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The increasing use of tracking devices, such as the Vessel Monitoring System (VMS)
and the Automatic Identification System (AIS), have allowed, in the last decade, detailed
spatial and temporal analyses of fishing footprints and of their effects on environments
and resources. Nevertheless, tracking devices usually allow monitoring of the largest
length classes composing different fleets, whereas fishing vessels below a regulatory
threshold (i.e., 15 m in length-over-all) are not mandatorily equipped with these tools.
This issue is critical, since 36% of the vessels in the European Union (EU) fleets
belong to these “hidden” length classes. In this study, a model [namely, a cascaded
multilayer perceptron network (CMPN)] is devised to predict the annual fishing footprints
of vessels without tracking devices. This model uses information about fleet structures,
environmental characteristics, human activities, and fishing effort patterns of vessels
equipped with tracking devices. Furthermore, the model is able to take into account the
interactions between different components of the fleets (e.g., fleet segments), which are
characterized by different operating ranges and compete for the same marine space.
The model shows good predictive performance and allows the extension of spatial
analyses of fishing footprints to the relevant, although still unexplored, fleet segments.

Keywords: fishing effort, VMS, fisheries, spatial ecology, sustainability

INTRODUCTION

The modern fishery sciences are largely based on spatial data that show the activity of fishing
vessels (McCluskey and Lewison, 2008; Amoroso et al., 2018). The appraisal of tracking devices,
such as the Vessel Monitoring System (VMS) and the Automatic Identification System (AIS), have
opened a new era for the investigation of fishing behavior and have supported the development
of a new generation of bio-economic and ecological models of the interactions between fleets and
resources (Bastardie et al., 2014; Russo et al., 2014b; Girardin et al., 2017). Until now, hundreds
of scientific research articles have been published regarding the spatial and temporal dynamics of
fishing vessels that are equipped with one of (or both) these tracking devices, but of course, the
frontier of this revolution is represented by the portion of the fleets covered by the VMS and/or AIS.
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The issue of “hidden” (without VMS or AIS) vessels is common
in many jurisdictions worldwide, while VMS/AIS usage is still
undeveloped in some marine regions (see http://www.fao.org/
fishery/topic/18072/en for details by country and by regional
fisheries management organization). In the European Union
(EU), both the VMS and AIS are compulsory only for some fleet
segments, depending upon vessel size (i.e., the length-over-all –
LOA). The VMS became compulsory for EU vessels longer than
15 m as of 2005, and for EU vessels longer than 12 m as of January
2012. The AIS is compulsory for all vessels longer than 15 m
(from June 2013). Thus, given that EU fleets are largely composed
of vessels below 12 m in LOA, and although both the VMS and
AIS have progressively expanded their fleet coverage during the
last decade (Russo et al., 2016b), some of the EU fleets are not
covered by (at least) one of these tracking devices. The relevance
of this partial coverage varies according to the structure of the
fleets by country. With respect to the EU members bordering
the Mediterranean Sea, Figure 1 shows the number of trawlers
(fishing vessels performing bottom otter trawling that have the
most impact on fisheries worldwide) with and without the VMS,
by country and by length class. According to the European Data
Collection Framework1 (DCF), fishing vessels are grouped and
monitored in the following length classes2: [6–12 m), [12–15 m),
[15–24 m), and [24–40 m).

Noticeably, the vessels with LOAs over 15 m are almost
completely covered for all countries. In contrast, the coverage of
the VMS for the length class [12–15 m) of the Italian, Spanish
and Croatian fleets, three of the largest EU fleets operating in
the Mediterranean Sea, is far from being complete: 80% of 190
trawlers for Croatia, 3.2% of the 1,125 trawlers for Italy, and none
of the 63 trawlers for Spain. As a consequence, the footprints
(“an area subject to human activity,” in this case trawl fishing –
ASOC, 2011) of these trawlers cannot be directly quantified. The
lack of a VMS onboard trawlers longer than 12 m is justified by
European Council (EC) Regulation No 1224/2009, that allows
member states to exempt fishing vessels with LOAs between 12
and 15 m if they: (a) operate exclusively within the territorial seas
of the flag member state; and (b) never spend more than 24 h at
sea from the time of departure to the return to port.

According to the Community Fishing Fleet Register3 (CFR),
the subset of Italian trawlers that falls into this category and takes
advantage of this exemption is mainly composed (53%) of vessels
operating in the Adriatic Sea, the portion of the Mediterranean
Sea that corresponds to the Geographic Sub Areas (GSA) 17
and 18 (see Figure 2A) as defined by the General Fisheries
Commission for the Mediterranean. In fact, the large shelf of this
semi-enclosed basin effectively supports a fleet largely composed
of small trawlers, in contrast with other Mediterranean areas (e.g.,
the Strait of Sicily) in which trawlers are generally larger and
operate farther from the harbors. Hence, the available estimates of
the fishing footprints of trawlers in the Adriatic Sea are biased due
to the lack of data related to the relevant fleet portions. Moreover,

1https://datacollection.jrc.ec.europa.eu/
2The notation [x,y) is used to indicate an interval from x to y that is inclusive of x
but exclusive of y.
3http://ec.europa.eu/fisheries/fleet/index.cfm

some of the VMS-based ecological indicators of fishing pressure
used within DCF, as well as spatial analyses carried out within
the new Fisheries Dependent Information4, do not consider these
portions of the EU fleets and their fishing activities. Logbooks also
represent a source of spatial data for fishing activity, but they are
often characterized by different issues, including lack of accuracy
and reliability of declared catches and the positions of fishing
activities (Sampson, 2011; Russo et al., 2016b). In addition, the
information logbooks convey is often aggregated at a daily scale.

Currently, few quantitative approaches have been proposed
to estimate the fishing footprints of vessels not equipped
with remote tracking devices. Among these approaches, the
application of multi-criteria decision analysis proposed by
Kavadas et al. (2015) to estimate the potential fishing footprints
of small scale fisheries represents one of the most promising
approaches. Other approaches are based on: (1) the combined
analysis of the number of boats and the local coastal human
populations (Johnson et al., 2017); (2) the use of fishermen’s
knowledge through geographical information systems (Léopold
et al., 2014); (3) the cross-analysis of logbook data and vessel
characteristics (Natale et al., 2015); and (4) the combination
of participatory mapping with socioeconomic evaluations
(Thiault et al., 2017).

