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Using bibliometric data artificially generated through a model of citation dynamics calibrated on
empirical data, we compare several indicators for the scientific impact of individual researchers. The
use of such a controlled setup has the advantage of avoiding the biases present in real databases, and
allows us to assess which aspects of the model dynamics and which traits of individual researchers
a particular indicator actually reflects. We find that the simple citation average performs well in
capturing the intrinsic scientific ability of researchers, whatever the length of their career. On the
other hand, when productivity complements ability in the evaluation process, the notorious h and
g indices reveal their potential, yet their normalized variants do not always yield a fair comparison
between researchers at different career stages. Notably, the use of logarithmic units for citation
counts allows us to build simple indicators with performance equal to that of h and g. Our analysis
may provide useful hints for a proper use of bibliometric indicators. Additionally, our framework can
be extended by including other aspects of the scientific production process and citation dynamics,
with the potential to become a standard tool for the assessment of impact metrics.

I. INTRODUCTION

The quantitative study of the productive and commu-
nication aspects of science, known as Scientometrics, is
nowadays well established. This discipline focuses mainly
on the analysis of citation statistics of the academic lit-
erature in order to identify suitable indicators for the
impact of research [1]. Well-known and widely used ex-
amples of impact indicators include the journal impact
factor [2] and the h-index [3], but several (more than one
hundred [4]) alternatives have been proposed—see [5–7]
for recent reviews of the field. Importantly, these metrics
are intended to measure scientific impact, and not qual-
ity or importance. Yet, nowadays they play a central
role in the measurement and evaluation of research per-
formance (at the level of individual researchers, research
groups and institutions), despite the numerous warnings
from the scientific community [8–10]. The issue is crit-
ical especially at the level of individual researchers, as
it can affect received funds and grants—not to mention
employment and career.

Recently, Wildgaard and colleagues [4] pointed out
the need to examine author-level indicators in relation
to what they are supposed to reflect and especially to
their specific limitations. Indeed, by comparing the key
concepts of several metrics, they showed that no indica-
tor alone can capture the overall impact of a researcher,
which is instead better characterized by a combination of
indexes. Such a combination is however not unique, and
depends on the particular type of assessment to be made.
Evaluation of impact indicators is also complicated by the
availability and reliability of the bibliometric databases
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(such as Web of Science, Scopus, Google Scholar and Mi-
crosoft Academic Search) [7]. In fact, these databases suf-
fer to various extent from the lack of quality control [11]
and partial coverage. The latter problem is relevant espe-
cially in the fields of social sciences and humanities [12],
which may have a strong national or even regional orien-
tation and thus target local journals and books [13], and
for computer science and engineering—where conference
proceedings play an important role, but they are ofter not
counted or counted twice (as the work is published both
as proceedings and as regular journal paper). All these
facts cause the measured impact of a researcher to depend
on the specific data used in the calculation [4]. Besides,
these data are polluted by improper citation practices
used by researchers (like boosting self or friend’s cita-
tions, or satisfying referees) that are not related at all to
the acknowledgment of a paper’s importance [10].

On the theoretical side, the scientific community has
devoted much effort to unveil the dynamics of the cita-
tion process, the main focus being that of explaining the
extremely skewed distribution of the number of citations
received by scientific papers (see for instance [16]). No-
tably, in 1976 Price [17] was the first to tackle this issue
by using a model based on preferential attachment, a pro-
cess for which some quantity associated to the entities of
a system (the number of citations of scientific publica-
tions, in our context) is distributed and grows accord-
ing to how much these entities already have. Later, this
model has been much studied and generalized (see [18] for
a review of the field). Importantly, the original version
of the model predicts a strong relation between a paper’s
age and its citation count, but significant deviations from
this behavior are found in bibliometric data [19]. It has
been recently pointed out that to model citation dynam-
ics well, preferential attachment has to be combined with
intrinsic paper relevance: a heterogeneously distributed
“quality” (fitness) that decays with time [20–22]. These
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FIG. 1. Functional fits of the MAS data presented in the text: (a) the number of publications for researchers, and (b) the
number of co-authors for papers. The fit functions are G(k) = 3.48/ exp[−(ln k + 3.5)2/5.9] and H(d) = 19.7d/(100 + d4.6),
respectively. In the log-log scale, the coefficients of determination (R2) are 0.92 and 0.89, respectively. For the co-author
distribution, the peak at d = 50 co-authors is due to large-scale collaborations in particle physics and astrophysics, whose
members are only partially covered in our data.
The underlying Microsoft Academic Search (MAS) data that we present here were collected using the API of the service to
obtain unique IDs for the authors of papers published by the American Physical Society (APS) in years 1893–2009; this was
successful for 71% of the APS papers. Excluding self-citations, the resulting data comprise 2,427,367 citations among 326,586
papers authored by 244,538 researchers. Thanks to having unique author IDs, the use of MAS data avoids the common name
disambiguation problem in bibliometric data [14] which is vital for the analysis of co-authorship patterns [15].

