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We present a new method for sampling rare and large fluctuations in a non-equilibrium system governed by
a stochastic partial differential equation (SPDE) with additive forcing. To this end, we deploy the so-called
instanton formalism that corresponds to a saddle-point approximation of the action in the path integral
formulation of the underlying SPDE. The crucial step in our approach is the formulation of an alternative
SPDE that incorporates knowledge of the instanton solution such that we are able to constrain the dynamical
evolutions around extreme flow configurations only. Finally, a reweighting procedure based on the Girsanov
theorem is applied to recover the full distribution function of the original system. The entire procedure is
demonstrated on the example of the one-dimensional Burgers equation. Furthermore, we compare our method
to conventional direct numerical simulations as well as to Hybrid Monte Carlo methods. It will be shown that
the instanton-based sampling method outperforms both approaches and allows for an accurate quantification
of the whole probability density function of velocity gradients from the core to the very far tails.

PACS numbers: 05.10.Gg, 05.40.-a, 47.52.+j, 05.45.Jn, 05.45.Pq, 47.27.E-
Keywords: Rare events sampling, large deviations, instanton, stochastic PDEs, turbulence

I. INTRODUCTION

Non-equilibrium systems that possess a large num-
ber of interacting degrees of freedom typically exhibit
strongly anomalous statistical properties which can be
attributed to rare large fluctuations. Typical examples
include the occurrence rate of earthquakes1, the existence
of rogue waves2–4, crashes in the stock market5–7, the
occurrence of epileptic seizures8, or perhaps the most
enigmatic case, the distribution of velocity increments
in hydrodynamic turbulence9. In turbulence theory, a
central notion is the energy cascade which implies a non-
linear and chaotic transfer between different scales10. Al-
though well-established descriptions by Richardson, Kol-
mogorov, Onsager, Heisenberg, and others (see the re-
views9,11) can capture the mean field features of the cas-
cade process in a phenomenological way, the nature of
small-scale turbulent energy dissipation is far less un-
derstood and is usually attributed to nearly singular lo-
calized vortical structures12,13. Empirically, the energy
transfer from large to small scales is accompanied by a
breaking of self-similarity of the probability density func-
tion (PDF) of velocity increments, a phenomenon called
intermittency. Intermittency is intimately connected to
non-Gaussian statistics and extreme events and is often
described in a statistical sense, using random multiplica-
tive cascades leading to multifractal measures9,14. On the
other hand, it manifests itself by the presence of singu-
lar or quasi-singular structures, highly concentrated in a
few spatial locations. From a mathematical point of view,
large fluctuations of the fluid variables are controlled by

the theory of large deviations15–18, which is concerned
with the exponential decay of the PDF for large field
values, see, e.g., the paper19 for a numerical application
based on the Onsager-Machlup functional in the context
of geophysical flows.

Besides numerical large deviation methods, cloning
and selection strategies (that favor the desired event)
have evolved into mature simulation techniques, too20,21.
Recently, such methods have been deployed in order to
investigate return times in Ornstein-Uhlenbeck processes,
in the drag forces acting on an object in turbulent flows22,
as well as for extreme heat waves in weather dynam-
ics23. Other numerical methods include direct impor-
tance sampling in configuration space24, a modification of
transition path methods17 in form of the so-called string
method25 and the geometric minimum action method26.

In this paper we are interested to apply saddle point
techniques to estimate extreme events (also called instan-
tons or optimal fluctuations) as originally introduced in
the context of solid state disordered systems27–31 (see
also32 for an overview). Especially, we refer to the works
of Zittartz and Langer29–31 which contain nearly all the
recipes we are using today. Single- and multi-instantons
dynamics have often been advocated as some of the pos-
sible mechanisms of anomalous fluctuations in hydrody-
namical systems and models thereof 33–37. We will use
the so-called Janssen-de Dominicis38,39 path integral for-
mulation of the Martin-Siggia-Rose (MSR) operator tech-
nique 40 for classical stochastic systems. In particular, we
will apply it to the important case of the one-dimensional
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stochastically forced Burgers equation:

ut(x, t) + u(x, t)ux(x, t) = νuxx(x, t) + η(x, t) , (1)

where the nonlinearity tends to form shock fronts that
are ultimately smeared out by viscosity and lead to
the appearance of large negative velocity gradients
(see below for further details on the equations). The
Burgers equation constitutes a high-dimensional and
highly non-trivial example of a complex system with
fluctuations far away from Gaussianity. The Burgers
equation can be also considered as a simplified one-
dimensional compressible version of the Navier-Stokes
equation and has been extensively studied in the past
decades33,34,41–52 (see also the review53) using numerical
simulations41–43, the replica method44, operator product
expansion47,48,52,54, asymptotic methods49–51 as well
as instanton methods32–34,45,46. Similarly, the Kardar-
Parisi-Zhang equation, which is strictly connected to
(1), has also recently been studied using instantons 55,56.

