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Abstract: In this paper, recent achievements in the application of the lattice Boltzmann method (LBM)
to complex fluid flows are reported. More specifically, we focus on flows through reactive porous
media, such as the flow through the substrate of a selective catalytic reactor (SCR) for the reduction
of gaseous pollutants in the automotive field; pulsed-flow analysis through heterogeneous catalyst
architectures; and transport and electro-chemical phenomena in microbial fuel cells (MFC) for novel
waste-to-energy applications. To the authors’ knowledge, this is the first known application of LBM
modeling to the study of MFCs, which represents by itself a highly innovative and challenging
research area. The results discussed here essentially confirm the capabilities of the LBM approach as
a flexible and accurate computational tool for the simulation of complex multi-physics phenomena of
scientific and technological interest, across physical scales.

Keywords: lattice Boltzmann; porous media; SCR; heterogeneous catalysis; MFC

1. Introduction

The lattice Boltzmann method (LBM) is a computational framework for the study of fluid
mechanics founded on Boltzmann’s kinetic equation: from the evolution of the dynamics of (groups
of) molecules, the macroscopic quantities (density, velocity and temperature) fields are retrieved [1].
Due to its discrete nature, LBM allows for investigating complex flows at a mesoscopic level, compared
to continuum-based approaches, which are a direct emanation of the Navier-Stokes equations for
fluid flows. Together with its intrinsic computational efficiency, this is the main reason why LBM has
marked an impressive growth in the last three decades from a niche methodology into a robust and
reliable computational tool for a constantly increasing number of technical applications [2–8].

A special class of engineering problems is represented by flows through porous media, which are
often encountered in heat transfer devices [9–12] as well as chemical reactors [13,14] and different
types of fuel cell technologies [15,16]. The detailed modeling of transport phenomena in porous media
might be a very demanding task, due to the coexistence of a broad range of physical (sometimes from
macro- to nano-) scales across the same global domain [17–19]. For that reason, continuum-based
Computational Fluid Dynamics (CFD) approaches usually employ simplified models where the
actual porous structure is replaced by its general macroscopic properties, such as the volume-averaged
permeability, porosity, surface-to-volume ratio, etc. [19]. At the same time, the detailed flow description
at a pore-scale level is usually limited to very small domain portions [12], due to the difficulties in
reaching a sufficient numerical accuracy at reasonable computational costs.
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Generally speaking, LBM is particularly well suited for flow through irregular (porous) media,
essentially due to its dual particle-field nature [1] and to additional features such as: (i) the previously
mentioned excellent computational performance; and (ii) ease in implementing (complex) porous
media geometries. In recent years, a significant number of advanced LBM applications to porous
media have emerged in the scientific literature, including: coupled LBM-finite volume methods
for fluid-solid heat transfer [20–22] and dissolution [23] modeling; simulation of surface catalysis
in fractal porous media [24,25]; simulation of gas diffusion layers in fuel cells at a pore level [26];
and heterogenous catalysis modeling in nanoporous structures [27–31]. All such studies essentially
confirmed the reliability and versatility of LBM-based methods to deal with complex, multi-scale flows
through porous media, thus justifying further research and development in that area.

In the present work, we show some recent implementations of our purposely developed LBM
solver, which is based on a simple multi-component formulation and includes a special procedure for
the detailed porous media reconstruction, as well as a novel reactive boundary condition to account for
surface chemistry at the pore-scale level. The test cases consist of a single-channel Selective Catalytic
Reactor (SCR), a nanoporous pulsed-flow reactor and a highly innovative Microbial Fuel Cell (MFC)
reactor. The rest of the paper is organized as follows: first, the numerical methodology is described
in Section 2; results from the selected test cases are presented and commented on in Section 3, while
concluding remarks and suggestions for future developments are given in Section 4.

2. Methodology

2.1. The Lattice Boltzmann Method

The LBM foundation consists of the so-called generalized Boltzmann Transport Equation (BTE),
which for a particle system in the presence of external or internal forces F yields:

∂ f (x, v, t)
∂t

+ v(x, t) · ∇x f (x, v, t) + a(x, t) · ∇v f (x, v, t) = Ω + F(x, t) · v(x, t), (1)

where f (x, v, t) is the probability density function (PDF) of finding a (group of) molecules at site x,
at time t, moving with molecular velocity v(x, t). The term Ω on the right-hand side (RHS)represents
the collision operator, a function of f (x, v, t) itself, which makes Equation (1) extremely complex to solve.
Compared to Equation (1), two fundamental simplifications lie at the basis of the success of LBM:

1. the adoption of a simplified formulation of the collision operator, that is the so-called
Bhatnagar-Gross-Krook (BGK) approximation [32]: Ω = ω = 1

τ , with τ the relaxation time
towards local equilibrium;

2. the (groups of) molecules are forced to move along pre-determined and fixed i directions [33].

