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ABSTRACT. We investigate the properties of the set of singularities of semicon-
cave solutions of Hamilton-Jacobi equations of the form

ug(t,z) + H(Vu(t,z)) =0, ae. (t,x) € (0,400) x Q C R, (1)
It is well known that the singularities of such solutions propagate locally along
generalized characteristics. Special generalized characteristics, satisfying an
energy condition, can be constructed, under some assumptions on the structure
of the Hamiltonian H. In this paper, we provide estimates of the dissipative
behavior of the energy along such curves. As an application, we prove that the
singularities of any viscosity solution of (1) cannot vanish in a finite time.

1. Introduction. It is commonly accepted that, in optimal control, a crucial role
is played by the Hamilton-Jacobi equation

wi(t,z) + H(z, Vu(t,z)) =0 (t,z) € (0,T) x R" 2)

u(0,z) = uo(x) x € R
where
e H:R"x R” — R is a C? smooth function such that
H
(a) lim inf Alz,p) = 400

|p|— o0 zER™ |p|
(b) Df,H(a:,p) >0, Y(z,p) eR"xR"

e ug : R™ — R is a Lipschitz function.

2010 Mathematics Subject Classification. Primary: 35A21; Secondary: 26B25, 49J52.
Key words and phrases. Propagation of singularities, Hamilton-Jacobi equations, semiconcave
functions, generalized characteristics, nonsmooth analysis.

4225


http://dx.doi.org/10.3934/dcds.2015.35.4225

4226 PIERMARCO CANNARSA, MARCO MAZZOLA AND CARLO SINESTRARI

Indeed, being able to characterize the value function as the unique solution of (2)
is the starting point towards a rigorous approach to dynamic programing.

The notion of viscosity solutions, introduced in the seminal papers [9] and [10],
provides the right class of generalized solutions to study existence, uniqueness, and
stability issues for problem (2). The reader will find an overview of the main features
of this theory in [5], for first order equations, and [13], for second order problems.

On the other hand, it is also well known that Hamilton-Jacobi equations have no
global smooth solutions, in general, because solutions may develop singularities—
i.e., discontinuities of the gradient—in finite time due to crossing of characteristics.

Indeed, the maximal regularity one may expect for solutions of (2) is that, for
any t > 0, u(t,) is locally semiconcave on R™, that is, u(¢,-) can be represented
as the sum of a concave and a smooth function on each compact subset of R™.
In fact, the notion of semiconcave solution was used in the past even to provide
existence and uniqueness results for (2) before the theory of viscosity solution was
developed, see [12], [14], and [15]. Nowadays, semiconcavity is still an important
property in the study of Hamilton-Jacobi when related to optimal control problems
in euclidean spaces ([7]) and even on Riemannian manifolds ([19]). However, it is
rather regarded as a regularizing effect of the nonlinear semigroup associated with
(2)—in some sense, a sign of irreversibility in Hamilton-Jacobi dynamics.

Another evidence of irreversibility for the equation

w(t, ) + H(z, Vu(t,z)) =0 (t,z) € (0,T) x R™ (3)

is the persistence of singularities, that is, the fact that once a singularity is created,
it will propagate forward in time up to +o0o. Unlike the gain of semiconcavity, such
a phenomenon is not well understood so far.

What is sufficiently clear to this date is the local propagating structure of the
singular set of a viscosity solution u of (3): if (tg,z0) € [0,+00) X R™ is a singular
point of u, then there exists a Lipschitz arc v : [to, to + 7) — R™ such that (¢,~(¢))
is singular for all ¢ € [to, %o+ 7), see [3], [20], and [8]. Therefore, the question we are
now interested in is to provide conditions to ensure that 7 = +00. We note that, in
general, this problem has a negative answer if H is allowed Lipschitz dependence
in (¢,x) even for n = 1, see [7, Example 5.6.7].

A different—yet related—problem is the study of the propagation of the closure of
the singular set of u which, in this context, coincides with the C'! singular support
of w. This set is obviously larger than the singular set itself and can indeed be
strictly so, even when the initial datum is of class C' with a Lipschitz gradient.
For instance, [6, Example 4.20] gives an example where the Hausdorff dimension
of the C' singular support is strictly greater than the dimension of the singular
set. The propagating structure of the C! singular support is now understood fairly
well. The first result, of local nature, was obtained in [6, Theorem 3.3] for smooth
initial conditions. Then, the global propagation of the C'! singular support has been
proved by Albano [1] without any smoothness restriction on the data. This analysis
has been refined in [18], pointing out an interesting connection with specific families
of generalized characteristics of (3).

Nevertheless, establishing whether genuine singularities propagate indefinitely or
not remains a largely open problem.