models are then capable of generating artificial data that
closely resemble real citation networks [23].

Building on this modeling framework, we aim to per-
form a comparative evaluation of various scientific impact
indicators, in the same spirit of [4] but on a quantitative
basis provided by the use of an artificial setting. In par-
ticular, we extend a previous model constrained on the
citation dynamics of scientific papers [20] by assuming
that researchers are endowed with intrinsic productivity
and ability levels—the latter determining the fitness of
their authored papers, that in turn make connections to
the existing body of literature according to the modified
preferential attachment mechanism described above. The
artificial bibliometric data generated by the model then
allow us to compute a variety of impact indicators, which
can be compared with the individual traits of researchers
in order to determine what these indicators actually cap-
ture. We can thus identify the indicators which properly
rank authors, and those that fail in this task. Notably,
our controlled and simplified setup has the advantage to
generate citation records which are free from the biases
present in real databases that can hinder this kind of
analyses.

The paper is organized as follows. Section II describes
the model used to generate citation data, and Section
III provides the definitions of the impact indicators that
we compare and evaluate. Results of the analysis are
reported in Section IV, while Section V concludes the
work and outlines the possibilities for further improv-
ing the artificial framework by including additional rel-
evant aspects of the citation dynamics, such as differ-
ences between scientific disciplines [24] and journal repu-
tation [25] (see [26, 27] for recent progresses in modeling
the various aspects of the research and citation process).

II. MODEL AND ARTIFICIAL DATA

In this work we use a model which extends the one
suggested in [20]. The system is composed of researchers
(or authors) and papers, indicated by Latin and Greek
letters respectively. Time runs in discrete time steps cor-
responding to months, and the simulation spans over T
months. There are A authors in the system. For the
sake of simplicity, we assume that their number is fixed
and that they are all active during the whole simulation,
but this assumption is relaxed later on. Each author i
is characterized by ability ai and productivity ki (i.e.,
the total number of papers that i will co-author). In
line with the exponential distribution of total paper rele-
vance presented in [20], author ability is drawn from the
exponential distribution F(a) = a0 + e−a. The parame-
ter a0, acting as the minimal author ability, is motivated
by the presence of some “entrance barriers” in academia
which guarantee that all authors have some minimal abil-
ity value and thus their papers have some minimal level
of relevance to the community. Author productivity is
drawn from G(k) = 3.48/ exp[−(ln k + 3.5)2/5.9] which
has been obtained by fitting the real distribution of au-
thored papers in the Microsoft Academic Search (MAS)
data; see Figure 1(a) and the description therein.

