHOD

In this section we describe our procedure to study
the features and evaluate the performance of a spurious
link detection algorithm. We make use of six empiri-
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TABLE I. Features of empirical networks: number of nodes (N) and edges (E), average degree (〈k〉), average shortest path length
(〈d〉), clustering coefficient (C), degree assortativity (r), degree heterogeneity (H = 〈k2〉/〈k〉2) and traffic congestability (Bmax)

N E 〈k〉 〈d〉 C r H Bmax

CE 297 2148 14.46 2.46 0.308 −0.163 1.801 2.65 · 104

Email 1133 5451 9.62 3.61 0.220 0.078 1.942 5.06 · 104

SC 379 914 4.82 4.93 0.798 −0.082 1.663 5.66 · 104

PB 1222 16717 27.36 2.51 0.360 −0.221 2.970 1.46 · 105

PPI 2375 11693 9.85 4.59 0.388 0.454 3.476 8.98 · 105

USAir 332 2126 12.81 2.46 0.749 −0.208 3.464 2.28 · 104

cal undirected networks: the C. elegans neural network
(CE) [21], an email network (Email) [22], a scientists’
co-authorships network (SC) [23], the US political blogs’
network (PB) [24], a protein-protein interaction network
(PPI) [25] and the US air transportation network (US-
Air) [26]. We only consider the giant component of these
real networks. Some properties of these systems are re-
ported in Table I. All of these networks are widely used
in the literature as model systems, hence we assume that
they are “true” networks (i.e. without spurious interac-
tions), which we denote as At. We then add to these
true networks a fraction f of spurious random connec-
tions to obtain “observed” networks, which we denote as
Ao, and evaluate the ability of the spurious link detection
algorithm to recover the features of the true network.
To quantify the accuracy of the algorithm in identify-

ing the spurious interactions we use the standard metric
of the area under the receiver operating characteristic
curve (AUC) [27]. Since the algorithm returns an or-
dered list of links (or equivalently gives each link a score
to quantify its reliability), the AUC represents the prob-
ability that a spurious link is ranked lower than a true
link. To obtain the value of the AUC, we randomly pick
a spurious link and a true link in the observed network
Ao and compare their scores. If, among n independent
comparisons, the real link has higher score than the spu-
rious link n′ times and equal score n′′ times, the AUC
value is:

AUC =
n′ + n′′/2

n

Note that if links were ranked at random, the AUC value
would be equal to 0.5.
As stated in the introduction, high accuracy is not suf-

ficient for a spurious link detection algorithm: if just a
few real important links are removed, the structural and
dynamical properties of the network may change dra-
matically. A simple example can be seen in fig. 1. If the
dashed link is removed, the network will break into two
separated components. To study the robustness of the
algorithm in this respect, we remove from the observed
network the fraction f ′ of the bottom-ranked links to
obtain the “reconstructed” network, which we denote as
Ar. We then compare the structure and functionality of
true and reconstructed networks. We will focus mainly
on giant component’s (GC) size, which is of great impor-

FIG. 1. A simple example to illustrate how an improper spu-
rious link removal method can disconnect a network.

tance for the functionality of many real systems. Then we
will consider clustering coefficient [28], average shortest
path length, traffic congestability [29] (i.e. the maximum
betweenness centrality in the network) and other dynam-
ical properties. We will first study the case of At and Ar

having the same number of links (f ′ = f). However,
as in general one doesn’t know how many spurious links
there are in a given network, we will finally consider the
situation where f ′ 6= f .

III. RELIABILITY INDICES

In this section we describe some representative spuri-
ous link detection methods. These algorithms assign to
each link in Ao a “reliability” index (denoted as Rij for
the link connecting nodes i and j) which quantifies the
likelihood of its true existence and allows for link ranking.
Similarity-based indices use the network’s structure to

assign for each pair of connected nodes i j a score which
is directly defined as their similarity, with the underlying
assumption that a connection between similar node is
likely to be a true one. These algorithms can be classified
into local, quasi-local and global according to the amount
of information they need. Here are some examples:

• Common Neighbors (CN): RCN

ij = ‖Γi ∩ Γj‖, where
Γi is the set of neighbors of node i and ‖ . . . ‖ indi-
cates the number of nodes in a set.

• Resource Allocation (RA): RRA

ij =
∑

k∈Γi∩Γj

1
‖Γk‖

.

• Local Path (LP): RLP

ij = (A2)ij + ǫ (A3)ij , where A
is the network’s adjacency matrix and ǫ < 1 is a
free parameter.