A first, simple case where the answer to the above problem is positive is when
n =1 and H is sufficiently smooth. Indeed, the x-derivative of u turns out to be a
solution of a conservation law for which the results in [11] ensure the persistence of
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singularities. However, the one-dimensional case is very special because topological
obstructions prevent singularities from disappearing after their onset.

Another result that guarantees the global propagation of singularities in any
space dimension was obtained in [2] for concave solutions of the Hamilton-Jacobi
equation

ug + H(Vu) =0.

Requiring concavity—unlike semiconcavity—for u is, however, a restrictive assump-
tion because it imposes a global constraint on solutions.

A last result, which is strongly related to the above problem, concerns the dis-
tance function, dg, from the boundary of a bounded open subset {2 of a Riemann-
ian manifold. Such a function is indeed the solution of a well known stationary
Hamilton-Jacobi equation, that is, the eikonal equation. In [4], it is shown that the
singular set of dg is invariant under the generalized gradient flow, a property which
is crucial to prove that 2 has the same homotopy type as the singular set of dg,.

In this paper, we address the above problem for solution of the Hamilton-Jacobi
equation

ue(t, ) + H(Vu(t,z)) =0, (t,x) € (0,400) x Q, (4)

where € is a bounded domain in R™ and H : R® — R is the quadratic form

H(p) = 5 (4p.p)

with A a positive definite n x n real matrix. Our main result, Theorem 4.2, ensures
that the singularities of any viscosity solution of (4) persist for all times, or at least
until the singular arc touches the boundary of €. More precisely, we show that,
if (to,x0) is a singular point of w, then there exist T' € (0,+00] and a Lipschitz
continuous arc v : [to, to + 1) — R, starting from x¢, with (s, v(s)) singular for all
s € [to,to + T') and such that
i 19 € 08

whenever T' < 40c0.

The proof of the above result relies on two main ideas that are converted in
two technical results, respectively. In the first one, Lemma 3.2, we obtain, as
in [4], a sharp semiconcavity estimate for a suitable transform of the solution w.
In the second one, Theorem 4.1, we establish an inequality showing that the full
Hamiltonian associated with (4), that is,

F(r,p) =7+ H(p),

decreases along a selection of the superdifferential of u, evaluated at any point of
a suitable arc. To be more specific, let (tg,zo) € @ and let < ¢y. Then we prove
that there exist 7" > 0 and a Lipschitz continuous arc v : [tg, to +7T") — €, starting
from xg, such that

N 2
to—1
min F(r,p) < = min F(10,p0 )

(7,p)EDTu(s,7(s)) (r.p) ( s—1t ) (70,p0) € DT u(to,z0) ( ) (5)
for every s € [tg,to + T"). Such a dissipative behavior is essential to deduce per-
sistence of singularities. Indeed, the superdifferential of u is the convex hull of
reachable gradients, that are zeros of the full Hamiltonian. Then, since the func-
tion F' is convex and its level sets do not contain any segment, one obtains that
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(t,x) is a singular point of v if and only if

(T,p)EHDn‘Pu(t,x) F(r,p) <0.

The inequality (5) yields that, if (¢, zo) is a singular point of u, hence the minimum
on the right-hand side is strictly negative, then the minimum on the left side must
be negative too, thus forcing the point (s,v(s)) to be singular as well for every
s € [to,to +T"). Moreover, the quantitative estimate (5) allows to reproduce the
above reasoning starting from to + 7' as long as the arc v stays away from the
boundary of Q.

Although the structure of the Hamiltonian in (4) is quite special, we believe
that our approach can be used to treat more complex classes of equations. In a
future work, we will show how to adapt the above ideas to treat time dependent
Hamilton-Jacobi equations on Riemannian manifolds.

2. Preliminaries. Let (2 C R™ be an open set. We consider the Hamilton-Jacobi
equation

ui(t,z) + H(Vu(t,z)) =0 ae. (t,z) € (0,400) x @ =:Q ’
u(t,x) = p(t, z) for (t,z) € 0Q, (6)

where H : R™ — R is the quadratic form

H(p) = 5 (49, )

with A positive definite, and ¢ : Q — R is Lipschitz continuous. Here we define

ou ou ﬁ )

:E and VU:<8$1,,axn

whereas Du = (us, Vu) indicates the gradient of u whenever it exists.
Let L denote the Legendre transform of H, i.e.