However, these approaches are designed for passive fishing
gear (trammel nets, gill nets, bottom or surface longlines, boat
seiners and traps) and are completely independent from VMS
or AIS data. The latter point is an advantage but is also a
limitation, since (1) data from tracking devices provide a source
of information for the relationships between vessel characteristics
(LOAs, engine power, harbors of departure/landing) and spatial
allocations of fishing efforts, and (2) their availability for subsets
of the fleets could be used as a basis for inferring the behavior
of the whole fleet. Here, we present and apply a method that
combines static information of sea characteristics (e.g., depths
and distances from the coast) and fleet structure/distribution by
harbors (i.e., spatial allocations of fishing capacity) to predict
the spatial distributions of fishing efforts at a yearly scale. The
method learns from available georeferenced data for vessels with
the VMS and allows extrapolation to the whole official fleet. The
aim of the model is therefore to provide estimates of fishing
footprints for entire fleets, even if only subsets of them are directly
monitored by VMS or AIS. Here, the method is applied to the
fleet of Italian trawlers that operate in the Adriatic Sea, and its
estimates are evaluated through comparisons with independent
logbook datasets.

The method is based on artificial neural networks (ANN), a
group of modeling techniques that imitate the functioning of the
human brain to analyze large and complex datasets characterized
by non-linear relationships among variables, internal redundancy
and noise (Lek and Guégan, 1999). We designed a cascaded
multilayer perceptron network (CMPN hereafter – Watts and
Worner, 2008) that is a sequence of two multilayer perceptron
networks (MPN) in which the output from one MPN becomes
the input to another MPN (Franceschini et al., 2018). MPN
represents the simplest and most widely used ANN architecture

4https://datacollection.jrc.ec.europa.eu/dc/fdi
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FIGURE 1 | Frequencies of the number of trawlers by country and length class equipped with the VMS (green) and without VMS (red). The percentage values
represent, for each length class, the coverage of the VMS. The vertical blue line represents the legal threshold for mandatory usage of the VMS in the EU countries,
although the European Council Regulation (EC) No 1224/2009 allows the member states to exempt fishing vessels in the length class [12–15 m) if they: (a) operate
exclusively within the territorial seas of the flag member state; and (b) never spend more than 24 h at sea from the time of departure to the return to port). Source:
official EU Community Fleet Register (http://ec.europa.eu/fisheries/fleet/index.cfm).

(Lek and Guégan, 1999; Scardi, 2001; Haykin and Haykin, 2009;
Quetglas et al., 2011). The applications of MPN in the framework
of fisheries science include, among others, the modeling of time
series (Schulz and Matthies, 2014), the forecasting of resource
abundances (Yáñez et al., 2010), the identification of fishing set
positions from VMS data (Joo et al., 2011), coastal engineering
(Deo, 2010), the identification of fishing gear (Russo et al., 2011b)
and the modeling of landing profiles (Russo et al., 2016a).

MATERIALS AND METHODS

Study Area and Input Variables for the
MPNs
The study area consists of the two neighboring areas, namely,
GSA17 (Northern Adriatic Sea) and GSA18 (Southern Adriatic
Sea), covering a total of approximately 121,668 km2. The

Northern Adriatic area is characterized by depths shallower
than 100 m, except for the complex of the Pomo Pit, where
depths achieve a maximum of over 200 m (Figure 2A). Several
anthropic activities other than fisheries (e.g., aquaculture, and
hydrocarbon extraction platforms) are present along the Italian
coast (Figure 2B), while marine protected areas (MPA) are
mainly represented by a large polygon around the Pomo
Pit complex and by several smaller areas along the coasts
(Figure 2B). The seabed mainly consists of the continental shelf,
with circalittoral sandy muds and communities of shelf-edge
detritic bottoms (Figure 2C). The following areas were excluded
from the analysis: (1) the Croatian territorial waters (Figure 2D),
within which Italian trawlers do not operate; and (2) the portions
of the shelf with depths <50 m and distances <3 nautical miles
within which trawling activities are forbidden. The rest of the
Adriatic Sea was divided in 16,072 cells, each with a size of
3 × 3 km. This grid is the same as that used within the DCF for
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FIGURE 2 | (A) Study area: the Adriatic Sea with the two FAO Geographical Sub Areas (GSAs) (white lines) and the main isobaths are shown; (B) human activities (in
red) and marine managed areas (in yellow); (C) main bottom substrates obtained from the European Marine Observation Data Network (EMODnet) Seabed Habitats
project (http://www.emodnet-seabedhabitats.eu/); and (D) the 3 × 3 km square grid (in gray) used within the DCF for the computations of the fishing pressure
indicators; the Croatian territorial waters are excluded from the analysis. The figures were created using the R package ggmap (Kahle and Wickham, 2013) importing
images from Google maps.
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computation of the ecological indicators of fishing pressures 5,
6, and 7 (Russo et al., 2011a; Lambert et al., 2012). A series of
variables (Table 1) was computed for each cell of this grid, using
the different layers of information described in Figure 2. These
variables represent the input for the MPNs architecture described
in the following subsection.

• The proportion of each cell belonging to the standard
DCF depth strata (e.g., [0–20) m, [20–50) m, [50–80) m,
[80–100) m, [100–200) m, [200–800) m, and over 800 m).
• The proportions of the surface with respect to the

five different substrate typologies: mud; sand; rocks;
and sensitive habitats such as sea meadows, maerl and
coralligenous biocenosis.
• The presence/absence (as a binary variable) of anthropic

activities other than fishing. In this study, some “direct”
human activities were considered (e.g., aquaculture,

artificial reefs, and platforms for oil extraction), whereas
indirect activities (e.g., pollution) were not considered.
• The proportion of the surface area occupied by MPAs.