• Katz index (Katz): RKatz

ij =
∑∞

l=1[(β A)l]ij , where
β is a free parameter which must be lower than the
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reciprocal of the largest eigenvalue of A.

Centrality-based indices measure the importance of a
link in the network, assuming that the higher the link’s
centrality, the higher its reliability. We consider two sim-
ple indices:

• Preferential Attachment (PA): RPA

ij = ‖Γi‖× ‖Γj‖.

• Edge Betweeness (EB): REB

ij =
∑

m>n

C(ij)
mn

Cmn
, where

Cmn is the number of shortest paths from node m

to node n and C
(ij)
mn is the number of such shortest

paths passing through the link ij.

Clearly, CN, RA and PA are local indices. CN is
the simplest possible measure of neighborhoods’ overlap,
while RA [30] is the best performing local index for the
purpose of link prediction. PA is the algorithm which
requires less information. LP [30] is instead a quasi-local
method, as it considers local paths with wider horizon
than CN (it also counts the number of different paths
with length 3 connecting i and j). Finally, Katz [31] and
EB methods are global indices, as they are based on the
ensemble of all paths in the network. Specifically, Katz
counts the paths between two nodes and weights them
according to their length l, while EB is built with the
number of shortest paths from all vertices to all others
that pass through the given link.

IV. HYBRID INDEX

We now introduce a hybrid index which combines
the similarity-based and the centrality-based approaches.
The underlying idea is that we consider a link to be a
“true” one either if it connects similar nodes or if it has
a central position in the network. Even if this assumption
is not necessarily true, as we will show later it avoids the
removal of important links so that the network’s proper-
ties and functions are preserved, with the small drawback
of failing to identify few spurious interactions.

To construct the Hybrid index, we combine the simple
common neighbor with edge-betweenness centrality as:

Rhyb

ij = λ
RCN

ij

maxmn(RCN
mn)

+ (1− λ)
REB

ij

maxmn(REB
mn)

where λ ∈ [0, 1] is the hybridization parameter. In what
follows we set λ = 0.9, because we want to exploit mainly
CN and a small contribution from EB will suffice for our
purposes (however, see section VI for a study of the index
behavior for different λ). Note that this is only one possi-
bility of defining such index. We made use of CN because
it is the most well-known of the similarity-based indices.
However one could use e.g. RA or Katz instead, though
the qualitative features of the Hybrid method wouldn’t
change.
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FIG. 2. (Color online) AUC for various indices and for dif-
ferent values of f . The true networks are (a)CE, (b)Email,
(c)SC, (d)PB, (e)PPI, (f)USAir. Results are averaged over
100 independent realizations. Note that the curves for EB
are not shown as the respective AUC values are too low. The
same holds for PA in panel (c).

V. RESULTS

In this section we compare the features of the spurious
link detection approaches which have been previously in-
troduced. We start by adding to the true networks At

a fraction f of random connections to obtain the ob-
served networks Ao. For each particular index, we rank
the links according to their reliability values and mea-
sure the accuracy of the method in identifying spurious
interactions by the AUC (Figure 2). We observe that gen-
erally the similarity-based methods perform better than
the centrality-based ones. Among the first category, Katz
and LP [32] perform slightly better than CN and RA as
they take advantage of using more information. Among
the second, EB is the worst performing, with AUC even
lower than 0.5. The performance of the Hybrid method
is instead very close to that of the pure similarity-based
indices. Hence having a contribution from EB in the
hybridization does not result in worse spurious link de-
tection (as one might expect).
We already argued that accuracy is not the only cri-

terion to assess the performance of these methods. The
other important aspect is that the removal of putative
spurious links should not alter the giant component’s size
as well as other properties of the networks. To investi-
gate this aspect, we remove from Ao the fraction f ′ of
the bottom-ranked links to obtain the reconstructed net-
works Ar, whose features we compare with the ones of
the relative true networks At. We start with the simple
case f ′ = f and we first focus on the GC’s size, which
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FIG. 3. (Color online) GC’s size when various indices are used
to build Ar (here f ′ = f) and for different f . The true net-
works are (a)CE, (b)Email, (c)SC, (d)PB, (e)PPI, (f)USAir.
Results are averaged over 100 independent realizations.

is of great relevance in many contexts. As shown in Fig-
ure 3, the GC’s size significantly decreases with f ′ when
using any similarity-based method (as well as PA): in
these cases many nodes becomes disconnected from the
networks’ core and end up losing their function. On the
contrary, EB always keeps the networks connected. This
is not surprising, as it has already been pointed out [33]
that similarity indices and EB are highly anti-correlated,
meaning that removing links between non-similar nodes
causes links with high betweenness to be cut, and vice-
versa. What is remarkable is that also the Hybrid method
can effectively preserve the connectedness of the origi-
nal networks in most of the cases, and in general much
better than any other similarity-based method, despite
the small contribution it receives from EB. It is hence
sufficient to increase little the reliability of central and
important links to avoid removing them.