In each time step t = 1, . . . , T , papers are gradu-
ally introduced in the system. For each paper α, we
build its set of authors Aα as follows. We first draw
the number of authors dα = |Aα| from the distribution
H(d) = 19.7d/(100 + d4.6), which is again motivated by
the MAS data—see Figure 1(b). We then choose the dα
different authors, each with probability proportional to
the remaining number of papers that they still have to
author (for researcher i, this number is initially ki, and
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FIG. 2. Comparison of statistical features in the MAS data and in the artificial model: (a) distribution of researcher productivity
k, (b) distribution of paper number of co-authors d, and (c) distribution of paper citation count c. In the log-log scale, the
coefficients of determination (R2) are 0.92, 0.85, and 0.85, respectively. The shaded areas visualize the variable’s standard
deviation observed in 100 model realizations. The dependence of paper citation count on paper appearance time with and
without applying the stationary normalization value Ω∞ is shown in panel (d).

then decreases by 1 with each authored paper). The fit-
ness value fα of the paper is proportional to the highest
ability value among its authors: fα = η

(
maxi∈Aα ai

)
where η is a multiplicative noise term that is uniformly
distributed in [1 − η∗, 1 + η∗] and introduces additional
randomness to the process of paper creation. Note that
because of the extremal metric choice, paper fitness is
not directly proportional to the number of authors. This
assumption is motivated by recent empirical evidence:
while papers with more authors receive on average more
citations, this effect is apparently not related to papers
quality [28]. Nevertheless, results obtained upon varying
this and other assumptions are presented in the Support-
ing Information (SI).

Newly introduced papers make links to previously pub-
lished papers. The probability that paper α cites paper
β at time t is

Pα→β(t) =
[cβ(t) + 1] fβD(t− τβ)

Ω(t)
, (1)

where cβ(t) is the current number of citations of paper
β and τβ is its appearance time in the system, whereas,
D(·) is the aging term and Ω(t) is the normalization term

Ω(t) =
∑
γ

[cγ(t) + 1] fγD(t− τγ). (2)

Here, cβ(t) needs to be increased by one to give a non-
zero initial attractiveness to papers, as cβ(τβ) = 0. In

Equation (1), we use exponential agingD(t) = exp(−t/θ)
where θ characterizes the lifetime of a paper. An alter-
native choice would be to use a log-normal shape for the
aging term [22].

Every new paper makes q references to existing pa-
pers. Note that when a growing network with preferen-
tial attachment grows from a small initial configuration,
papers that are present at early stages are in advantage
with respect to later papers and can thus achieve a sig-
nificantly higher citation count [19, 29]. Early papers en-
joy the undue advantage during the initial period when
Ω(t) is substantially smaller than its long-term station-
ary value Ω∞. To overcome this problem, we assume
that when Ω(t) < Ω∞, each of the q links created by
a newly added paper points to an existing paper with
probability Ω(t)/Ω∞. In the complementary case, the
link points out from the system and none of the exist-
ing papers receives it. This situation resembles a young
scientific field which is growing, yet still partially relying
on papers from other fields. The stationary value Ω∞
is obtained by simulating the system for a sufficiently
long time period and averaging the final Ω(t) over inde-
pendent model realizations (values used in our simula-
tions are specified in the SI). The complete simulation
code can be found at http://www.ddp.fmph.uniba.sk/

~medo/physics/resources.html.

Simulation parameters and dynamics. We simulate
systems with A = 1000 authors over the time period

http://www.ddp.fmph.uniba.sk/~medo/physics/resources.html
http://www.ddp.fmph.uniba.sk/~medo/physics/resources.html
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of T = 120 months. Paper lifetime is θ = 48 months,
and a0 is set to 1 (note that while the use of a0 is not
essential, Figure S1 in the SI shows that a0 > 0 actually
improves the agreement between empirical and model ci-
tation distribution). Each paper cites q = 20 other pa-
pers, and fitness values are obtained with η∗ = 0.2. For
our choice of the productivity distribution, the average
author produces 5 papers and the most active author pro-
duces around 200 papers in total. In each month, several
papers are introduced in the system so that, until the
end of simulation, every author eventually produces the
originally assigned number of papers. To achieve this,
we endow each researcher with an activity counter νi(t),
initially set to ki. At step t (when there are T−t+1 time
steps left until the end of the simulation; t = 1, . . . , T ), we
introduce new papers until the researcher activity coun-
ters decrease by

∑
i νi(t)/(T − t + 1) in total. Due to

the varying number of co-authors, the number of papers
introduced at each step fluctuates but remains relatively
stable during the whole simulation. The total number of
papers produced in a single realization of the system is
around 1500.