The Fleet of Trawlers and Its Datasets
The official fleet of Italian trawlers operating in the Adriatic
Sea consists of 2,207 vessels (Table 2). Vessels belonging to
the length class [12–15 m), i.e., the subset not mandatorily
equipped with the VMS/AIS, represents 74.17% of the total. Fleet
segments corresponding to the length classes [15–18 m), [18–
24 m), and [24–40 m) were comprised almost entirely of vessels
equipped with VMS. The VMS data were made available by
the Italian Ministry of Agricultural, Food and Forestry Policies
within scientific activities related to the Italian National Program
for Data Collection in the Fisheries Sector. The VMS data consist
of pings sent at regular frequencies from vessels, regardless of

TABLE 1 | List of input variables used for training of CMPN.

Variable type Variable name Description Range

Bathymetry Depth20 Proportion of cell belonging to the depth stratum [0–20) m 0–1

Depth50 Proportion of cell belonging to the depth stratum [20–50) m 0–1

Depth80 Proportion of cell belonging to the depth stratum [50–80) m 0–1

Depth100 Proportion of cell belonging to the depth stratum [80–100) m 0–1

Depth200 Proportion of cell belonging to the depth stratum [100–200) m 0–1

Depth800 Proportion of cell belonging to the depth stratum [200–800) m 0–1

DepthOver800 proportion of cell belonging to the depth stratum [800–) m 0–1

Management Anthropic Presence/absence (as a binary variable) of anthropic activities other than fisheries:
aquaculture, artificial reefs, platforms for oil extraction

0/1

MPA Proportion of surface occupied by sensitive habitats or marine protected areas (MPAs) 0–1

Substrates Sensitive Habitats (SH) Presence of habitats characterized as sensitive 0/1

Sea Meadows Proportion of sea bottom surface occupied by Posidonia beds or Cymodocea beds 0–1

Sand Proportion of sea bottom surface occupied by Circalittoral muddy sand, Circalittoral fine
sand, Deep-sea sand, Deep-sea muddy sand, Infralittoral fine sands, or Deep Sea Sand

0–1

Mud Proportion of sea bottom surface occupied by Circalittoral fine mud, Circalittoral sandy
mud, Deep-sea mixed substrata, or Facies of sandy muds with Thenea muricata

0–1

Rocks Proportion of sea bottom surface occupied by Circalittoral rock and other hard
substrata, Circalittoral coarse sediment, Infralittoral coarse sediment, or Infralittoral rock
and other hard substrata

0–1

Bio Proportion of sea bottom surface occupied by Mediterranean communities of
shelf-edge detritic bottoms, Mediterranean biocoenosis of coastal detritic bottoms,
Mediterranean biocoenosis of muddy detritic bottoms, Communities of abyssal muds,
Mediterranean biocoenosis of coastal terrigenous muds, Mediterranean communities of
bathyal muds, Mediterranean coralligenous communities moderately exposed to or
sheltered from hydrodynamic action, Faunal communities on deep moderate energy
circalittoral rock, or Maerl beds

0–1

Topology Distance Distance from the Italian coastline 0–110
nautical
miles

Fleet influence (FIVMS) FI[12-15) Index of the number of trawlers belonging to the length class [12–15 m) and their
relative distance from the cell c

0–1

FI[15-18) Index of the number of trawlers belonging to the length class [15–18 m) and their
relative distance from the cell c

0–1

FI[18-24) Index of the number of trawlers belonging to the length class [15–18 m) and their
relative distance from the cell c

0–1

FI[24-40) Index of the number of trawlers belonging to the length class [15–18 m) and their
relative distance from the cell c

0–1

R+ stands for the set of positive real numbers. The notation [x,y) is used to indicate an interval from x to y that is inclusive of x but exclusive of y.
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TABLE 2 | Number of trawlers for each Italian harbor along the Adriatic coast and
for each length class according to the DCF.

Harbor name [12–15) [15–18) [18–24) [24–40)

Ancona 90 10 21 19

Bari 63 3 2 0

Barletta 15 2 2 1

Bellaria 31 2 0 0

Bisceglie 11 3 8 9

Brindisi 79 0 0 0

Caorle 58 9 2 0

Cattolica 20 2 2 0

Cesenatico 18 5 6 0

Chioggia 61 9 35 24

Civitanova Marche 31 5 21 1

Fano 40 4 4 8

Giulianova 31 0 6 4

Goro 226 5 2 0

Grado 71 1 1 0

Manfredonia 77 13 27 0

Marano Lagunare 148 8 0 0

Mola di Bari 24 8 11 0

Molfetta 4 5 15 17

Monopoli 38 11 12 0

Ortona 93 5 9 0

Otranto 33 1 1 0

Pesaro 10 1 0 0

Pescara 33 11 29 14

Porto Garibaldi 22 5 8 2

Porto San Giorgio 46 9 3 1

Porto Tolle 31 22 8 2

Riccione 22 1 0 0

Rimini 36 6 17 9

San Benedetto del Tronto 54 9 18 14

Senigallia 42 2 0 0

Termoli 53 4 11 5

Trani 10 2 2 7

Vasto 59 2 6 0

Venezia 28 1 0 0

Vieste 19 3 1 2

Total 1637 179 269 120

their status (i.e., fishing, steaming, or other). Standard procedures
exist to organize, clean, interpolate and classify the VMS data
(Russo et al., 2011a,b, 2014a, 2016b). In brief, VMS data can be
used to compute the amounts and locations of trawling efforts,
definitively allowing reconstruction of the fishing activity for each
vessel at a given temporal or spatial scale.

In addition, a set of logbook data covering the activity of
39 Adriatic trawlers belonging to the length class [12–15 m)
for the whole year of 2017 was provided. Each record in this
logbook dataset contains data arranged by vessel and by fishing
day and shows the amount of effort (in hours) and the mean
geographical locations (centroids) of fishing activities. It is worth
noting that none of these 39 vessels was equipped with the
VMS. This lack of a VMS implies that these trawlers represent

a completely independent dataset that does not overlap with the
trawlers previously described.