We move further by considering other network proper-
ties. In order to compare the true and the reconstructed
networks under a given propertyX , we compute the rela-
tive error of X as (X(Ar)−X(At))/X(At). As a bench-
mark, we also compute the relative error of X in the
observed networks as (X(Ao) − X(At))/X(At). For an
effective spurious link removal method, which is able to
reproduce the properties of the true network, the abso-
lute value of the relative error for Ar should be smaller
than the absolute value of the relative error for Ao (mean-
ing that Ar is a better estimate of At than Ao) and as
close as possible to zero (meaning that X has approxi-
mately the same value in At and Ar). Figure 4 shows the
relative errors made by CN and Hybrid methods for clus-
tering coefficient, average shortest path length and traffic
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FIG. 4. (Color online) Relative errors of clustering coefficient
(a)-(b), average shortest path length (c)-(d) and transporta-
tion congestability (e)-(f) for different f . The different lines
correspond to the relative errors in Ao and in the two Ar

built by CN and Hybrid methods respectively, with f ′ = f .
Left plots refer to PB while right plots to USAir. Results are
averaged over 100 independent realizations.

congestability (i.e. the maximum betweenness centrality
in the network). We only report the results for the Polit-
ical blog (PB) and US Airline (USAir) networks, as these
are the cases in which the GC’s size is relatively more af-
fected when using pure similarity-based methods (Figure
3). We observe that in these cases the Hybrid method
is always able to restore the properties of the true net-
work with respect to the observations, while this is not
always true for CN. Moreover, the Hybrid method al-
ways preserves the networks’ properties better than CN,
at the small cost of achieving smaller AUC values. This
is because CN and other similarity-based methods alter
the GC, which is much more harmful for the networks’
properties and functions than keeping fewer more spuri-
ous links. Note however that if the CN method does not
cause serious enough damage to the GC—as it happens
for C. elegans neural (CE) and scientists’ co-authorships
(SC) networks—then the situation may be reversed: CN
can preserve some of the network properties better than
the Hybrid method due to its higher accuracy.

There are plenty of other network’s static and dynam-
ical properties which can be considered, such as synchro-
nization, spreading threshold, and so on. As these dy-
namics can only take place in the GC, similarity-based
methods which break the network into pieces alter them
seriously. For example, the nodes out of the GC can
never reach the global synchronized state, and the signal
from the GC can never spread to these nodes. Again,
these methods eventually destroy the system’s functions.
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FIG. 5. (Color online) The GC’s size when different fractions
of links f ′ are removed from Ao by CN, Hybrid and EB meth-
ods. The true networks are (a)CE, (b)Email, (c)SC, (d)PB,
(e)PPI, (f)USAir. Results are averaged over 100 independent
realizations.

As in real applications of spurious links removal one
does not know the exact number of spurious links in a
network, we finally consider the case when f ′ 6= f . To
do so, we fix the number of random connections added
to At at f = 10%. We then study the properties of
the networks Ar reconstructed by different methods by
removing different fractions f ′ of links from Ao.

Figure 5 shows the GC’s size for varying f ′. We observe
that the GC’s size naturally decreases with the fraction
of removed links. Such decrease is very fast when using
CN and very slow when using EB—in the latter case, the
GC’s size is preserved in any network even when half of
the links are removed. The Hybrid method lies between
these two, and remarkably it performs like EB when the
fraction of removed links is not too big (in many cases the
GC’s size has a plateau which may last up to large f ′).
Another interesting aspect would be to investigate how
many of the original f spurious links are left in the net-
works for various f ′. Results are shown in Figure 6. We
again observe that the more we remove links, the higher
the probability to remove a spurious link. Due to its low
accuracy, EB must remove almost all links in order to
get rid of the spurious ones. On the contrary, CN can
eliminate all the spurious links quite soon (f ′ ≃ 25%).
Interestingly, the Hybrid performs as well as CN and
their curves almost overlap. These results again indicate
that the Hybrid method represents an effective approach
to both preserve the GC’s size and to achieve high accu-
racy. Moreover, it is also more robust than other methods
when considering the intrinsic uncertainty of the number
of spurious interactions in a system.
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FIG. 6. (Color online) The residual fraction of spurious links
in Ar when different fractions of links f ′ are removed from
Ao by CN, Hybrid and EB methods. The true networks are
(a)CE, (b)Email, (c)SC, (d)PB, (e)PPI, (f)USAir. Results
are averaged over 100 independent realizations.