Figure 2 reports basic calibration results for the model.
In particular, panel (c) shows that the emergent citation
distribution closely resembles the one observed for MAS
data (see Figure S1 in the SI for how the shape of this
distribution changes when a0 and θ are varied). Fur-
ther, panel (d) shows that allowing some links to point
out from the system indeed weakens the dependence of
the paper citation count on its appearance time. For the
present choice of parameters, correlation between paper
citation count and fitness is around 0.5. In agreement
with empirical studies of popularity in real systems [30],
we see that while papers with high fitness on average at-
tract more citations than papers with low fitness, there is
still a substantial level of randomness in this relationship.

We conclude this section by remarking that we use
empirical data from MAS only to calibrate the model: to
measure the distributions of author productivity and of
the number of co-authors per paper, and finally to fit the
paper citation distribution. Since the shape of these dis-
tributions is rather general, using a different bibliometric
dataset is not likely to qualitatively change the results of
our analysis: the model is naturally flexible to adapt to
other real datasets.

III. IMPACT INDICATORS

We now introduce the indicators that we use to quan-
tify the scientific impact of authors. In the following
definitions, we will use quantities obtained at the end
of simulations but omit the time label T . For instance,
cα denotes the number of citations paper α accrued at
t = T . We define:
• Total number of citations, Ci ≡

∑
α:i∈Aα cα. The

simplest possible choice, naturally favoring researchers
with many papers and those who are active since long.

• Average number of citations, Ei ≡ Ci/ki. This ap-
proach is widely used in the literature, the underlying
idea being that whenever a researcher receives a larger
credit compared to the number of papers published, she
is producing science having greater impact. Note that
here we are considering only a single scientific field, and
thus we do not need to worry about field-specific normal-
ization [24]. In this way, average citations is equivalent to
both the well-known CPP/FCSm (citations per publi-
cation over mean field citation score) and MNCS (mean
normalized citation score) indicators [31].
• Citation count of the most cited paper, Mi ≡

maxα:i∈Aα cα. This is an extremal metric that is influ-
enced by the heavy-tailed distribution of the paper cita-
tion count, and thus should be used with caution.
• x-index [32, 33], the number of papers published by

an author that are in the top 1% most cited papers.
This approach explicitly takes into account the extreme
skewness of the citation distribution, which may cause
average-based indicators to fail because of their sensi-
tivity to the presence of one or a few very highly cited
publications [34]. Percentile-based indicators like x are
instead less sensitive to these outliers [35].
• h-index [3]. Given the set Πi = {α1, . . . , ακ, . . . , αki}

of papers authored by i ordered by citation count in de-
creasing order (i.e., such that cακ ≥ cακ+1

, κ ∈ [1, ki−1]),
the h-index is the last position in which cακ is greater
than or equal to the position κ:

hi = max
κ

{
min
ακ∈Πi

[cακ , κ]

}
.

• Contemporary h-index (hc) [36], obtained by giving
more weight to recent papers. In particular, citations to
papers published τ years ago are weighted with 4/(τ+1).
The hc-index is then computed as the h-index on the
weighted citation counts.
• g-index [37]. Given the ordering Πi, the g-index is

the (unique) largest number such that the top g articles
received, together, at least g2 citations:

g2
i ≤

∑
κ≤gi
ακ∈Πi

cαk .

• o-index [38]. Geometric mean of M and h: oi =√
Mihi. The idea is that M accounts for the researchers’

greatest results and h for their diligence. Thus, differ-
ently from the h-index, the o-index does not ignore the
tail of the citation record.
• Normalized h-index (n, or m-quotient) [3], obtained

as mi = hi/τi where τi is the time since the first pub-
lication of researcher i. This indicator is mainly aim-
ing to identify young and promising scientists, as usually
citation-based metrics favor senior researchers who had
enough time to attract citations to their work [39].