Fishing Effort
The yearly fishing footprint was estimated from the VMS data
for the years 2012–2016 in terms of the grid defined above for
each fleet segment, using the procedure described in Russo et al.
(2011a,b, 2014a, 2016b). The fishing effort was quantified as hours
of fishing for each fleet segment, regardless of the engine power of
the fishing vessels or the gear widths (which are generally related
to the vessel size – Reid et al., 2011).

The corresponding means across years 2012–2016 are shown
in Figure 3. These mean patterns were then used as input for
the model (see the next sections). A preliminary analysis of the
Pearson correlations between these patterns (Figure 4) enabled
the detection of positive interactions, e.g., between the fleet
segments [15–18 m) and [18–24 m), and of negative interactions
(repulsion), e.g., between segments [15–18 m) and [24–40 m).

After model training, a second block of estimates was
produced. In particular, the model described in the next sections
was used to predict the fishing footprints for the year 2017 for
each fleet segment, considering the official size of each segment.

In addition, the yearly aggregated fishing footprint for the year
2017 for the 39 vessels in the logbook dataset was predicted.
At the same time, the corresponding fishing footprint for these
vessels was computed using the logbook data. That is, the daily
amount of trawling effort was assigned to the grid cells using the
information of the centroids of fishing activity for each day.

The model predictions and logbook-based assessments
were then compared (see section “Model Validation and
Sensitivity Analysis”).

Fishing Capacity and Fleet Distributions
It is reasonable that the trawling effort deployed within a given
cell is a function of the cell characteristics and of its position with
respect to harbors. In other words, the steaming distance to reach
a given cell is a critical factor and, in theory, the attractiveness of
a given cell is expected to be inversely correlated to its distance
from the starting harbor for each vessel. Conversely, trawling
effort deployed in a given cell should be positively influenced by
the fleet size (i.e., the number of trawlers belonging to different
fleet segments) distributed in the nearest harbors. In brief, the
trawling efforts are likely to be influenced by the system topology.
However, trawlers belonging to different length classes are likely
to be characterized by different operating ranges.

To model these relationships, the distances between each
Italian harbor on the Adriatic coast hosting trawlers (Table 2)
and the centers of each cell c were computed and combined with
the trawler distributions by harbor and length class to obtain the
“fleet influence” (FIc,l) index, defined as:

FIc,l =

H∑
h=1

Nh,l
/

dc,h

where c is a generic cell, l is a standard DCF length class for LOAs
(12–15 m), (15–18 m), (18–24 m), and (24–40 m), dc,h is the
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FIGURE 3 | Fishing footprints as the total yearly fishing effort (the means of the years from 2012 to 2016), estimated using the VMS data, for the four length classes
that group the Italian trawlers operating in the Adriatic Sea. The effort in the logs of fishing hours was computed with respect to the 3 × 3 km square grid used within
the EU DCF for the computation of the ecological indicators of fishing pressure. The effort scale is the same for the four subfigures to provide comparability. The
figures were created using the R package ggmap (Kahle and Wickham, 2013) importing images from Google maps.

Frontiers in Marine Science | www.frontiersin.org 7 November 2019 | Volume 6 | Article 670

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00670 November 4, 2019 Time: 15:52 # 8

Russo et al. Predicting Fishing Footprint of Trawlers

FIGURE 4 | Visualization of the Pearson Correlation between the fishing
efforts observed for the different length classes, as estimated by the VMS
data. Correlation values are represented with a color scale ranging from blue
(negative) to red (positive) values. The fleet segments are named according to
the ranges of length-over-all of the vessels. The notation [x,y) is used to
indicate an interval from x to y that is inclusive of x but exclusive of y.

distance between cell c and harbor h, and Nh,l is the number of
trawlers hosted in harbor h and belonging to length class l.

The largest values of the FI index occur for cells near harbors
hosting the largest fleets of trawlers. Conversely, the lowest values
(corresponding to no influence on the fleets) occur for cells
at a distance from harbors inversely correlated to the size of
the hosted fleets.

Three separate sets, each composed of four vectors (one for
each length class), were computed for FI. The first set (FICFR)
was computed considering the official (i.e., total) number of
trawlers by harbor/length class (Table 2) according to the CFR.
The resulting patterns are represented in Figure 5. The second
set (FIVMS) was computed considering only the trawlers equipped
with the VMS (i.e., those for which the fishing footprints
could be directly estimated). The third set (FILB) was computed
considering only the 39 trawlers in the logbook dataset.

Rationale of the Model and Structure of
the Cascaded Multilayer Perceptron
Network
The model presented in this study aims to predict the yearly
fishing efforts (FEc,l), as hours of fishing, for each fleet segment
l and for each cell c in a set of C cells, starting with the VMS
data for a subset of these vessels. We can assume that the effort
spent by each fleet segment in a given cell depends on a set
of covariates related to the cell. Moreover, it is reasonable to
assume that it also depends on the effort spent by all other
fleet segments. For example, vessels of similar lengths will have
similar behaviors, while an extensive effort by large vessels will
discourage smaller vessels. This assumption is corroborated by
the correlations shown in Figure 4. Hence, instead of estimating
a model for each segment, we employ a joint model for the efforts
of all segments.

If we used the whole dataset, we could estimate the joint model
using a MPN. For this setup, we cannot estimate the model in a
single step. Instead, we impute the missing data in the first step,
and then estimate the whole model during the second step.