VI. THE HYBRIDIZATION PARAMETER

At last, we show how the Hybrid index behaves by
varying the value of the parameter λ. In order to do
so, we consider the particular case in which the observed
networks Ao are obtained from the true networks At with
the addition of f = 20% of spurious links. Figure 7 shows
AUC and GC’size of the networks Ar reconstructed by
the Hybrid method (with f ′ = f) for different values of λ.
We observe that while the AUC decreases for decreasing
λ (but this decrease is always slower at the beginning),
the GC remains almost integer except when λ becomes
too close to 1. Therefore it is sufficient to have a small
contribution from EB in the Hybrid method to keep the
network connected at the cost of being slightly less ac-
curate. This is the reason why we have previously set
λ = 0.9. Note that one can always use a bigger value of
λ if accuracy is the main goal, or a smaller value if the
GC’s integrity is a major issue.

VII. DISCUSSION

How to detect and remove spurious interactions in net-
works is a significant problem which may find application
in almost any field of complex science. Still, it has not
yet attracted much attention, as the consequences of a
removal error can heavily harm the system under investi-
gation. In the literature many similarity-based methods
for the purpose of link prediction have been proposed.
In this work we showed that, when applied to spurious
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FIG. 7. (Color online) The size of the GC in the networks
reconstructed by the Hybrid method with different values of λ.
Insets: the AUC for different λ. The respective true networks
are (a)CE, (b)Email, (c)SC, (d)PB, (e)PPI, (f)USAir. Results
are averaged over 100 independent realizations.

link detection, all these methods achieve high accuracy
but suffer from the important drawback of decreasing the
size of the giant component and distorting other static
and dynamic properties of the network. This harmful ef-
fect may cause a system to lose its functions, as nodes
which are disconnected from the GC cannot communi-
cate with the network’s core. In order to overcome these
drawbacks, we proposed a hybrid method which com-
bines the similarity-based common neighbors index with
edge-betweenness centrality. We showed that this ap-
proach can effectively eliminate the spurious links and
at the same time keep the network connected; moreover
important properties like clustering coefficient, average
shortest path length and traffic congestability can be gen-
erally preserved better. This method is still more advan-
tageous when the number of spurious interactions within
a system is unknown.

In the literature there are other important examples
of spurious link detection approaches (e.g. hierarchical
random graph [5] and stochastic block model [34]) which
however were not focusing on preserving the giant compo-
nent’s size. Moreover these methods are based on global
algorithms which can be prohibitive to use for large-scale
systems. Our method instead would be easily applicable
for large networks. This is because it combines common
neighbors index, which requires only local information of
a link, and edge-betweenness centrality, whose computa-
tional complexity is now as lower as O(NE), where N
and E are respectively the number of nodes and edges in
the network [35].
Finally, we remark that the problem of identifying spu-

rious interactions is much more difficult to deal with than
predicting missing interactions. We already pointed out
how serious a removal error may be. In addition, while in
link prediction studies there’s a true network from which
some existing links are removed to generate the observa-
tion and test the algorithm, for spurious link detection
how to add spurious interactions to the true network is
generally unknown. In this work we explored the simplest
situation, in which spurious links are just random connec-
tions between nodes. This approach can be suitable for
describing some systems (for instance biological networks
obtained from measurements prone to random errors, or
social networks in which some links result from once in
a lifetime interactions between people) but may result
inadequate for others (like biological systems when mea-
surements are prone to systematic errors, or the WWW
where spam hyperlinks always start from the same set
of pages). The effectiveness of a spurious link detection
method in these systems hence deserve further validation,
which will be the subject of future work.
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[22] R. Guimerà, L. Danon, A. Diaz-Guilera, F. Giralt, A.
Arenas, Phys. Rev. E 68, 065103 (2003).

[23] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
[24] R. Ackland, Presentation to BlogTalk

Downunder, Sydney, (2005); available at
http://incsub.org/blogtalk/images/robertackland.pdf.

[25] C. von Mering, R. Krause, B. Snel, M. Cornell, S. G.
Oliver, S. Fields, and P. Bork, Nature (London) 417,
399 (2002).

[26] V. Batageli and A. Mrvar, Pajek Datasets, available at
http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm.

[27] J. A. Hanely and B. J. McNeil, Radiology 143, 29 (1982).
[28] L. D. F. Costa, F. A. Rodrigue, G. Travieso and P. R. V

Boas, Adv Phys 56(1), 167 (2007).
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