Note that, apart from the x-index, all the metrics listed
here can be computed for an individual researcher using
solely her own citation records, i.e., without knowledge
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FIG. 3. Comparison of the mean precision values achieved by research impact indicators with respect to different ground truth
assumptions. The horizontal dotted line marks the performance of the best metric (which is typed with bold letters); the error
bars show three-fold of the standard error of the mean.

of citation statistics for the whole scientific community.
This feature makes these indices apt for practical applica-
tions, as usually the whole dataset is unaccessible or very
hard to handle (especially by individual researchers). In
this respect, the inclusion of the x-index in our analysis
is mainly for completeness—actually, x is used mostly to
compare not single researchers, but research institutions
or communities at larger scales.

We remark that various metrics of scientific impact
are not considered here for several reasons. For instance,
in our simplified framework we model only one scien-
tific area and one general publication venue, and thus
it makes no sense to test metrics accounting for the re-
search field [40] nor those based on comparing the total
number of citations of a paper to those of other pub-
lications in the same journal [41, 42]. Additionally, in
our setting all co-authors are assumed to contribute to
a paper equally, their activity decreases by 1 for every
publication regardless of the number of co-authors, and
the fitness of that paper does not scale with the num-
ber of co-authors. Thus, we cannot consider metrics that
incorporate the relative contribution of each co-author
to a paper, like the individual h-index [43] or the SDC
(“sequence-determines-credit”) approach [44] do. Nor we
consider indices accounting for the quality of the citations
in terms of the collaboration distance between citing and
cited authors [45], as we do not model the presence of
research groups. Finally, we do not consider metrics
based on the eigenvector centrality within the citation
network [46], such as PageRank [47], CiteRank [47] or
PhysAuthorRank [48]. This is because the linking prob-
ability defined by Eq. (1) depends only on the fitness of
the target paper β, and not on the fitness of the source
paper α. As a result, citations from a highly valued pa-
per have the same intrinsic value as citations from an
ordinary paper, and differentiating the weight of incom-
ing citations thus cannot yield any improvements. Upon
calibration on real data, our modeling framework can be
extended to include many of the aforementioned effects

and thus allow more metrics to be evaluated.

IV. RESULTS

We now assess the impact indicators against the
“ground truth” provided by the intrinsic features of
researchers in the model. In particular, we consider
four different benchmarks: two intensive quantities (i.e.,
not depending on the number of authored papers), re-
searcher ability ai and average fitness of authored pa-
pers fi :=

∑
α:i∈Aα fα/ki, and two extensive quantities

(i.e., accounting for the number of authored papers), re-
searcher ability times productivity aiki and total fitness
of authored papers fiki. Note that for each pair of bench-
marks, the first quantity refers to the researchers’ poten-
tial, whereas, the second one is related to their actually
realized publication output.

In order to evaluate a given impact indicator, we first
use the ground truth to determine the set of 100 best
authors. We then determine the set of the top 100 best-
evaluated authors according to their impact score. Fi-
nally, we count the overlap O between these two sets of
researchers. The relative overlap O/100, which ranges
from 0 to 1, is then a measure of the metric’s perfor-
mance (the higher the overlap, the more successful the
impact metric in identifying the best researchers) which
is commonly referred to as precision in information filter-
ing literature [49]. Note that in this specific setting, an-
other classical metric, recall, is also equal to O/100 [49].
We evaluate precision achieved by individual metrics on
100 independent model evaluations, that are then used
to compute the average precision and the standard error
of the mean.

Figure 3 summarizes the metric evaluation results for
the basic model setting described in Section II. We see
that when the ground truth is an intensive quantity (au-
thor ability in panel (a) or average fitness of the au-
thored papers in panel (b)), the simple average citation
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score E is by far the best performing indicator among
the described group of traditional performance metrics.
When considering extensive ground truths, the family of
h-indices expectedly becomes more reliable: h, hc and
g are tied for the first place. Since in this basic setting
all researchers are in principle active from the beginning
of the simulation, the m-quotient lags behind the origi-
nal h because of its uneven handling of researchers who
have few papers and by chance started publishing late.
The recently proposed o-index always performs midway
between the h-index and M (the citation count of the
most cited paper), which suggests that the combination
of these two quantities is not particularly effective in dis-
cerning the best researchers. The x-index does not per-
form well in any of the evaluations, mainly due to its
reliance on a small subset of all papers (top 1%) which
makes it simultaneously a noisy and little discriminative
metric for evaluation of individuals. Total citation count
C lags behind h-like metrics which is not surprising as it
is highly sensitive to outliers.

