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Prioritization methods for bridge stock seismic retrofitting underwent to a remarkable discussion among the 

researchers in the past thirty years. Several approaches have been proposed that can be mainly grouped according 

to 1) the method employed to evaluate the condition state and corresponding structural rate of failure of the 

specific bridge, that can be physically based or dependent on subjective judgment, and 2) the method to assess the 

failure cost for each bridge which is related to social cost born by the surrounding communities that can be 

focused on a specific bridge or on the entire transportation network operating in the area exposed to the seismic 

hazard. 

However, the approach investigating the impact in terms of reduced efficiency of a transportation network as a 

result of a defined seismic input can be often extremely complex and cumbersome, as far as the computational 

aspect is concerned. There is therefore, a need to develop more direct and simple methods to assess the social cost 

related to bridge failure at the network level. 

In this paper, a prioritization method based on a combined approach taking into account seismic input, specific 

fragility curves according to several bridge features and condition state and transportation-related failure cost is 

proposed The method has been applied to a case study of a local bridge stock located in central Italy to 

demonstrate its effectiveness. 

Keywords: seismic hazard, fragility models, failure cost, transportation networks, bridge, seismic retrofitting.  

1. Background 

Nowadays, the transport system plays a decisive 
role in the economic and social development of 
every country. In order to cope with the 
continuous increase in traffic, both for people 
and goods, it is important to keep it efficient, 
guaranteeing maximum usability in all 
circumstances. In recent years, the attention of 
the administrations and organizations that deal 

with infrastructure management has focused on 
the maintenance of what has already been built. 
Given the costs to be incurred and the limited 
economic resources, there was the need to 
develop tools for the rational management of 
ordinary and extraordinary maintenance 
operations. Therefore, engineering-economic 
procedures are spreading to support decision-
making of the interventions both to ensure 
saving of resources but, above all, to evaluate the 
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risk in the management of road asset. These 
procedures are usually implemented in integrated 
Asset Management System, AMS (ISO 55000, 
2014). These consist of a central database, with a 
Geographical Information System, GIS, interface 
which interacts with a decision support tool. The 
articulation of an Asset Management System can 
be complex due to the interactions that exist 
between different assets and the relationships 
between the different factors and constraints. 
This implied a reduced diffusion of these 
systems at an international level. 

Instead, there is consolidated literature and 
extensive experience in the application of 
systems for managing specific assets, including 
those relating to bridges and viaducts that will be 
reviewed in the followings. 

2. Bridge Management Systems 

Bridge management refers to all activities 
ranging from design and construction or 
replacement. The Organisation for Economic 
Cooperation and Development (OECD, 1992) 
defined the Bridge Management System (BMS)
as an organized approach which provides to 
manager authorities, information for optimally 
planning the maintenance and control of bridges 
and viaducts, taking into account structural, 
economic and social aspects.  

A survey carried out in the early 2000s 
(Woodward et al, 2001), as part of the Bridge 
Management in Europe (BRIME) project, on the 
state of the art of existing BMS used in Europe 
and abroad showed that the BMS were used in 
various administrative areas that have a role in 
the management but only in some countries they 
used them to define degradation models (based 
on analysis of the time series or on Markovian 
approaches).  

In analogy to other road asset management 
systems, the BMS generally acts on two levels: i) 
project level which is mainly focused on the 
technical management of details of individual 
structures and ii) network level which is mainly 
concerned with the management of a bridge 
stock and where there is a greater emphasis on 
economic and political management issues. 
Between these two levels of management, there 
are obviously strong interactions that are mainly 
affected by the prioritization criteria and 
methods that can be employed in order to 
optimally allocate the limited financial resources. 

As far as bridge seismic retrofitting issue is 
concerned, several analysis approaches have 
been developed (Nuti, et al., 2010; Borzi, et al., 

2015) and different methods for bridge screening 
and prioritization have been proposed and 
applied from public and private administrations 
(Giannini et a.,1998; Patidar et al, 2007; Davi et 
al, 2012; Yousefi et al, 2014), however very few 
of them are able to take into account socio-
economic impacts due to earthquake scenario on 
a specific analysis area. 