The product of such assumptions is the standard lattice Boltzmann Equation (LBE), which can be
written as follows:

fi(x + ci∆t; t + ∆t)− fi(x, t) = −ω∆t ( fi(x, t)− f eq
i (x, t)), (2)

where ci represents the ith discrete velocity of the lattice.
The left-hand side (LHS) of Equation (2) represents the free-streaming part, and the RHS represents

the collisional relaxation towards a local thermodynamic equilibrium state, which happens on
a time-scale τ = 1/ω. The equilibrium distribution function f eq

i is commonly expressed as a low-Mach,
second-order expansion of a local Maxwellian [1], namely:

f eq
i = wiρ

(
1 +

1
c2

s
ci · u +

1
2c4

s
(ci · u)2 − 1

2c2
s
||u||2

)
. (3)

In order to guarantee the isotropy of the method, the weights wi should obey isotropy
constraints [33]: ∑i wi = 1, ∑i wici = 0 and ∑i wicici = c2

s 1, which ensure that the species density
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and velocity encoded by the distributions fi and f eq
i coincide. The kinetic connectivity of the lattice

node, with respect to its neighbors, is then fully described by the set of b + 1 discrete velocities, with b
representing the neighbors number. For b = 8, the standard D2Q9 scheme is recovered [33], as shown
in Figure 1.

Figure 1. Sketch of a D2Q9 lattice.

Since the pioneering work of Gustensen et al. [34], a lot of effort has been spent in the LBM
modeling community in order to extend Equation (2) for the simulation of multi-component flows,
including single-phase and multi-phase immiscible fluid systems as well as gas mixtures with various
levels of complexity [5,6,35,36]. A recent development line is represented by the series of papers
from Arcidiacono et al. [37,38], where the concept of fast-slow decomposition of motions near quasi-
equilibrium states [39] was applied in order to obtain a thermodynamically consistent LBM model for
multi-component mixtures. The same approach was later on extended for the simulation of surface
catalytic reactions [40], accounting also for thermal gradient effects [41].

The numerical results presented in this work are based on the LBM approach proposed by
Asinari [42,43] for mixture modeling. For the sake of clarity, we briefly report the equations related
to the case of binary mixtures, which can be easily modified to incorporate an arbitrary number of
species. Considering two species α and ς and neglecting the presence of external forces F, we can
recast Equation (1) as follows, [43]:

∂ f α

∂t
+ v · ∇ f α = Ωαα + Ωας , (4)

where Ωας = Ωςα, with α 6= ς, is the cross-collision term for the two species. In the spirit of the BGK
approximation, the collision operators at the RHS of Equation (4) can be expressed as:

Ωαα =
1
τα

( f α − f eq,α) and Ωας =
1

τας
( f α − f eq,ας) , (5)

with τα and τας being the two (adjustable) relaxation parameters and the equilibrium distribution
functions provided by the following Maxwellians:

f eq,α(ρα, uα, Tα) =
ρα

(2πRαTα)D/2 e−(v−uα)2/(2RαTα), (6)

f eq,ας(ρα, uας, Tας) =
ρα

(2πRαTας)D/2 e−(v−uας)2/(2RαTας) , (7)
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where D is the space dimension, while Rα and Tα are the gas constant and the absolute temperature
for species α, respectively. The BGK collision operators can be then combined as follows:

Ωα = −
(

1
τα

+
1

τας

)
[ f α − f eq,α]− 1

τας
[ f eq,α − f eq,ας]. (8)