To overcome the observed problems of certain metrics,
we explore some variants that could possibly fare better.
Firstly, to cope with outliers, we introduce the total log-
arithmic citation count λCi =

∑
α:i∈Aα log(cα + 1) (the

citation count cα is incremented by one to avoid log 0
for papers with zero citations) and the mean logarith-
mic citation count λEi = λCi/ki. Figure 3 shows that
λE matches the good performance of the mean citation
count E for both intensive benchmarks. By contrast, λC
slightly outperforms (approximately by 4%) the estab-
lished metrics for the extensive benchmarks, yet it has
to be noted that the total logarithmic citation count is
a considerably simpler metric than h and g. This sug-
gests that the use of a logarithmic unit of measure is an
efficient way to deal with the skewness of the citation
distribution. As for the m-quotient, its flaw is to allow
many young authors who have only authored one or a
few papers to score well, because their h-indices are di-
vided by their small author age. While in real use this
bias may be avoided by, e.g., selection committees en-
forcing explicit conditions on applicants (for instance, at
least 3 years after the PhD defense, or a minimum num-
ber of publications), here we explore a mathematically
grounded solution by formulating a corrected m-quotient
(cm): cmi = (hi/τi)×(1−1/

√
ki), where the second term

penalizes researchers with very few authored papers (for
example, cm = 0 for all authors with only one publica-
tion). As Figure 3 shows, such a corrected m-quotient
then performs better than its original version and also
outperforms the established metrics, though to a lesser
extent than λC.

Figure S2 in the SI further shows how the performance
of individual metrics change when individual model as-
sumptions and parameters are varied. We see that while
the choice of parameters has some impact on the achieved
precision values, the best results are always obtained with
the same set of metrics: E and λE with respect to in-
tensive ground truths, and the family of h-indices and

λC with respect to extensive ground truths. Notably,
the best performer λC is closely followed by the long-
standing h-index in all studied settings, while some other
well performing metrics slightly fall behind under certain
circumstances (e.g., the g-index when the number of re-
searchers in the simulated system is increased). Overall,
we can conclude that the main results that we report
here are robust with respect to substantial variations of
the model and of its parameters.

We now wish to study the case where new authors are
gradually introduced to the system, and check which in-
dicators allow to fairly evaluate young researchers with
respect to their senior colleagues. We thus consider a sit-
uation where 25% of researchers are active for the whole
time; for the remaining 75%, author i begins their ac-
tivity in a randomly chosen step τi between t = 1 and
t = T − 36. Here 36 is subtracted to only include re-
searchers who spent sufficient time in the system (by do-
ing so, we are essentially considering only researchers who
finished their PhD studies). In this setting, the produc-
tivity of author i, initially drawn from G(k), is linearly
rescaled by her appearance time in the system by a factor
(1− τi/T ): young authors are thus in disadvantage with
respect to seniors by having on average less publications
at the end of the simulation, and also by having had less
time to accrue citations.

Figure 4 presents the results obtained with this setting.
The first observation is that most metrics actually per-
form similarly than in the basic setting where the group
of active researchers does not change over time. The only
metric that considers authors’ career length, m-quotient,
is surprisingly performing worse in the new setting with
researchers gradually entering the system. The reason
lies again in the aforementioned rescaling problem: in the
new setting, there are more young users who only author
their papers in the last years and yet outperform venera-
ble researchers upon the rescaling, thus lowering the re-
sulting precision more than in the basic setting presented
in Figure 3. Specifically, there are on average 28± 8 au-
thors with only one publication in the top 100 positions
of the ranking by the m-quotient and the average activ-
ity span of top 100 researchers is 60± 40 months (out of
120 in total). By contrast, for the h-index ranking there
are no authors with only one publication in top 100 and
the average activity span of top researchers is 96 ± 21
months. The bias towards very young researchers is re-
moved by the corrected m, which brings to no researchers
with only one paper in top 100 and to an average activity
span of 86± 28 months: the resulting precision is similar
to that achieved with the h-index and the contemporary
h-index. Overall, the logarithm-based indices λE and
λC are again the best performers against intensive and
extensive ground truths, respectively.