To accomplish this task, a CMPN was defined to predict the
values of FEc,l. The CMPN presented in this study (Figure 6)
consists of two MPNs. Each MPN belongs to the ANN family
of “feed-forward” neural networks, which is the oldest and
simplest ANN type (Quetglas et al., 2011). This ANN family
is composed of three strata of “neurons,” and the information
conveyed by the training data flows only in the forward direction,
from left (input stratum) to right (output stratum), passing
through “hidden” neurons (intermediate stratum). Each neuron
of the input stratum is connected to all neurons of the hidden
stratum, and each neuron of the hidden stratum is connected
to all neurons of the output stratum. No connections are
present between neurons of the same stratum. The number of
neurons in the input stratum corresponds to the number of
independent variables or descriptors employed to predict the
dependent variables, which correspond to the neurons in the
output stratum. The intermediate (hidden) stratum, the core of
the MPN, contains a variable number of neurons, since the size
of this layer is a parameter to be tuned when optimizing the
MPN structure. Each neuron in this stratum computes, through
a first “activation” function, a weighted sum of values in the input
layer. Then, the neuron swaps this intermediate value to output
neurons through a second activation function. In this study, a
sigmoid function (the most common choice in this field – Lek and
Guégan, 1999; Haykin and Haykin, 2009) was used in both cases.

The classic MPN training procedure is based on a dataset
for which both the independent and dependent variables are
known and consists of adjusting the connection weights among
neurons of different strata to minimize the discrepancies between
the observed and predicted values (Quetglas et al., 2011). At
the end of the optimization process, the connection weights
among the neurons of different strata are kept fixed, and a
different dataset (not previously used for the training phase)
can be used for testing. In this way, new sets of values for the
input descriptors are used to feed the trained MPN, and the
predicted values of the dependent variables are compared with
the observed values to assess the ability of the MPN to model
the phenomena of interest. The CMPN architecture applied in
this study consists of two MPNs (Figure 6), named MPN1 and
MPN2. MPN1 consists of 20 neurons in the input stratum,
which correspond to the variables shown in Table 1. The output
stratum of MPN1 consists of four neurons, corresponding to
the FEc,l values described above. According to this architecture,
the aim of MPN1 is to model the effects of the different groups
of independent variables (bathymetry, management, substrates,
topology and fleet influence) on the fishing efforts for the four
length classes (output variables FEc,l) but spatial interactions
between the output variables are not considered. In other words,
MPN1 is not intended to take into account the interactions
between the components of the fleet that correspond to the
different length classes (Figure 4). This fact is the reason why a
second MPN ensemble (MPN2 in Figure 6) was designed. Each
MPN2 uses the same set of 20 independent variables that feed
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FIGURE 5 | Spatial patterns of the FI index, by length class, computed considering the official (i.e., total) number of Italian trawlers by harbor/length class (Table 2).
The FI index is defined as a function of the size of the fleet segment (i.e., the number of trawlers) and the distance from the center of each cell to the harbor. The
figures were created using the R package ggmap (Kahle and Wickham, 2013) importing images from Google maps.

MPN1, along with three of the four sets of FEc,l values returned
by MP1, to refine FEc,l predictions of the fourth. Thus, each
MPN2 has a single output neuron. CMPN has been applied in
other ecological studies when a correlation exists among output
variables (Franceschini et al., 2018).

The above described CMPN was trained and tested as follows:

1. Input variables: A subset of the 8,842 cells of the 3 × 3 km
grid was defined after exclusion of the Croatian territorial
waters and after exclusion of the cells closer than 3 km
to the Italian coastline. The values for the 20 independent
variables (Table 1) plus the mean total yearly fishing efforts
by length class were estimated for each cell.

2. Output variables: A subset of vessels with VMS was
extracted from the CFR and the corresponding values of
FEc,l were computed.

3. Both input and output quantitative variables were
normalized in the range [0–1], while the qualitative
variables (anthropic activities and sensitive habitats) were
expressed as presence/absence binary values (0/1).

4. The training phase of an MPN is typically carried out using
two input datasets (the training set and the validation set),
since this allows limiting the risk of “overfitting,” but a test
dataset is used to assess the performance of the trained
MPN. Overfitting occurs when the model fits the observed
data too well and is not able to effectively generalize
the phenomena of interest, leading to poor predictive
performance for the test dataset. The risk of overfitting is
particularly high in spatial models (Black, 1995) because
neighboring spatial units are likely to be very similar.
To minimize the effect of spatial autocorrelation, the set
of 8,842 cells and their corresponding input and output
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FIGURE 6 | Structure of the cascaded multilayer perceptron network used in this study. The names of the input variables are shown on the left side. The MPN in the
first layer has four output neurons, one for each FEc,l of a given l length class. The MPNs in the second layer has one output neuron each, since they processes FEc,l

from MPN in layer one by considering interactions between fleet segments. Different colors of input neurons are used to emphasize the fact that MPNs in the second
layer reuse input data for MPN in the layer one (orange) plus their outputs (green). The neurons in the hidden strata are represented in cyan. Final output neurons are
in red.
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variables were first partitioned into 45 blocks, each defined
as a group of cells within a square box of 0.75 × 0.58
degrees (Figure 7A). Then, 70% of those blocks were
randomly selected for the training set, 15% of the blocks
not assigned to the training set were randomly selected
for the validation set and, finally, the remaining 15% not
attributed to either the training set or to the validation set
were used as the test set (see section “Model Validation and
Sensitivity Analysis”).

5. The training, validation and test datasets were used to
optimize the number of neurons in the hidden layer
of MPN1. The values between 1 and 10 neurons were
explored by repeating dataset extractions (step 4 in this
list) 10 times for each value and then by assessing MPN1
performance by comparing the predicted values of FEc,l
for the test dataset with the observed values through the
determination coefficient R2.

6. After the identification of the optimal number of neurons
in the hidden stratum of MPN1, the same procedure was
successively applied to optimize the size of the hidden
stratum for the MPN2s.

7. At the end of optimization phase for both MPN1 and
MPN2, the final structure of the CMPN was defined.

Model Validation and Sensitivity Analysis
The performance of the optimized CMPN was first assessed
by means of a cross-validation (CV) procedure. CV is a
popular technique for model evaluation. CV is based on random
partitioning of available data in different and non-overlapping
subsets. The subsets not used for training, commonly called
“test” datasets, are submitted to the trained model. Then, model
predictions are compared with observed values for the test
dataset to assess the goodness of model fit (Kärkkäinen, 2014).
In practice, the resampling procedure described in the previous
section (step 4) was repeated 100 times, generating 100 training
(70% of cells), validation (15% of cells), and test (15% of
cells) datasets. Then, after model training, the CMPN predictive
performance was measured by comparing the predicted values of
FEc,l for the cells in the test dataset with the observed values using
the determination coefficient.