L(q) = %<A‘lq,q>-

We assume that the data ¢ satisfy the following compatibility condition

)~ plo) < 0= )L (T2, g

— S

Ut

for all (¢, ), (s,y) € 0Q such that t > s > 0. B
Then, see [16], problem (6) has a unique viscosity solution u € Lip(Q) which is
given by the Hopf formula

u(t,z) = (s’yn)mél o0 [(t —$)L (f_g) + @(s,y)] . (8)
s<t

Equivalently, see [7], u given by (8) is the unique Lipschitz function on @ which
satisfies (6) almost everywhere and is locally semiconcave on @, that is, for every
convex compact K C @ there is a constant C' > 0 such that

w(X + H) +u(X — H) —2u(X) < C|h|?
for every X, H € R"*! such that X + H, X — H € K.
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Since the function u given by (8) is in general non differentiable, we denote by
Y (u) the set of points of non-differentiability for u. For X € @ we introduce the
superdifferential of u at X

DHu(X) = {P e R ; imeup W) ZUX) Z(PY = X) 0}
Y X Y — X|
and the set of the reachable gradients of u at X
D*u(X)={PeR"" : Q\Z(u) > X; = X, Du(X;) > P}.
The directional derivative of u at X in the direction V € R™*! is defined by

Ou(X.V) = lim WX + h‘l/l) —ulX)
—

and the exposed face of DTu(X) in the direction V by
Dtu(X,V)={PeDtu(X) : (P,V)<(Q,V) VQe DtuX)}.

Since u is a locally semiconcave map, the set DTu(X) is the convex hull of
D*u(X). Moreover, see [7], if K is a convex compact subset of @ and C' > 0 is a
semiconcavity constant of u on K, the superdifferential of u satisfies the following
monotonicity property:

(P-Q,X-Y)<C|IX -Y[? (9)

for every P € DTu(X), Q@ € D'u(Y) and X,Y € K. The directional derivative
of the locally semiconcave map u can be connected to the superdifferential and the
reachable gradients in the following way:

ou(X,V) = PEJIDH‘*}E(X)<P7 V) = PEJIjnJg(){)(R V) (10)

for any X € Q and V € R**!. Finally, we recall a result involving the exposed face
of u. Its proof can be found in [7].

Proposition 2.1. Let v : K — R be semiconcave and let X € K and P € R*H!,
Suppose that there are sequences {X;} C K\ {X} and P; € DY u(X;) satisfying

X;,»X, P—P and lim ———_ =V.

Then P € D u(X,V).

3. A sharp monotonicity estimate. We first prove a technical lemma. Here,
for every X = (t,z) € R""1, 0 < <t and R > 0, we denote by B(X, R) the ball
of centre X and radius R, while by Bz(X, R) we refer to the set

Bi(X,R) = ((t,+o0) x R") N B(X, R).

Lemma 3.1. For every X' = (t',2') € Q there exist R > 0 and 0 < t < ¢’ such
that Bf(X',R) C Q and

u(t, x) = min {(tf)L <x_y> +u(t,y)] (11)

t—1

for each (t,x) € Bf(X', R).
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Proof. Let t > 0 and set Q7 = (¢, +00) x Q. First we observe that

u(t, ) = (Svylsnienan {(t Y (‘f:f) +u(s,y)} (12)
s<t

for every (t,z) € Q;. Indeed, let (¢, ), (s,y) € 0Q; such that ¢t > s > ¢. Since t >t
and (t,z) € 0Qz, we have that x € 9Q. If y € 9Q, by (7) we obtain

wlt,z) — u(s,y) = p(t,2) — p(s,y) < (¢ — 5)L (“y> |

t—s

Otherwise, let y € , so that s = ¢, and let (r,z) € Q such that r < s and

u(s,y) =(s—r)L ( > +o(r,2). (13)

Then, by (13), (7) and the structure of L, we have

y—z

u(t, z) —u(s,y)

=o(t,x) — (s — 1)L (y - f) — o(r, 2)

<-nr(1=2) - e-nr(L=2)

(tr)L<;;:§)+tir<A 1(xy),yz>+(tr)L(ZZ:j>
~e-nr (1)

8 (522) g () e
F U -2 - g (22 - -2

<(t—s)L <j_g> .

In both cases, we obtain the compatibility condition

utt) s < -9 ($2).

— S

Then, see [16], the right hand side of (12) is the unique viscosity solution of
v(t,x) + H(Vou(t,z)) =0 ae. (t,z) € Qf
v(t,x) = u(t, ) for (t,z) € 0Qs.

Hence it coincides on Q7 with the map wu.

Now fix X’ = (t/,2') € @ and let R’ > 0 be such that B(X’, R’) C Q. For any
T > 0 the map u is Lipschitz continuous on [0, 7] x §, see for example [7]. Let £ > 0
be a Lipschitz constant for u on the set [0,# + R'] x Q. Let

A=min{(A7'z,2) : 2€0B(0,1)} >0 (14)
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and let K > R’ be such that

MK — R')?
_— >, 15
(I+K+R) = (15)
If max{0,t' — %} <t < t/, then for every (t,z) € By(X’, R') and (s,y) € 0Q; such
that t < s <t and |2/ — y| > K, by (14) we obtain

(t—s)L (f_g) > 2'?;_%’9)2 > MK —R)?.
On the other hand, by (15) we have
lu(t, ) —u(s,y)| < (1 + K+ R') < MK — R')?.
Therefore, if max{0,t — 1} < <t and (t,z) € By(X’, R'), the minimum in (12)
is realized at some (s,y) € B(X', K) N @, such that (s,y) € 0Q7 and s < t. Let
M =sup{|u(X)| : X € BX',K)nQ} .