By assuming the mixture as isothermal (Tα = Tας = T) and discretizing in the velocity space,
Equation (4) can be rearranged as, [42,43]:

f α(x + ci, t + 1)− f α(x, t) =
(

1
τα

+
1

τας

)
( f eq∗ ,α

i − f α) , (9)

in which the modified equilibirum PDF f eq∗ ,α
i is given by, [42]

f eq∗ ,α
i = (1− σ0) f eq,α

i (ρα, uα, t) + σ0 f eq,α
i (ρα, u, t) , (10)

with σ0 = τα/(τατας) , and

f eq,α
i (ρα, u, t) = wi

{
ρα +

ci · u
RαT

+
1
2

[
(ci · u)2

(RαT)2 −
u · u
RαT

]}
. (11)

Since in Equation (11) we consider the barycentric velocity u, the corresponding equilibrium
PDF accounts for both self and mutual collision terms; moreover, the formulation in Equation (11) is
completely general and accounts for the possible differences in the speed of sounds of the different
species under investigation. For the sake of simplicity, for the LBM engineering applications considered
in the present work, without lack of generality, we have assumed τα and Rα equal and constant for all
the species: the values of τ are computed according to the chosen Knudsen number, while a single
value for the species speed of sound is considered in the following.

2.2. Reactive Boundary Condition

In the LBM framework, accounting for chemical reactivity comes as a natural adaptation of the
basic scheme. In more detail, surface chemistry has been often accounted for through specifically
developed boundary conditions [40,41,44], reaching a remarkable accuracy level with relatively
straightforward modifications to the baseline methodology.

In the present work, we account for heterogeneous catalysis starting from the generic first-order
reaction mechanism expressed by:

R→ P, (12)

where R is the reactant species (usually transported by a carrier C) and P is the reaction product.
The interaction of R with the surface catalyst is assumed to be an inter-conversion into the product
P upon contact with the solid walls, happening at a characteristic time scale that can be considered
much smaller (i.e., instantaneous) as compared to the fluid-dynamic time scales represented by the
lattice collision step (see, e.g., [44]).

To include the above-mentioned mechanism in our LBM solver, a “sputtering” boundary condition
was developed in [29,45]. Each solid node that is adjacent to fluid nodes acts as a catalytic site, as shown
in Figure 2. Note that the boundary condition is designed to preserve locally the R + P mass and the
modulus of barycentric momentum.

The new populations that emerge from each discrete catalytic site are randomly oriented,
thus mimicking the effect of the local wall orientation on the flow dynamics. The model behaves
such that, upon colliding with a solid site, the reactant R partially transforms into the product P with
a given probability p, which is directly connected to the specific chemical kinetics.
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Figure 2. Sketch of the reactive boundary condition.

2.3. Porous Domain Reconstruction

The catalytic porous material is reconstructed by adopting a simple and effective procedure.
At the beginning of each simulation, the volume occupied by the porous medium is entirely filled with
solid nodes (solid is colored in red in Figure 3). Subsequently, a number of sphere seeds is randomly
inserted in the solid region and the radii of these spheres are randomly grown between a minimum
and a maximum threshold value. The lattice nodes inside the randomly generated spheres are set
as fluid (blue in Figure 3): fixing the number of spheres and their maximum radius, it is possible to
retrieve the desired structural porosity, defined as ε = Vf /Vtot, with Vf the empty (fluid) volume and
Vtot the total occupied volume.

(a)

(b)

Figure 3. Example of a reconstructed “sandwich-like” porous catalytic medium: (a) computational
domain without lattice grid; (b) computational domain with the lattice grid superimposed.

3. Results and Discussion

3.1. Selective Catalytic Reduction of NOx Emissions

The first application we present is the simulation of a simplified, square-shaped channel of
an SCR catalytic device for automotive exhaust gases aftertreatment. The computational domain,
which includes the catalytic porous substrate, is sketched in Figure 4, along with the adopted boundary
conditions. To account for the NOx conversion in the substrate, it has been assumed that the standard
NO reduction mechanism dominates among the others, which is usually the case when the NO2

amount in the total NOx emissions is small compared to the NO fraction (see e.g., [46]).
Additionally, the ammonia storage-release and coverage effects have been neglected. This yields

the following single-reaction mechanism:

4NH3 + 4NO + O2 → 4N2 + 6H2O, (13)
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which fits perfectly in the generic form (12) and be described by a classic Arrhenius-type relation,
such as:

k = A e−
Ea
RT , (14)

with A the Arrhenius pre-exponential factor, Ea the activation energy, R the universal gas constant
and T the absolute temperature. In the case of Equation (13), such parameters can be set to
A = 8.35 × 107 m3/kg·s, Ea = 8.5 × 104 J/mol,R = 8.314 J/mol·K and T = 623 K, which are likely to
provide a NO conversion efficiency typical of production SCR catalytic supports [47]. With the above
values, we find k = 6.233 m3/kg·s.