Moreover, the ability of the model to predict the spatial
effort patterns of trawlers belonging to the fleet segment [12–
15 m) was evaluated using the ancillary logbook dataset (39
trawlers distributed in 11 Adriatic harbors), which provided
an independent data source. The agreement between these two
patterns was evaluated as follows: (1) the continuous values
of fishing efforts by cell were discretized into classes; (2) a
confusion matrix (Stehman, 1997) was generated by comparing
the two classifications (CMPN-based predictions and logbook-
based observations); and (3) this matrix was analyzed by means
of the weighted Cohen’s kappa statistics (Cohen, 1968) using the
function cohen.kappa in the R package “psych” (Revelle, 2019).

As explained in section “Rationale of the Model and Structure
of the Cascaded Multilayer Perceptron Network,” the MPN
outputs depend upon both input variables and connection
weights in the hidden stratum, so an important issue is the model
sensitivity to perturbations in these values. Here, sensitivity

means the amount of change in the output values as determined
by changes of inputs or weights. This structural characteristic of
MPN can be used to evaluate the relative influence of the input
variables: if the values of a single input variable are changed (while
those for the other input variables are kept the same) it is possible
to observe the related effects on the outputs. Therefore, if this
procedure is applied, for each input variable, by perturbing the
input values at defined levels, the comparisons of the effects on
the output values can be used to assess the relative influence
(importance) of the input variables (Scardi and Harding, 1999;
Franceschini et al., 2018). Hence, to evaluate the contributions
of the independent variables to the prediction accuracies, a set
of perturbation levels [initial values5

±0.1,±0.2,±0.3,±0.4, and
±0.5] was applied, and the related effects on the output values
were measured as the mean square errors (MSE) of the CMPN
outputs with respect to the values in the test datasets.

RESULTS

The best performances (R2) of MPN1 and MPN2 were 0.75
and 0.89, respectively. It is worth noting that these values of
agreement were obtained for the test datasets, which do not
overlap with either the training or validation datasets used during
the learning phase. However, both MPN1 and MPN2, with
similar numbers of neurons in the hidden layer, returned similar
values of R2, providing evidence of training stability (Figure 7).
A CMPN with 10 neurons in the hidden stratum of MPN1 and 8
neurons in the hidden stratum of MPN2 (CMPN10−8 hereafter)
returned the best results in terms of R2 between the predicted
and observed values for the test datasets (Figure 8). According
to these results, CMPN10−8, was selected and used for the rest
of the analyses.

The detailed analysis of CMPN10−8 performances for
the different length classes (Figure 7) indicates that MPN1
performed better for the intermediate length classes. The
MPN2s, however, returned high and homogeneous performances
for length classes [15–18 m) and [18–24 m), whereas the
performance for length classes [12–15 m) and [21–40 m) were
lower and much more variable. However, the mean R2 for MPN2
was 0.77 ± 0.048 (mean ± standard deviation). R2 values ranged
from 0 to +1 and measured how well the observed patterns were
replicated by the model, based on the proportion of the total
variation of observed patterns explained by the model. In this
manner, the R2 values obtained for CMPN10−8 indicated that
it was able to capture approximately 80% of the variability in
the observed data.

CMPN10−8 was then used to predict the distribution of the
fishing effort for the whole fleet, according to the procedure
described in sections “Fishing Capacity and Fleet Distributions”
and “Rationale of the Model and Structure of the Cascaded
Multilayer Perceptron Network,” that is, by replacing FIVMS with
FICFR in the input variables of both MPN1 and MPN2s. It is worth
noting that, while the values of FIVMS and FICFR were very close

5It is important to remember that each input variable was normalized to limit it to
the interval [0,1].
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FIGURE 7 | (A) Example of the random definition of blocks for the training, validation and test datasets. Performance (measured as R2 values between the predicted
and observed values of the fishing effort in the test dataset) of MPN1 (B) and MPN2 (C) with different numbers of neurons in the hidden stratum. The entire training
and test procedure, including random partitioning of data in training and test sets, was replicated 10 times for each value of the number of neurons in the hidden
stratum. For MPN2, the distributions in the boxplots represent the aggregation of the four MPN2s (one for each length class). The dashed blue lines in (B) and (C)
indicate the selected values of the number of neurons in the hidden stratum. The dashed red lines in (B) and (C) provide the corresponding median R2 values for
MPN1 and MPN2 with the selected values of the number of neurons in the hidden stratum.

FIGURE 8 | Boxplots of the MPN1 (red) and MPN2 (blue) performances (R2 between predicted and observed fishing efforts for the test datasets, using 100 random
repetitions) of the CMPN10−8 (the CMPN with 10 neurons in the hidden stratum of MPN1 and 8 neurons in the hidden stratum of MPN2, which scored as the best
architecture). Boxes and whiskers showing the medians (thick lines), 25th and 75th quantiles (lower and upper margin of the boxes) and ranges (vertical lines) of
values.

for fleet segments [15–18 m), [18–24 m), and [24–40 m), they
are substantially different for the fleet segment [12–15 m). This
finding was determined by the low percentage of vessels with
VMS in the length class [12–15 m) (see Figure 1) and implies
that the application of CMPN10−8 on FICFR for this fleet segment
corresponds to an expansion of the behavior (in terms of the

spatial deployment of fishing effort) of vessels with the VMS to
the whole fleet.