If 0 < R < R and max{0,t — 1} <t < ¢’ satisfy

(doa(z') — R)* S M

t'—t+R A

then for every (t,z) € Bf(X',R), t < s <t and y € 99 we have

-y 1 1
t—oL(2=Y _ A — ). x—
(=52 ($2) + ulse) =gy (470 = 9z =)+ uls)
1
>———Adoa(z') — R)? M.
> g Ndonl) = R+ ulsy) >
We just proved that if (¢,2) € By(X’, R), the minimum in (12) is realized at some
point of the form (¢,y), y € Q. Therefore we obtain (11). O

In [4], the invariance under the generalized gradient flow of the singular set of a
solution u : R™ — R of the eikonal equation is proved. The argument of the proof
relies on the monotonicity estimate

(w(X)P-u(Y)Q,X -Y)<|X -Y|?

for every P € Dtu(X), Q € DYu(Y) and X,Y € R™. This property is a direct
consequence of (9) and the global semiconcavity of the square of u with constant
C = 2. Consider now the viscosity solution u of (6). Lemma 3.1 can be exploited
in order to obtain some semiconcavity estimates for u. For example, fixed X’ =
(t',2') € Q,let R >0 and 0 <t <t be associated to X’ as in Lemma 3.1. Using
(11), it is possible to verify that for every x, h € R™ such that z—h,z+h € B(2', R),

A
w(t',z+h) —u(t',z —h) —2u(t',x) < ﬁ\h|2 ,

where A = max{(A~1z,2) : 2 € dB(0,1)}. This semiconcavity property and (9)
imply

Az —y|?
p—qo—y) < ——
for every p € Vtu(t',z), ¢ € VTu(t',y) and x,y € B(z',R). Yet, in order to
study the propagation in time of the singularities of u, we need an estimate on the
monotonicity of the superdifferential jointly in time and space. For this reason, as
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in [4], a suitable transform of the solution w is introduced: for any ¢ > 0, the map
vr: (£, +00) X Q — R is defined by

vi(t,z) = (t —t)u(t,x). (16)

In a similar way as before, given X’ = (¢',2') € @, for suitable 0 < ¢ < ¢ and
R > 0 some semiconcavity properties of vy on Bf(X’, R) can be obtained, jointly in
time and space. In the following lemma, we derive the resulting sharp monotonicity
estimate for the superdifferential of vj.

Lemma 3.2. Let X' = (t/,2') € Q and let R > 0 and 0 < t < t’ be associated to
X' as in Lemma 3.1. Then

<P1 — PQ,Xl — X2> S 2L(I’1 — 1‘2)
for every X1, X5 € Bi(X’, R) and every P; € DT vg(X;), i = 1,2.

Proof. Fix X' = (/,2') € Q and let R and ¢ be such that (11) holds true for all
(t,x) € Bg(X',R). Let (t,x) € Bg(X',R) \ £(u). By (11) there exists y € Q such
that

u(t,z) = (t — )L (H/> +u(y).

t—t
Then
vi(t,z) = L (z —y) + (t — t)u(t,y) (17)

and it is easy to prove that Duvg(t,x) coincides with the gradient of the right hand
side of (17) at (t,z), that is

Dui(t, x) = (u(t,y), VL(z — y)) . (18)

In general, when (¢, z) € Bi(X’, R), any element of the superdifferential DV v;(t, z) is
the convex combination of elements of the form (18), since vz is locally semiconcave.
Hence, given X; = (t;,x;) € By(X',R) and P; € DM vi(X;), i = 1,2, there exist
MNe>0and yF € Qfori=1,2and k € {0,...,n + 1}, such that ZZ;ré/\f =1,

vi(X) = Lw; — y) + (6 — D (@, yf) (19)
and
n+1
P =3 M (ulf,yb), VLG — o). (20)
k=0

By (11), (16) and (19), for every k1, k2 € {0,...,n+ 1} we obtain
L(zy —yy") + (1 = D u(t,y)") < Llas —y5°) + (b — 1) u(t, y5*) (21)

and

L(xz —y5*) + (t2 = D u(l,yp?) < L(zz —y1") + (b2 = Dulf, ;") . (22)
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Thus, (20), (21) and (22) imply
(Pr — P2, X1 — Xo)

n+1
= > A [l ) — utyh) (b~ te)
k1,k2=0
H(VL(ay — o) = VL(e2 = y3?), 21 — w)|
n+1
= 20 N [ - D) — ulE ) + (s — D(uEuk) — ulE )
k}l,kz:O