3. Objective 

The main aim of this work is to present a novel 
method for seismic retrofitting prioritization on a 
bridge stock, that is focused on the simplified 
approach employed to describe the transportation 
network and corresponding impact due to a 
defined seismic scenario.  

The method allows a local transportation 
authority, to prioritize interventions even if the 
information on pertaining transportation road 
network and on foreseeable functional impacts 
induced by an earthquake are lacking or missing.  

4. Methodology 

The proposed prioritization method of seismic 
retrofitting interventions on an existing bridges 
stock is based on the concept of Seismic Risk,
and on the evaluation of Actual Bridge 
Degradation State and Social Cost related to a 
seismic scenario. Below the definition of these 
parameters is presented. 

4.1 Theoretical background 

4.1.1 Seismic Risk 

The Seismic Risk associated to a specific bridge, 
can be defined with the following conceptual 
relationship: 

Where: 

SR = Seismic Risk;

H = Seismic Hazard;

V = Vulnerability;

E = Exposure.

The quantitative Seismic Risk evaluation requires 
a separate analysis of each of these components 
and their subsequent integration (see for 
example: Rasulo et al., 2015, Rasulo et al., 
2016). 

Seismic Hazard

Generally, the Seismic Hazard defines the 
expected seismic ground motion at a site (for 
example the Peak Ground Acceleration, PGA). 
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According to the Probabilistic Seismic Hazard 
Analysis (PSHA), which explicitly takes into 
account the uncertainty about source location, 
magnitudes, attenuation to site, etc (Cornell C. 
A., 1968). The final outcome can be expressed 
either as a hazard curve (which provides the 
average annual probability that a ground-motion 
parameter can be equalized or exceeded at a site) 
or a map (which depicts the expected values of 
the ground-motion parameter over a wide area 
for an assigned return period). 

Vulnerability

The seismic vulnerability is the predisposition of 
a structure to suffer a fixed level of damage, 
following a seismic event of a given intensity. 
The seismic vulnerability is generally 
represented by means of fragility curves, 
expressing the probability that a class of 
structures will suffer a specified damage level 
(light, moderate, extended or total), given a 
certain level of seismic input at the site (K. 
Pitilakis, 2014).

Exposure

The exposure can be defined as the 
quantification, in socio-economic terms, of the 
damage that a seismic event produces to a 
community, whose functions, under normal 
conditions, are exercised through the functioning 
of a series of material goods that are exposed to 
the seismic risk. In particular, the presence or 
absence of assets at risk and, therefore, the 
consequent possibility of suffering damage 
defines this parameter. Because of the inherent 
complexity of this parameter, an in-depth 
analysis on this issue is needed. A review of the 
socio-economic impacts induced by an 
earthquake is reported in the followings. 

4.1.2 Social Costs 

In a post-earthquake scenario, the evaluation of 
the exposure for critical infrastructures, such as 
transportation networks or lifelines, is intimately 
related to the assessment of the  Social Costs
that,  in turn, are directly connected to the social 
and economic "Losses" that can be distinguished 
in:  

direct losses deriving from casualties and 
repair/replacement of the damaged 
component of the infrastructure; 
indirect losses connected with the temporary 
service reduction/interruption (short- 
medium-term) and possible devaluation of 
all the aspects connected with the 
infrastructure (long-term). 

According to recent literature (Modaressi et al., 
2014) a systemic analysis of critical 
infrastructures  (among which transportation 
networks are of prominent interest) have been 
proposed basing on different level of assessment 
however, it has to be reminded that this 
classification, that is based on the evaluation of 
seismic risk, has to be converted into sound 
criteria to prioritize maintenance or seismic 
retrofit interventions on a bridge stock when the 
budget is not unlimited and the financial 
constraints force the road network Manager to 
operate on a sample of the entire Bridge Stock 
on annual basis. Basing on these premises, the 
following analysis approaches can be proposed: 

Level 0 or Base Analysis according to which, 
exposure is associated to road category where is 
located the defined bridge to the extent that 
major road usually accommodate higher traffic 
flows and therefore the exposure level is deemed 
to increase with the importance of the road link. 