We conclude by discussing the choice of optimal bench-
marks to evaluate impact indicators against. On one
hand, extensive ground truths are more appropriate when
we assume that all researchers are active for the whole
time period. This is because intensive benchmarks ne-
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FIG. 4. Comparison of the mean precision values achieved by impact indicators with respect to different ground truth assump-
tions, when the number of active researchers grows in time (see the description in text). The horizontal dotted line marks the
performance of the best metric (which is typed with bold letters); the error bars show three-fold of the standard error of the
mean.

glect productivity, and thus do not penalize gifted but
little active researchers who produce only a few (though
very good) papers. On the other hand, when consider-
ing researchers with different activity lifetime, extensive
ground truths automatically give preference to authors
who are active since longer, thus using intensive bench-
marks may be more appropriate in this case. Yet, be-
cause of their own nature, intensive criteria are unable
to properly handle authors with very low activity and
thus little citation statistics. Relying on an “interme-
diate” ground truth could represent a suitable solution,
albeit its precise form is certainly arbitrary. Our artifi-
cial framework makes it easy to evaluate impact indica-
tors with respect to a different ground truth assumption.
Figures S3 and S4 in the SI show results for two interme-
diate benchmarks: researcher ability times square root
of productivity ai

√
ki and an analogous multiple of the

average fitness of the authored papers fi
√
ki. We ob-

serve no major changes with respect to the purely exten-
sive benchmarks, supposedly because activity values are
broadly distributed: even after the square root is applied,
substantial activity is still needed to access the top 100 of
the new ground truth. From the viewpoint of evaluating
researchers, the dual intensive-extensive approach used
here thus seems sufficient. There are some particular as-
pects though, such as the ability of a metric to identify
young talented researchers, that can only be captured
by ground truths that specifically target at the feature
of interest (researchers active for less than six years, for
example). Construction of such ground truths and their
use in the proposed model-based evaluation framework
remain as open issues for future research.

V. DISCUSSION

The ongoing proliferation of scientific impact indica-
tors is facilitated by the critical lack of solid evaluation

criteria. Presently, motivation for new metrics is some-
times only anecdotal and their evaluation often relies on
outliers analysis [3, 36–38, 48]. However, outliers in any
metric are almost inevitably highly successful authors
or highly cited papers—such validation is thus very soft
and eliminates only the most ill-suited metrics. The ab-
sence of a “golden standard” (certified best papers and
researchers) for validation of indicators on real data com-
pels the use of various ad-hoc proxies, such as relying on
experts’ judgment [28]. In this work, building on an ar-
tificial model of citation dynamics, we have established a
test bench where new and old metrics can face their first
examination. The use of a controlled framework allowed
us to avoid the biases present in real citation databases
related to coverage issues and to improper citation prac-
tices [4, 10, 11] and, more importantly, to have ground
truth features to evaluate impact indicators against in a
quantitative way.

Our framework, which generates bibliometric statis-
tics whose aggregate characteristics closely match those
of real citation data (Figure 2), is based on a number
of assumptions and simplifications, yet it is open to in-
clude additional features of real citation dynamics. For
instance, we could consider several research areas with
different citation rates, which would in turn allow us to
study field normalization for impact indicators. Addi-
tionally, while we have intentionally excluded journals,
review process, and the impact of publishing venue on
paper success, different journals could be included to
model important aspects for the dynamics of paper pop-
ularity, like high impact factor journals having a broader
readership and attracting more citations for their arti-
cles. Moving further, the social network of researchers
plays an important role in real citation dynamics, and
thus in principle we could consider the presence of both
befriended and competing scientists, the structure of re-
search collaborations [50], and the feedback of author
reputation on the dynamics of paper popularity [51]. A
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strong assumption of our model is the use of Eq. (1) that
determines the citation mechanism. Indeed, while this
formulation was shown to fit real data better than any
other model proposed so far [23], it can of course be im-
proved. For instance, we could vary the sensitivity of
citing papers to cited papers quality, i.e., make high fit-
ness papers more likely to cite other good papers than low
fitness papers do. Besides making the model more real-
istic (there is empirical evidence that highly cited papers
do cite other highly cited papers more often than one
would expect, in particular more often than the badly
cited papers do [52]), such a modification could allow
PageRank-like metrics to yield results superior to simple
local metrics such as citation count and h-index.