The patterns obtained for the different length classes are
represented in Figure 9. While the patterns for length classes
[15–18 m), [18–24 m), and [24–40 m) were very similar to the
observed patterns (Figure 3), those for length class [12–15 m)
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FIGURE 9 | Fishing footprints as the total yearly fishing efforts (means of the years 2012–2016) estimated from CMPN10−8, for the four different length classes that
group the Italian trawlers operating in the Adriatic Sea. Particular emphasis is given to the length class [12–15 m). The effort scale is the same for the four subfigures
to provide comparability. The figures were created using the R package ggmap (Kahle and Wickham, 2013) importing images from Google maps.

depicted, as expected, an exploited area that was much wider than
the observed area. In terms of fishing grounds, the pattern for
length class [12–15 m) was characterized, first, by a high level
of effort along the Italian coast, especially in GSA17, with the
exception of a large area offshore from Ancona. Some fishing
grounds far from the Italian coast were also represented: one
fishing ground was in front of Istria’s peninsula (Croatia), one
fishing ground was in front of Split (Croatia), and the band-
shaped fishing ground was in front of Montenegro’s coasts.

The comparison of the fishing footprints (as the total fishing
effort in the year 2017) predicted by CMPN10−8, using FILB and
the corresponding pattern computed from the logbook data is
presented in Figure 10. The value of the weighted Cohen’s kappa
computed for this pattern was 0.79, which implies substantial
agreement (Cohen, 1960). In fact, a visual inspection of these

patterns shows strong similarities, especially in the southern
part of the Adriatic Sea (GSA18). The main differences between
the predicted and observed patterns were detected in GSA17
(Northern portion of the Adriatic Sea). In particular, CMPN10−8
predicted fishing efforts along the entire Italian coast, whereas the
logbook data recorded fishing activity in three fishing grounds: a
large area near Venice, a small area near San Marino and another
large fishing ground in the southern part of GSA17. In addition,
the logbook data revealed fishing activities near Split and near the
coast of Albania.

The outputs of the sensitivity analyses (Figure 11) showed
that there is a large set of variables that influence the outputs
for length class [12–15 m), whereas only a few input variables
were relevant for the other three length classes. The effort of the
adjacent higher length class is the most important input variable
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FIGURE 10 | Comparison of the fishing footprint (as the total fishing effort in the year 2017) predicted (left) by the CMPN10−8, for the 39 vessels in the logbook
dataset and the corresponding pattern (right) computed from the logbook data. The figures were created using the R package ggmap (Kahle and Wickham, 2013)
importing images from Google maps.

for length classes [12–15 m) and [15–18 m). Conversely, the
effort of the length class [15–18 m) is the most important input
variable for the length class [12–15 m). The distance from the
coast has the main effect on the predicted fishing footprints for
length class [24–40 m). With the exception of effort [15–18 m) for
length class [12–15 m), the variations in MSE were proportional
to the perturbations.

Among the variables influencing the prediction for length class
[12–15 m), those describing fleet structure (FI index) were the
most important, followed by the distances from the coast, the
presence of anthropic activities in addition to fisheries, MPA,
percentages of sea bottom classified as “sand” and depth stratum.

DISCUSSION

Reconstructing fishing efforts in space and time is a prerequisite
for fisheries management and a critical step toward an ecosystem
approach to fisheries, since it is largely acknowledged that
fishing represents one of the most impactful human activities
(Collie et al., 2000; Smith, 2000; Kaiser et al., 2002). In the
last decade, the progressive application of tracking devices (e.g.,
the VMS and AIS) has provided managers and scientists with
data of high spatial and temporal resolution, which represent, in

combination with other data (e.g., satellite estimates of primary
production and distribution of stocks by genetic data) the
basis for advanced models of resource exploitation (Gerritsen
and Lordan, 2011; Bastardie et al., 2014; Russo et al., 2014b).
These models ultimately support monitoring and forecasting
of fishing-related impacts and allow simulating the effects of
management approaches based on regulation of fishing efforts.
Moreover, leaving aside issues related to fishing safety and
enforcement (e.g., control of access to fisheries-restricted areas),
the VMS/AIS-based quantification of the fishing efforts and
fishing strategies is a natural consequence of the awareness
that the sea and its resources are common goods and those
who extract from them should be monitored (Fournier et al.,
2018). However, vessels and fleets without a VMS or AIS are
practically able to operate in “hidden mode,” and reconstructing
their activities and related impacts is challenging. All of these
considerations apply to the Mediterranean Sea, one of the
most exploited large marine ecosystems worldwide, and in
particular to the Adriatic Sea, in which trawling efforts have
reached the highest levels on the entire planet even when the
contribution of trawlers belonging to fleet segment [12–15 m)
is not considered (Amoroso et al., 2018). In summary, the
estimation of the fishing footprints of vessels without the VMS
or AIS is urgent and strategic.
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FIGURE 11 | Outputs of the sensitivity analyses based on the perturbation method. This procedure was applied for each input variable, by perturbing the input
values at defined levels [initial values ±0.1, ±0.2, ±0.3, ±0.4, and ±0.5], and then exploring the related effects on the output variables in terms of mean square error
(MSE) between the predicted and observed values for the test. Bar lengths (x-axis) represent the increase in the mean square error (MSE) of the CMPN10−8 outputs
obtained by perturbing each of the input variables in the test datasets, while keeping all other inputs at their original values, and are presented as stacked bars in
which the color scale describes the size of the perturbation.

The results of this study suggest that a CMPN is a suitable
tool to pursue this aim. The CMPN10−8 designed and trained
on VMS data for a subset of vessels belonging to length class
[12–15 m) returned an estimate of the total annual fishing effort
for the whole Italian fleet in this fleet segment. The model
outputs were validated in two ways: internally (CV using test
data not used for training – see Figure 8) and externally (i.e.,
through comparison with independent estimations from logbook
data – see Figure 10). The latter type of validation, in particular,
indicated a substantial agreement between the model output and
the patterns depicted by the logbook data. The discrepancies
between the model output and the logbook-based patterns can be
explained in different ways. First, of course, these discrepancies
could be related to model limitations in terms of predictive
power. If this is the case, it is worth noting that the model
was trained with VMS data for approximately 3% of the whole
fleet in the length class [12–15 m) (see Figure 1). Therefore,
the model output should be judged while considering that the
model predictions were based on a small subset of the target
universe. Moreover, it is reasonable to expect that the model
performance will improve with the progressive coverage of
the VMS (or AIS) for this fleet segment. Second, mismatches
between model outputs and logbook-based patterns could be
due also to misreporting or gaps in the logbook data. In fact,
logbooks are characterized by consistency and accuracy issues

(Chang, 2011; Sampson, 2011; Russo et al., 2016a). Beyond these
inconsistencies, the model presented in this paper represents one
of the first attempts to apply ANN to extrapolate the behavior
of entire fleets from subsets of these fleets. Hence, the target
of the model is represented by an aggregated (yearly) pattern
rather than high-resolution temporal scales (trips or days). This
fact is also related to the rationale of the model; we are not
modeling the behavior of each vessel (i.e., where and how much
it operates). In contrast, we are trying to model (and predict) the
effort allocated in a given spatial unit (cell) as a function of its
environmental characteristics and its position with respect to the
system topology of the structure/distribution of the fleet.