Level 1 or Volume Based Analysis where the 
exposure based prioritization is merely related to 
the value of traffic volume (usually the Annual 
Average Daily Traffic) travelling on the specific 
road where the defined bridge is located.  

Level 2 or Connectivity Analysis according to 
which in the immediate post-earthquake scenario 
there will be the loss of service of some road 
links (as a result of bridge collapsing) impeding 
the access to some urban areas; in this case, 
prioritization is tackled basing on the amount of 
population that cannot be reached by emergency 
services; 

Level 3 or Capacity Analysis that retains its 
original meaning insofar the Total Delay Cost
for each bridge collapsing in the analysis area is 
evaluated and according to this parameter a 
prioritization can be pursued; 

Level 4 or Serviceability Analysis that, as 
previously stated, investigates on the broader and 
long-term economic and supply chain related 
impacts on the analysis area caused by a reduced 
efficiency of the transportation network. 

It is worth to be noticed that Level 0 and Level 1
prioritization approaches need very few data and 
information on road network and therefore can 
be easily implemented, although it has been 
acknowledged that they may not be enough 
“granular” to discriminate between different 
bridges and cannot accurately represent social 
costs in the analysis area (Small, 2000). 
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Level 2 analysis plays a critical role in the 
management of the emergency services in the 
immediate post-earthquake scenario. However, 
on one hand, it requires a mathematical 
formalization that even for very small networks 
implies a cumbersome computational effort 
(Sanchez-Silva et al., 2013) whereas, on the 
other, as a matter of fact, in industrialized 
countries, connectivity level is often 
characterized by a remarkable redundancy thus 
implying a lower effect on overall social costs. 

Level 4 analysis requires a huge amount of data 
on land use and socio-economic information and 
also several additional skills on economic 
analysis that can be hardly retrieved in Local 
Road Agencies (Modaressi et al., 2014). Level 3
appears, so far, an affordable compromise 
between the need of a sounder evaluation of 
Socio-economic Costs related to conventional 
maintenance or seismic retrofitting of a bridge 
stock and the quality of information available for 
Local Road Authorities. 

However, this kind of analysis requires, at least, 
the knowledge of the entire Origin-Destination 
(O/D) trip matrix of the analysis area and, more 
generally, the development and implementation 
of a transportation demand prediction model or 
traffic forecasting model.  

A traffic forecasting model (formerly known as 
four-step travel demand model) can be formally 
expressed by the following equation (Cascetta, 
2009): 

where: 

di
od (s, h, m, k) is the average number of trips 

carried out by class user i (depending on the 
socio-economic role of the user) starting from 
origin traffic zone o, and terminating in the 
destination traffic zone d, for a specific purpose 
s, within the time period h, using the transport 
mode m, and choosing the trip path k;

di
o (sh) is the average number of class user i who 

perform a trip from origin zone o, for purpose s,
within the time period h (better known as the 
traffic generation sub-model); 

pi (d/osh) is the fraction of the aforementioned 
users who terminate the trip in the destination 
zone d (known as the traffic distribution sub-
model); 

pi (m/oshd) is the fraction of the aforementioned 
users who choose the transport mode m (known 
as the traffic mode-choice sub-model); 

pi (k/oshdm) is the fraction of the aforementioned 
users who choose the trip path k (this is 
commonly known as the traffic assignment or 
path-choice sub-model). 

Once that the mobility scenario has been 
evaluated, the Generalized Transport Cost, GTC,
for the analysis area can be assessed.  Among the 
different terms contributing to the GTC, the 
travel time is the most significant. If therefore 
the hourly cost for each trip can be defined 
according to the specific trip purpose, s, GTC
can be calculated for the analysis area and the 
Total Delay Cost, TDC, can be expressed by 
means of the following equation: 

   

where: 

GTCpost is the Generalized Transport Cost, for 
the analysis area in the post-earthquake scenario 
evaluated on daily basis; 

GTCpre is the Generalized Transport Cost, for 
the analysis area in the pre-earthquake scenario, 
evaluated on the daily basis. 

If the Social Costs have to be embedded in the 
prioritization scheme for seismic retrofitting or 
conventional maintenance of a bridge stock, the 
exposure term can be therefore related to the 
TDC following the collapse and the related road 
disruption of each singularly examined bridge 
belonging to the stock.  