Despite these simplifications, our analysis allowed us to
quantitatively asses what impact indicators actually re-
flect. We found that the average citation score efficiently
measures authors ability, whereas, the h and g indices
and the simpler cumulative logarithmic citation count λC
do capture joint ability and productivity of researchers.
Additionally, we provided several recommendations for a
proper use of the normalized h-index in the identification
of talented young scientists. While our results are only
preliminary, and may become more robust by equipping
the model with more realistic assumptions, we remark
that the issue of studying what impact indicators do mea-
sure is of critical importance nowadays, as these metrics
are currently so widely employed by selection commit-

tees that basically determine “most things that matter:
tenure or unemployment, a postdoctoral grant or none,
success or failure” [8]. However, impact indicators are
“usually well intentioned, not always well informed, of-
ten ill applied” [9]. In other words, while these indica-
tors have been designed to improve the system, their im-
proper use is putting the system in danger—primarily by
modifying the very aim of scientists from making discov-
eries to publishing as many papers and getting as many
citations as possible. In this respect, simulation scenar-
ios may ease the difficulties in determining what a given
measurements of scientific impact reflects, without over-
looking the fact that in any case impact indicators alone
cannot be used to judge individual scientists.
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FIG. S1. The effect of parameters variations on the paper citation distribution: (a) baseline author ability a0 (when θ = 4),
and (b) paper lifetime θ (when a0 = 1). The left panel shows that introducing a value a0 > 0 helps to make the distribution
more concave. The right panel shows that tuning paper lifetime can be used to calibrate the simulated citation distribution
against the real one: in the log-log scale, the coefficient of determination (R2) increases from 0.60 for θ = 2 years to 0.85 for
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FIG. S2. Difference in precision—with respect to the basic setting—for individual metrics when various variations of this
setting are considered (from top to bottom):
(1) the fitness noise amplitude η∗ is increased from 0.2 to 0.5 (Ω∞ = 1.48 · 104),
(2) 20% of references made by a new paper target a random existing paper (Ω∞ = 1.28 · 104),
(3) the base fitness of a paper is obtained as the average of the authors’ ability values (Ω∞ = 9.20 · 103),
(4) the base fitness of a paper is a random sample from the authors’ ability values (Ω∞ = 1.10 · 104),
(5) the baseline ability of authors a0 is set to zero (Ω∞ = 1.06 · 104),
(6) the number of researchers is increased from 1000 to 5000 (Ω∞ = 6.90 · 104).
The error bars show the three-fold of the standard error of the mean. For every setting and ground truth, the best-performing
metric (in absolute terms) is marked with a star (?), and all metrics that reach at least 90% of its precision are marked
with bullets (•) whose color indicates the performance difference (•, •, and • correspond to 98%, 95%, and 92% of the best
performance, respectively).
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(c) author ability × √activity
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FIG. S3. Precision values achieved by individual metrics against intensive (a,b), midway (c,d) and extensive (e,f) ground truth
assumptions (we assume here the basic simulation setting that was used to obtain Figure 3 in the main text). The first row of
panels (a,c,e) refers to a benchmark obtained from the researchers’ potential, whereas, the second row (b,d,f) to a benchmark
related to realized publication outputs. Here Ω∞ = 1.33 · 104.
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(c) author ability × √activity
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FIG. S4. Same as FIG. S3 but for the simulation setting with the number of active researchers increasing with time as in Figure
4 in the main text. Here Ω∞ = 1.10 · 104.
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