+(VL{ay — 1) = Vi(as - 5?), 01 — @)

n+1
< D0 AR (Lo - udt) — Liay — o) + Lz — ) — Liza — )
k1,k2=0

+ (VL(a1 — ) = Vi(ws — y5) 01— w2)| -

(23)
Observe that the special structure of L yield
Loy —4h2) — Llws — yk?) = (A7 @1 — 22,01 — 22) + (A7 a1 — 22), 22 — 9f")
= L(x1 — w2) + (VL(zs — y5%), 21 — x2) .
(24)
Analogously,
L(za — yy") = L1 — y1*) = L(z1 — x2) = (VL(z1 — y1*), 21 — x2) (25)
Then, combining (23), (24) and (25), we obtain
(Py — Py, X1 — X») < 2L(z1 — x2)
concluding the proof. O

4. Propagation of singularities. In what follows, we denote by F' the full Hamil-
tonian associated with (6), that is, for every (7,p) € R x R™ we set

F(r,p) =7+ H(p).

Let u be given by the Hopf formula (8). Then, see [7], u satisfies (3) at any point
(t,z) € Q\ X(u). Consequently, for every X € @ and any (7,p) € D*u(X), we have
F(r,p) = 0. Since D" u(X) is the convex hull of D*u(X), the special structure of
F implies that X € @ is a singular point of u if and only if

(rap) D u(X) Fr.p) (26)
is strictly negative. Sufficient conditions are provided in the literature, see for ex-
ample [8] and [17], for the existence of generalized characteristics, whose dynamics
are determined by selections of the superdifferentials of u that are “energy mini-
mizing” in the sense of (26). To be more precise, in [8] it was proved that if for
any Xog = (to,x0) € Q there is a unique generalized characteristic starting from
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X, then any generalized characteristic £ : [to,to + To) — @ admits right derivative
d%ﬁ (s) for all s € [tg,to + Tp), this is right-continuous and is given by

d% (s) = DF(7(s),p(s)),

where (7(s),p(s)) € Dtu(&(s)) is such that

F(r(s),p(s)) = F(7,p). (27)

min
(r.p)eDFu((s))
When H is a quadratic form, the uniqueness of the generalized characteristics,
given the initial data, is a consequence of Gronwall’s Lemma. Then, we can state
the following

Proposition 4.1. Let X' € Q and R > 0 be such that B(X', R) C Q. Then, there
exists T > 0 such that for every (to, zo) € B(X', R) there is a Lipschitz continuous
arc & : [to,to + Tr) — Q satisfying the following properties:

(Z) E(tO) = (to,fﬂo),‘

(ii) the right derivative d%f(s) does exist for all s € [to,to + Tr);
(iii) d%f() is right-continuous and

d 1
269 = DFE ) = ey ) 29

where (7(s),p(s)) € DT u(&(s)) satisfies (27).
Moreover, the maps 7(+) and p(-) are right-continuous on [to,to + Tr) and

d%u(ﬁ(S)) =7(s) +(Ap(s),p(s)) Vs € [to,to+Tr)- (29)

Proof. The first statement of the Proposition is a consequence of [8, Theorem 3.2,
Corollary 3.4] and of Gronwall’s Lemma.

Let (7(s),p(s)) € DVu(&(s)) satisty (27) for every s € [to,to + Tr). By (i),
the map Ap(-) is right-continuous. Consequently, the same holds for the map p(-).
It remains to verify that 7(-) is right-continuous and (29). Let s € [to,to + Tr)
and consider any 7 in the right-limit set lim o 7(s + h). The properties of the
superdifferential imply that (7,p(s)) € DTu(£(s)). Since

§(s+h)—&(s) _ (1, VH(p(s)))

no (s +h) — &) (L VH ()]’
Proposition 2.1 yields

(7.p(s)) € D*u (as),

Equivalently,

(7,p(s)) € argmin ; e p+u(e(s)) << ; ) ) < VH(lp(s)) )> : (30)

In particular, we obtain 7 < 7(s). On the other hand, (27) implies 7(s) < 7, so
that 7 = 7(s). Therefore, the map 7(-) is right-continuous on [tg,tg + Tr).

Finally, in order to prove (29), observe that by (28) for every s € [tg, to + Tr) we
have

eu(e(e) = 0u (60, 160 =0u (€00 (gpreyy )) - 6D
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Thus, (31), (10), (30) and the special structure of H yield

» (1
d%ﬂ(&(S)) =7(s) + (p(s), VH(p(s))) = 7(s) + (Ap(s), p(s)) -
O

In [8], it was shown that, given a singular point Xy = (¢o, o) of u, the singularity
propagates locally in time following the generalized characteristic

£(s) = ( ;?) ) +/t0 ( VH(lp(T)) )dr. (32)

We shall provide an upper bound for the dissipation of the minimal energy (27)
along this curve. Eventually, this estimate has the consequence that the singularities
cannot actually extinguish in a finite time.