Figure 4. Sketch of the SCR channel model (dimensions are not in scale).

Once the kinetic parameters are set, with the plug-flow reactor assumption, the evolution of NO
concentration can be modeled according to the following expression:

C = C0 e−k∗θ , (15)

where C0 and C are the NO concentration inside the exhaust gases at the inlet and outlet section of
the SCR reactor, respectively, k∗ is the value of k rescaled by the SCR bulk density and θ is the reactor
residence time. For the purposes of the present work, we assume a target conversion efficiency of
∼90%, which means C/C0 ∼ 0.10. Since the conversion parameter p represents the amount of product
species released from the reactor active sites, we fix a 90% reaction rate by posing p = 0.9. Concerning
the substrate structural characteristics, the ε parameter is set to ∼0.7, which is a common value for
automotive catalytic supports [13]. Given the substrate geometry, this yields an average pore diameter
of Dp ∼ 100 µm. According to these values, an estimate of the substrate permeability can be made
through the Carman-Kozeny theoretical relationship [19]:

k =
ε3

K(1− ε)
D2

p, (16)

where K is an empirical constant of the order of 102. For K = 150 [48], Equation (16) delivers
a value of k ∼ 7.5 × 10−11 m2, which is in fair agreement with the permeability of the catalytic
substrates used in automotive applications [13,48]. Table 1 resumes the main parameters adopted for
the LBM simulations.

Four preliminary simulations were performed with different grid densities, in order to ensure
the grid independence of the numerical results. Increasing the mesh resolution, we have considered
computational grids featuring 1000× 68 nodes, 1500× 100 nodes, 3000× 200 and 4000× 264 nodes,
respectively. We define the conversion efficiency parameter η as:

η =
[N2]outlet
[NO]inlet

, (17)
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where [NO] is the total concentration of NO at inlet (reactant) and [N2] the concentration of N2 at
the outlet (product). We have assumed that the simulations have converged when the conversion
efficiency parameter η reaches a steady-state value.

Table 1. Main simulation parameters for the SCR channel case.

Parameter Value

Channel length L (mm) 100
Half-channel height H/2 (mm) 6
Substrate thickness tp (mm) 1.5
Chemical species 3
Gas mixture viscosity (m2/s) 5.5× 10−5

ε (%) ∼70
Re ∼100
Reaction parameter p 0.9
Exhaust gas reference temperature (K) 623

Figure 5a shows the trends of the predicted conversion efficiency vs. the time step advancement,
compared to the theoretical value computed through Equations (13)–(15). The trends confirm that the
third (medium) grid is sufficient to obtain accurate and convergent results after about 200,000 time
steps. Note that in this case the physical time step is equal to ∼5 ×10−5 s.

In Figure 5b, the integral of species concentration (The N2 concentration should be regarded as
a relative increase with respect to the N2 content at the inlet.) across the channel height is reported,
along the reactor axis and together with the equivalent NO content profile returned by the plug-flow
reactor assumption. The profiles are consistent with the theoretical expectations, with a progressive
decrease of the NO content and a simultaneous increase of N2. The somewhat “noisy” plots are
due to the randomly distributed porous structure, which affects the integral output at each axial
coordinate value differently. Note that, once ε and the max/min pore diameter are fixed, changing the
initial random distribution of the pore reconstruction spheres is not expected to significantly affect the
average species trends along the reactor.
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Figure 5. (a) conversion efficiency vs. simulation time for the different grid sizes, compared to the
theoretical expected value; (b) species concentration along the SCR axis, at t = 250,000 time steps and
for the 3000× 200 grid, compared to the plug-flow reactor profile.

3.2. Heterogeneous Catalysis in Pulsed-Flow Reactors

Unsteady kinetic characterization of catalytic devices is often made through pulse-response
methods such as Temporal Analysis of Products (TAP) methods [49–52] and Unsteady-State Processes
in Catalysis (USPC) [53]. These techniques typically apply to high-vacuum conditions, where the
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molecular mean free path is significant compared to the characteristic size of the device. Instead,
the exploration of the non-high-vacuum regime is still an open question, thus leading to a great interest
in the development of effective numerical methods to investigate such type of reactive flows.