The overall Social Cost will be therefore 
obtained by multiplying the TDC by the overall 
amount of days necessary to restore the original 
bridge serviceability conditions.  

4.2 Prioritization Index Definition 

Following these premises, two different 
approaches will be presented for the application 
of the proposed prioritization method of seismic 
retrofitting interventions on an existing bridges 
stock. Both are based on a linear combination of 
three indices, and in particular: 

where: 
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PIi = Prioritization Index for seismic retrofitting 
of the i-th bridge; 

SPIi = Simplified Prioritization Index of the i-th 
bridge; 

VIi = Vulnerability Index of the i-th bridge; 

EIi = Exposure Index of the i-th bridge, evaluated 
basing on Social Costs; 

DIi = Degradation State Index of the i-th bridge,
for seismic-retrofitting; 

SEIi = Simplified Exposure Index of the i-th
bridge. 

The evaluation of these parameters is explained 
below. 

4.2.1 Vulnerability Index definition 

The VIi, referred to the i-th bridge, is calculated 
with the Eq. 6: 

where: 

VIi = Vulnerability Index of the i-th bridge; 

Vci = Vulnerability Curve Index of the i-th 
bridge; 

Vcmax = Maximum Vulnerability Curve Index of
the entire bridges stock. 

In particular the Vulnerability Curve Index is 
calculated integrating the Vulnerability Curve,
which is defined as the convolution between the 
Seismic Hazard Curve and the Fragility Curve.

4.2.2 Bridge Degradation State Index definition  

The evaluation of the Degradation State Index,
for seismic retrofitting, is based on the 
knowledge of the actual deterioration state of 
each single bridge (and of each of its composing 
element as abutment, pile, span, …) belonging to 
the entire stock.  Generally, this data can be 
acquired during the Bridge Safety Inspections 
and different National and International 
techniques have been proposed (AASHTO, 2013; 
Chase et al., 2016; etc).  

The DI, referred to the i-th bridge, is calculated 
with the Eq. 7: 

Where: 

DIi = Degradation State Index of the i-th bridge,
for seismic retrofitting; 

TDi = Total Degradation State value of the i-th
bridge; 

TDmax = Maximum Total Degradation State 
value computed on the entire bridges stock. 

In particular the Total Degradation State value is 
calculated with the Eq. 8: 

where: 

TDi = Total Degradation State value of the i-th
bridge; 

ns = number of span composing the i-th bridge; 

m = number of element composing the i-th 
bridge; 

EDj = Degradation State of the j-th bridge’s 
element. This value can be evaluated by expert 
inspectors crew; 

Caj = Coefficient depending on the age of the j-th 
bridge’s element; 

Wej= Weight depending on the j-th element type 
(as abutment, pile, span, …) and on intervention 
type. 

As far as this latter term is concerned, it is worth 
to be noticed that the Weight value is dependent 
on the intervention type since different level and 
type of degradations on several bridge elements 
may have a different impact on bridge 
serviceability if a conventional maintenance or a 
seismic retrofitting intervention has to be 
evaluated.  

4.2.3 Exposure Index definition 

For the bridges' exposure evaluation two 
different approaches have been proposed: the 
first one, defined “Conventional”, is based on the 
Social Costs estimation and the last one, defined 
“Simplified”, is based on the Vehicular Traffic 
evaluation.

In particular, the Eq. 9 and the Eq. 10 can be 
used for the evaluation of the Conventional and 
Simplified approaches, respectively: 

Where: 

EIi = Exposure Index of the i-th bridge; 

SEIi = Simplified Exposure Index of the i-th
bridge; 
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event, are lacking or missing. As far as the 
impact on intervention’s policies are concerned, 
degradation state and exposure index related to 
social (delay) cost appear the most prominent. 

A comparison between the Conventional 
approach, based on the evaluation of the Social 
Cost and the Simplified approach, based on the 
estimate of the Simplified Social Cost Index has 
been presented and preliminary results show a 
fairly good agreement between the prioritization 
classification for the retrofitting intervention 
planning. 
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