Theorem 4.1. Given a Lipschitz continuous function ¢ : Q — R satisfying (7), let
u be the viscosity solution of (6). Fix X' = (t',2') € Q andlet R>0 and 0 <t <
be associated to X' as in Lemma 3.1. Then, there exists T' > 0 such that for every
(to, o) € Bs(X', %) the generalized characteristic € defined by (32) satisfies

N 2
. to—t .
min F(r,p) < — min F(m, 33
rmreB B oy T TP) (s — t> (r0.00) 8B 2y T (T02P0) (33)

for every s € [to,to +T").
Theorem 4.1 implies the global propagation of the singularities.

Theorem 4.2. Let ¢ : Q — R be a Lipschitz continuous function satisfying (7)
and let u be the viscosity solution of (6). Given (to,xo) € L(u), let £(-) =: (+,~(+))
be the generalized characteristic defined in (32). Then y(to) = xo and there exists
T € (0,+00] satisfying

(i) (s,7(s)) € B(u) for every s € [to,to +T);

(#) limg_y1, 47 Y(s) € OQ whenever T < 4o0.

Proof. Let £(-) =: (-,7(:)) be the generalized characteristic starting from (to, o).
Set

T=sup{r>0:&{ty+r)eX(u} (34)
By Theorem 4.1 we have that T" > 0. Then either 7" = +o0c or 0 < T < +o0.
In the latter case we must have z’ := lims_,;, 17 v(s) € 9Q. Indeed, suppose by

contradiction that ' € Q. Let R > 0 and 0 < t < tg + T be associated with the
point (¢',2') := (to + T,2’) € @ as in Lemma 3.1. Let 77 > 0 be as provided by
Theorem 4.1 and let max{f,#' —7"} < s < ' be such that £(s) € B(£(t'), &). Hence,
by Theorem 4.1 we have

I\ 2
—1
min F(r,p) < (8, ) min
(r,p)EDTu(£(t)) t'—1t/) (r.p)eDtu(é(s))

Then, &(tg+T) € X(u)NQ and Theorem 4.1 contradicts the maximality in (34). O

F(r,p) <O0.

Before proving Theorem 4.1, we provide an example showing that the estimate
(33) is somehow sharp.

Example. For € > 0 consider the problem
{ uy(t, @) + 3u(t,z) =0 ae. (t,x) € (0,4+00) xR
_ (z[=1)?
U(O,.’L’) =5



4236 PIERMARCO CANNARSA, MARCO MAZZOLA AND CARLO SINESTRARI

The Hopf formula provides the unique viscosity solution of (35):
_ (2 -1
2 t4e

The singular set of this map is X(u.) = (0,4+00) x {0} and the curve ¢ : (0, +o0) —
R? defined by £(s) = (s,0) is a generalized characteristic. If we compute the energy
minimizing selection of the superdifferential of u. along this curve, we obtain

2@iEPJO}_4{@@%M$H-

ue(t, )

argmin(F(r.p)  (rp) € D7 ue(s, 00} = {
Then, given 0 < ty < s, we have

to+ ¢

052} F(rlto). o).

Fir(9.09) =

Letting ¢ | 0 and considering the associated functions u,, the inequality (33) turns
out to be sharp.

Proof of Theorem 4.1. Fix X' = (#,2') € Q. Let R > 0 and 0 < t < t' be
associated to X’ as in Lemma 3.1, and Tk be associated to X’ and R as in
Proposition 4.1. If (tg,x0) € Bs (X’, %), let € : [to,to + Tr) — @ be the gener-
alized characteristic starting from (to,xo) and, for any s € [to,to + Tr], the vector
(1(s),p(s)) € DTu(&(s)) satisfies

F(r(s),p(s)) < F(r,p) ¥ (7,p) € DTu(&(s))-

Observe that, by (28), for every (to,x0) € B (X, %) the curve £ is Lipschitz
continuous with constant £¢ < 1+ A/, where A = max{(A~'z,z) : z € B(0,1)}
and ¢, is a Lipschitz constant of u on the set [0,¢ + g + Tr| x Q. Setting T" = i

for every (to,z0) € Br (X', %) we have that
&(s) € Bi(X', R) Vs e [to,to—FT’).