Although essentially new for these kinds of applications, LBM could represent a game changer in
the rarefied gas modeling field due to its intrinsic computational efficiency compared, for instance,
to methods such as Direct Simulation Monte Carlo [54]. The mesoscopic nature of LBM should allow,
in principle, to properly capture flow dynamics and reaction kinetics for pulsed-flow systems, at least
up to the moderate Knudsen number limit (0.1 < Kn < 1).

Here, we present a computational analysis based on the experimental and theoretical work of [51],
where TAP-like catalytic conversion was studied by means of an ad hoc developed probabilistic
theory, according to three different reactor geometries (Figure 6). The flow considered in the reference
experimental measurements is characterized by pure Knudsen-diffusion (i.e., Kn > 1), with a single
reactive species traveling through the test field. The LBM simulations reproduce a more general
pulsed-flow regime, with a characteristic Knudsen number Kn ∼ 0.65. The catalyst consists of a single,
square-shaped platinum foil, surrounded by a chemically inert porous media with an average porosity
of ε ∼ 70%.

(a) (b) (c)

Figure 6. Reconstructed computational domains based on the experiments of [51]. The single catalyst
particle is represented by the red square, while the fluid domain is represented in blue. Pulsed flow
goes from left to right; (a) Case A; (b) Case B; (c) Case C.

As for the SCR case, an initial grid-independence study was performed, founding a resolution
of 496× 336 (about 10 lattice nodes per pore diameter) as the minimal required for grid independent
results. The carrier and reactant species were injected during the first 6000 time steps only, mimicking
a single-pulse flow configuration. Subsequently, the injection was switched off, letting the species
diffuse across the domain for the remaining part of the simulation. Each run lasted for about 107 time
steps, considering that the numerical time step corresponds to ∼10−7 s. The catalyst was placed at
three different relative locations (see Figure 6) and the conversion parameter η was determined as:

η =
Mtot,P

Mtot,R
, (18)

where Mtot,P and Mtot,R represent the total masses of products and reactants, respectively.
As shown in Figure 7, an acceptable agreement is achieved by the LBM simulations compared with

the reference experimental and theoretical results. It should be remarked again that the experimental
and theoretical results from [51] were obtained in the pure Knudsen-diffusion regime. Additionally,
an average over the first ten reactant pulses was considered, in the experiments. In our case,
single-pulse simulations were performed and the flow was only marginally in the Knudsen-diffusion
regime. Interestingly, both LBM and the theoretical model of [51] deviates from the experimental
measurements in Case C: this was found to be related to the deterioration of η in the actual experimental
conditions, due to the proximity of the catalytic particle to the reactor outlet.
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Figure 7. Comparison between the conversion parameters obtained from the LBM simulations and
the theoretical and experimental results from [51].The black dots represent LBM results; the dashed
rectangular boxes describe the uncertainty around the experimental values; the vertical colored stripes
represent the reference theoretical predictions.

3.3. Microbial Fuel Cells Characterization

In recent years, Microbial Fuel Cells (MFCs) have been the object of considerable research efforts
all over the world, due to their interesting potential as direct waste-to-energy converters [16,55–57].
Compared to the experimental activity on traditional Fuel Cells (FC), dealing with MFCs entails the
management of a wider set of parameters, related to the electro- and bio-chemical processes that
take place inside these reactors. In such a complex scenario, the availability of flexible and effective
computational tools could be of great help to experiments, in order to accelerate the deployment of
MFC-based technology from laboratory-scale to real world, industrial-scale applications.

Here, we present some preliminary LBM results, aimed at the reproduction of the experimental
campaign performed at the Energy Lab of the University of Naples “Parthenope” [56,57].
The experimental apparatus featured tubular MFC reactors, made of Falcon test tubes [58] filled
with carbon- fiber anode brushes and disk-shaped ceramic porous cathodes (see Figure 8a,b).
The organic substrate was prepared from vegetable residuals mixed with water and without any
further, specific pre-treatment.