The fishing footprint predicted by the CMPN for length
class [12–15 m) looks very similar, in terms of the hotspots of
effort and the distribution of fishing grounds, to the observed
footprint (from the VMS data) for the other length classes and,
in particular, for length class [15–18 m). The Adriatic Sea hosts
approximately half of the Italian trawling fleet and is one of the
most crowded marine areas of the world (Bastardie et al., 2017;
Carpi et al., 2017); fishing vessels are forced to compete for the
same fishing grounds. Here, the high productivity of mollusks,
shellfish, and finfish of high commercial value causes strong
competition for demersal resources (Fortibuoni et al., 2017).
Trawl fishing in the Adriatic Sea is extremely productive,
since it benefits from the environmental characteristics of a

Frontiers in Marine Science | www.frontiersin.org 15 November 2019 | Volume 6 | Article 670

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00670 November 4, 2019 Time: 15:52 # 16

Russo et al. Predicting Fishing Footprint of Trawlers

semi-enclosed basin, that is, a flat bottom covered by mud
and sand that receives relevant nutrient outflows from the
incoming rivers (e.g., mainly the Po river) (Papaconstantinou and
Farrugio, 2000). Apart from the areas occupied by infrastructures
that prevent fishing activities (e.g., offshore platforms for oil
extraction) and the complex of the Pomo Pit, the Adriatic Sea
is almost completely suitable for trawling. Consequently, areas
of activity for different fleet segments depend mainly upon two
factors: the different operating ranges of small/large vessels and
the competition for space between the different fleet segments.

The vessel density in the fishing grounds has been inversely
correlated with economic performance, so minimizing spatial
overlap and competition for the same fishing grounds is
considered a common strategy adopted by fishermen (Rijnsdorp,
2000). Coherently, the sensitivity analysis demonstrated that the
distance from the coast is the main input variable influencing
the fishing effort patterns of the largest fleet segment, which
can operate far from the coast and minimize its overlap with
the other fleet components. Noticeably, the fishing effort pattern
for the smallest fleet segment [12–15 m) depends upon several
input variables, most of which are related to substrates and
the sea-bottom depth. In the same way, human activities other
than fishing are relevant only for the fleet segment [12–15 m)
(Figure 11). These results can be explained by considering
that the environment is more variable near the coast and that
aquaculture sites, artificial reefs, and platforms for oil extraction
are located along the coast, with this being the region within
which the efforts of this fleet segment are concentrated. In
addition, this fleet segment is the largest in terms of size
(i.e., total number of fishing vessels) and so the competition
for fishing grounds is very strong within this segment. These
results are consistent with previous studies addressing the
relationships between fishing efforts and distances between ports
and fishing grounds for different subsets of fleets (Rijnsdorp,
2000; Bastardie et al., 2014).

The two MPNs composing the CMPN designed in this study
are explicitly aimed at considering these two different blocks of
drivers that shape the fishing effort patterns: the environmental
characteristics and the reciprocal interference of the different fleet
segments. MPN1 basically processes the input variables of the
environmental block, although the gravimetric influence of the
fleet capacity stored in the harbors is also considered. However,
given that the output neurons of a MPN are not connected,
it cannot take into account the influence of the intersegments
(Figure 5), which is instead the target of MPN2.

FUTURE WORK

Given that, (1) the aim of this study was to develop and
test a method to predict fishing effort allocations for a group
of vessels without tracking devices; (2) the method presented
was focused on spatial units instead of on individual vessels
(i.e., the output of the CMPN is the effort in a generic cell
rather than the behavior of a generic vessel); and (3) the set
of trawlers with VMS in the length class [12–15 m) was not
large enough to support further partitioning by engine power, the

different characteristics of vessels belonging to different length
classes (namely, their engine power, which significantly affects
the effective effort and its related impacts) were not considered.
Future developments of this method, perhaps based on larger
datasets, could address this issue.

From a practical point of view, the fishing effort pattern
estimated for the fleet segment [12–15 m) will be used, in
combination with the fishing effort patterns of other fleet
segments, to define a model of trawling fisheries in the Adriatic
Sea within the research project “MANTIS: Marine protected
areas: network(s) for enhancement of sustainable fisheries in
EU Mediterranean waters.” The project is aimed at estimating,
through simulation approaches integrated into the SMART
model (Russo et al., 2014b), the potential effects on the demersal
resources under different management scenarios, including the
creation of large areas closed to fisheries in the Pomo Pit
complex (Bastari et al., 2016; Bastardie et al., 2017; Carpi et al.,
2017). Considering the relevant amount of fishing effort and
related catches associated with the fleet segment [12–15 m),
it seems very important to take into account the interactions
of fishing footprints and resource distributions with particular
reference to critical life stages and living marine resources
(Colloca et al., 2017).

However, this first application of CMPN was devised to
estimate the annual pattern of fishing efforts, but future
developments could address fine temporal scales (e.g., seasonal).
This work could open up important perspectives in terms of the
relationships between seasonal patterns of fishing effort and the
distribution/life cycle of different demersal resources, which were
not considered in this study.

It may also be relevant to address, in more detail, the role of
other factors influencing the effort distribution (e.g., pollution,
different fuel prices along the coast, fine scale structures of coastal
communities, fishing traditions, owners and market requests).
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