In order to obtain the claim of the Theorem, we need to verify that
to—1\>
Pr©p9) < (25F) Flrtalplto) Vs ot + 7).

s —

Fix (to,z0) € Bi (X', &) and let v : [tg,to + T'] — R™ be defined for all s €
[th to + T/] by

&(s) = < fc% > +/t: < VH(lp(r)) >dr - ( 7:5) >

Consider the map v introduced in (16) and fix s € (to,to + 1”). Since &([to,to +
T')) € B(X',R), by Lemma 3.2, for every r € [tg,s] and 0 < h < tg+T' — s, we
have

(P = P,&(r+h) = &(r)) < 2L(y(r +h) =~(r)) (36)
for any P, € DYvg(&(r + h)), P € DVog(&(r)). Let (t,z) € Be(X',R) \ X(u). By
Lemma 3.2, there is y € Q such that

u(t,z) = (t — )L (x_y> +u(y).

t—1
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Then one can prove that

Du(t,z) = < t;éL((xtaL‘ty—)y) ) and  Dug(t,x) = ( Vzgi ?i)y) ) ’
so that
Dui(t,z) = ( u(tdx) ) + (t —t)Du(t,x).

This and the properties of the superdifferential of semiconcave functions yield that
for every (t,z) € Bi(X', R)

u(t, x)

Dtug(t,z) = ( 6 > + (t —t)Dtu(t, x) . (37)

By (36) and (37), we obtain in particular

<<U(€(r0+h))> it 3(; IZ?)—(““(T»)
=0 (700 ) G0 ))
<2L(y(r +h) — 4(r)),

that is

Blulglr + 1) = u(€(r)) + h(r +h =D [r(r -+ h) = ()] + h7(r)
b= 1) (ol + 1) = p(r). A+ ) = A7) + A (). A+ ) = A7)
<2L (3(r +h) = 7(r)).

Dividing by h? and setting

) = TR0 D) ) ot ()
we obtain
SR =D gy e

+ (r+h—1t) (pr(r), (1)) + (p(r), vu(r)) < 2L (vu(r)). (38)

Let p(r) = ftz 7(z)dz, and pp(r) = M. By Proposition 4.1 we have

u(&(r —u(&(r rh
LRI ETCLI Y
r+h
= w4y [ @epend: ()

and

)} = 1 (5700000 ) (40)
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By (38), (39) and (40) we obtain

20(r) + (A7) () + (4= D (nr) + 5042000, m(0) )

r+h
<o) 5 [ (Ap)pe)ds

HAT (), 900)) — (o), () + pnr) — (). (1)
Setting
2 1 —1
Gi(r) = (r-+ 1 =2 () + 547 0D )

the left hand side of (41) can be rewritten as (r + h — )~ 39: G, (r). Now consider
the right hand side of the inequality. Define

wi(r) = sup []p(z) = p(r)| +|7(z) = 7(r)]].

r<z<r+h

The sequence wy,(-) converges pointwise to 0 as h — 0+, since 7 and p are right-
continuous. We have

1 r+h
A )~ [ (AP, pe <0, (12)

1 r+h
(AT (), (r) = (), ()] < ()] - E/ Ip(z) — p(r)|dz
<l All€uwn(r) (43)

and
r+h
) = qizon)| < 3 [ ) = r(o)as <), (14)

Here ¢,, > 0 is a suitable Lipschitz constant for . Summarizing, (41), (42), (43)
and (44) yield
d
) < O+ = D) (45)
for some C > 0 independent on r and h. Integrating both sides of (45) on the
interval [to, s], we obtain

Gh(s) < Galto) + C’/S(r = D) wn(r).

Taking the limit as h — 0 and using dominated convergence, we obtain
to—1

) F(r(to). p(ts))

s—1t

F(r(s).p(s)) < (

This concludes the proof of the Theorem. O

Acknowledgments. This work was co-funded by the European Union under the
7th Framework Programme “FP7-PEOPLE-2010-ITN”, grant agreement number
264735-SADCO, by the INdAM national group GNAMPA and the INAAM-CNRS
GDRE CONEDP.



[1]

2]

3]
[4]
[5]
[6]
7]
[8]
[9]
[10]
(11]
(12]

(13]

PROPAGATION OF SINGULARITIES FOR HAMILTON-JACOBI EQUATIONS 4239

REFERENCES

P. Albano, Propagation of singularities for solutions of Hamilton-Jacobi equations, J. Math.
Anal. Appl., 411 (2014), 684-687.

P. Albano and P. Cannarsa, Propagation of singularities for concave solutions of Hamilton—
Jacobi equations, in EQUADIFF 99 Proceedings of the International Conference on Differ-
ential Equations (eds. D. Fiedler, K. Groger and J. Sprekels), World Scientific, Singapore,
(2000), 583-588.

P. Albano and P. Cannarsa, Propagation of singularities for solutions of nonlinear first order
partial differential equations, Arch. Ration. Mech. Anal., 162 (2002), 1-23.

P. Albano, P. Cannarsa, K. T. Nguyen and C. Sinestrari, Singular gradient flow of the distance
fundtion and homotopy equivalence, Math. Ann., 356 (2013), 23-43.

M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton—
Jacobi Equations, Birkhauser, Boston, 1997.

P. Cannarsa, A. Mennucci and C. Sinestrari, Regularity results for solutions of a class of
Hamilton-Jacobi equations, Arch. Rational Mech. Anal., 140 (1997), 197-223.