The reconstruction of the MFC reactor is shown in Figure 8c. The anode brush and cathode disk
were both treated as sectioned porous media, with ε equal to ∼72% and ∼76%, respectively. Moreover,
the anode media was considered as active, with the generation of H+ ions according to the bacteria
activity trends, while the cathode was assumed as a passive porous structure. The N − N section
represents the Nafion membrane, also included in the experimental setup, which acts as a no-slip
wall for water and solid waste species, while it is a permeable boundary for the H+ ions. The motion
of ions inside the reactor is due to the presence of diffusion and repulsion between positive ions
and the potential difference between the electrodes. The diffusion process is automatically included
in the standard LBM scheme, while the repulsive force has been modeled through the following
pseudo-potential approach [59]:

F = −Gc2
s
∇ψ2

2
, (19)

where ψ is the pseudo-potential that accounts for the local H+ density and is given by:

ψ = 1− e−[H
+], (20)

while G represents the strength of the repulsive interaction:
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G =
q
c2

s
, (21)

with q being the electrical charge of H+ ions. The potential difference between the two electrodes
was fixed as the input parameter for the operation of our MFC model. Note that, in order to ensure
that the simulated configuration matches the physical scales of the actual reactor, physical units were
converted into lattice units (LU) through the following simple Equation:

Γphys = ΘΓlu, (22)

where Γ represents any given quantity in the physical or lattice unit space, while Θ is the
quantity-specific conversion factor. Conversion factors for quantities such as the viscosity and length
scales are readily obtainable from numerical stability constraints (the former) and from the lattice grid
dimension (the latter). The remaining conversion factors are then established as a combination of the
known ones. Table 2 reports the main physical quantities and the corresponding quantities in LU for
the reference MFC reactor configuration.

Table 2. Main physical parameters for the MFC reactor and their LU conversions.

Parameter Γphys Γlu [LU]

Length 0.1 (m) 400
Kinematic viscosity 5.5× 10−5 (m2/s) 1.6667
Density 1× 103 (kg/m3) 1
H+ concentration 1.78× 10−4 (mol/L) 1.78× 10−7

pH 3.75 6.75
Open-Circuit Voltage (OCV) 0.5 (V) 0.005

A set of simulations was performed on a 400× 100 lattice grid, in order to obtain polarization and
power curves as a function of the imposed potential difference ∆V. Figure 9 displays the normalized
numerical trends, compared to the experimental data presented in [57]. The agreement between the
experiments and and the numerical predictions is remarkable, with the latter being capable of correctly
predicting the typical trends of MFCs operation, namely:

• negligible activation losses in the small currents region, due to the slow start-up time of bacterial
activity (typically 3–5 days);

• quasi-linear Ohmic-losses region, which represents the majority of the MFC operational range;
• no appreciable concentration-loss phase.

(a) (b)

Figure 8. Cont.
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(c)

Figure 8. Experimental MFC reactor components and reconstructed computational domain; (a) carbon-fiber
anode brush; (b) ceramic porous cathode; (c) domain configuration for the LBM simulations.
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4. Conclusions

In this work, ad hoc developed algorithms for the simulation of reactive flows through micro- and
nano-scale porous media via the Lattice Boltzmann Method are presented and discussed. Different
technological applications are considered: namely, automotive SCR converters under thermally steady
operating conditions; heterogeneous (nano-)porous catalytic systems under non-steady (pulsed)
operating conditions; electro-chemical energy conversion systems, even in the presence of complex
biological substrates, like in MFC reactors. In all of these heterogeneous environments, the proposed
porous media reconstruction procedure and reactive boundary condition have proven to be sufficiently
accurate and reliable to correctly describe the flows in study. Of particular significance is the MFC
application, due to the high innovation level and challenges related to the investigation of such kinds
of devices.

On the computational side, the LBM code was able to achieve ∼1.5 million lattice site updates
per second (MLUPS). This is a remarkable result in terms of computing performance, given
that three evolving species are tracked simultaneously, which highlights the efficiency of the
developed implementation.

To further extend the versatility of the proposed methodology, the future development steps
should be focused on: robust 3D implementation; inclusion of non-isothermal effects in the fluid
flow and chemistry mechanisms; inclusion of adsorption-desorption modeling over the surface
catalytic sites; and extension of the reconstruction algorithm to account for specific porous structural
configurations.
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LBM Lattice Boltzmann Method
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MFC Microbial Fuel Cell
MLUPS Milions Lattice site Updates per Second
OCV Open-Circuit Voltage
SCR Selective Catalytic Reduction
TAP Temporal Analysis of Products
USPC Unsteady-State Processes in Catalysis
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