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Op-
timal Control, Birkhauser, Boston, 2004.

P. Cannarsa and Y. Yu, Singular dynamics for semiconcave functions, J. Fur. Math. Soc.
(JEMS), 11 (2009), 999-1024.

M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.
Amer. Math. Soc., 277 (1983), 1-42.

M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of
Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), 487-502.

C. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conser-
vation laws, Indiana Univ. Math. J., 26 (1977), 1097-1119.

A. Douglis, The continuous dependence of generalized solutions of non—linear partial differ-
ential equations upon initial data, Comm. Pure Appl. Math., 14 (1961), 267-284.

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,
Springer Verlag, Berlin, 1993.

[14] S. N. Kruzhkov, Generalized solutions of the Hamilton—Jacobi equations of the eikonal type

I, Math. USSR Sb., 27 (1975), 406-445.

[15] N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order. Translated

from the Russian by P. L. Buzytsky, Mathematics and its Applications (Soviet Series), 7. D.
Reidel Publishing Co., Dordrecht, 1987.

[16] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London, 1982.
[17] T. Stromberg, Propagation of singularities along broken characteristics, Nonlinear Anal., 85

(2013), 93-109.

[18] T. Stromberg and F. Ahmadzadeh, Excess action and broken characteristics for Hamilton-

Jacobi equations, Nonlinear Anal., 110 (2014), 113-129.

[19] C. Villani, Optimal Transport, Old and New, Springer, Berlin - Heidelberg, 2009.
[20] Y. Yu, A simple proof of the propagation of singularities for solutions of Hamilton-Jacobi

equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2006), 439-444.

Received August 2014; revised October 2014.

E-mail address: cannarsa@mat.uniroma2.it
E-mail address: marco.mazzola@imj-prg.fr
E-mail address: sinestra@mat.uniroma2.it


http://www.ams.org/mathscinet-getitem?mr=MR3128423&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2013.10.015
http://www.ams.org/mathscinet-getitem?mr=MR1870199&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1892229&return=pdf
http://dx.doi.org/10.1007/s002050100176
http://dx.doi.org/10.1007/s002050100176
http://www.ams.org/mathscinet-getitem?mr=MR3038120&return=pdf
http://dx.doi.org/10.1007/s00208-012-0835-8
http://dx.doi.org/10.1007/s00208-012-0835-8
http://www.ams.org/mathscinet-getitem?mr=MR1484411&return=pdf
http://dx.doi.org/10.1007/978-0-8176-4755-1
http://dx.doi.org/10.1007/978-0-8176-4755-1
http://www.ams.org/mathscinet-getitem?mr=MR1486892&return=pdf
http://dx.doi.org/10.1007/s002050050064
http://dx.doi.org/10.1007/s002050050064
http://www.ams.org/mathscinet-getitem?mr=MR2041617&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2538498&return=pdf
http://dx.doi.org/10.4171/JEMS/173
http://www.ams.org/mathscinet-getitem?mr=MR690039&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1983-0690039-8
http://www.ams.org/mathscinet-getitem?mr=MR732102&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1984-0732102-X
http://dx.doi.org/10.1090/S0002-9947-1984-0732102-X
http://www.ams.org/mathscinet-getitem?mr=MR0457947&return=pdf
http://dx.doi.org/10.1512/iumj.1977.26.26088
http://dx.doi.org/10.1512/iumj.1977.26.26088
http://www.ams.org/mathscinet-getitem?mr=MR0139848&return=pdf
http://dx.doi.org/10.1002/cpa.3160140307
http://dx.doi.org/10.1002/cpa.3160140307
http://www.ams.org/mathscinet-getitem?mr=MR1199811&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR901759&return=pdf
http://dx.doi.org/10.1007/978-94-010-9557-0
http://dx.doi.org/10.1007/978-94-010-9557-0
http://www.ams.org/mathscinet-getitem?mr=MR667669&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3040351&return=pdf
http://dx.doi.org/10.1016/j.na.2013.02.024
http://www.ams.org/mathscinet-getitem?mr=MR3259737&return=pdf
http://dx.doi.org/10.1016/j.na.2014.08.001
http://dx.doi.org/10.1016/j.na.2014.08.001
http://www.ams.org/mathscinet-getitem?mr=MR2459454&return=pdf
http://dx.doi.org/10.1007/978-3-540-71050-9
http://www.ams.org/mathscinet-getitem?mr=MR2297718&return=pdf
mailto:cannarsa@mat.uniroma2.it
mailto:marco.mazzola@imj-prg.fr
mailto:sinestra@mat.uniroma2.it

	1. Introduction
	2. Preliminaries
	3. A sharp monotonicity estimate
	4. Propagation of singularities
	Acknowledgments
	REFERENCES