The main problem when dealing with instanton ap-
proximations of the whole probability distribution is to
evaluate the fluctuations around them, which is, in turn,
connected to the most important problem of quantify-
ing the influence of the saddle-point solution to all field
values, including the ones that are not extremal.

In this paper, we propose a new method to study the
shape of the PDF of the Burgers velocity gradients ux, in
those parameter regions where it is dominated by instan-
tons, considering also the fluctuations around the sad-
dle point configurations. To do that, we will decompose
the velocity field in the MSR action into a contribution
that stems from the instanton as well as a fluctuation
around this object. We then proceed and derive an evo-
lution equation for the fluctuation in the background of
the instanton solution for a given gradient. A subse-
quent reweighting procedure allows us to calculate the
full PDF with a much more accurate description of the
tails in comparison to ordinary direct numerical simula-
tions (DNS) of Burgers turbulence. We also show that
our method is computationally less substantially chal-
lenging than other approaches based on Markov Chain
Monte Carlo methods to generate extreme and rare flow
configurations57. Hence, the method can be considered
as an optimal application of rare events importance sam-
pling and we call it the Instanton based Importance Sam-
pling (IbIS), see also the work58 for a similar idea. In our
formulation, the method is general enough to be applied
to many different SPDEs.

The paper is organized as follows: In section II we re-
view the path integral formulation of stochastic systems.
Section III constitutes the core of the paper, where we
present our reweighting procedure. In section IV we de-
scribe in detail the numerical protocol and we compare
the results obtained with IbIS against those obtained us-
ing DNS and a Hybrid Monte Carlo approach57. We close
with a summary and an outlook on further applications.

II. PATH INTEGRAL FORMULATION AND
INSTANTONS

To make our exposition self-consistent, here we de-
scribe the path integral formulation of stochastic systems,
the subsequent derivation of the instanton equations, and
the calculation of fluctuations around the instanton using
an appropriate reweighting procedure. The presentation
follows closely the seminal work of Balkovsky et al. 33 .

A. Path integral formulation of stochastic systems

The Martin-Siggia-Rose-Janssen-de Dominicis formal-
ism (hereinafter referred to as MSRJD formalism)38–40

was developed in the early 1970’s to calculate statisti-
cal properties of classical systems using a path integral
formulation. Following the same notation as in32,59, we
consider a stochastic differential equation

u̇+N [u, x] = η(x, t) , (2)

where η is an additive Gaussian noise with correlation

〈η(x, t)η(x+ r, t+ s)〉 = χ(r)δ(s) . (3)

Here, the δ-correlation implies that the forcing η is white
in time, while χ(r) is some arbitrary spatial correlation.
Considering that from Eq. (2) the field u is a functional
u[η] of the forcing η, we introduce the MSRJD formalism
as follows. The expectation value of an observable 〈O[u]〉,
as the average over all possible noise realizations, can be
defined as

〈O[u]〉 =

∫
DηO[u[η]] e−

∫
dt 〈η,χ−1η〉/2 , (4)

where the integral in the exponent derives from η being
normally distributed, with 〈 · , · 〉 being the L2 inner
product. Changing the integration from η to u, given
Eq. (2), modifies the measure in Eq. (4) as Dη = J [u]Du,

where J [u] = det
(
δη
δu

)
= det

(
∂t + δN

δu

)
is the Jacobian

associated to the map η 7→ u. This results into what is
called the Onsager-Machlup functional60

〈O[u]〉 =

∫
DuO[u]J [u] e−

∫
dt 〈u̇+N [u],χ−1(u̇+N [u])〉/2 .

(5)
It is the starting point for direct minimization of the
Lagrangian action

SL[u, u̇] =
1

2

∫
dt 〈u̇+N [u], χ−1(u̇+N [u])〉 . (6)

Most of the time, it is more convenient to work with the
original correlation function χ instead of its inverse. We
therefore perform a Hubbard-Stratonovich transforma-
tion, which introduces an auxiliary field p̃ and by virtue
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of a Fourier transform and completing the square elimi-
nates the inverse of the correlation function χ−1 and in
addition the noise appears only linearly in the action:

〈O[u]〉 =

∫
DηDp̃O[u[η]] e−

∫
dt [〈p̃,χp̃〉/2−i〈p̃,η〉] . (7)

We then execute the coordinate transformation from η
to u

〈O[u]〉 =

∫
DuDp̃O[u]J [u] e−S[u,p̃], (8)

with the action function S[u, p̃] given by

S[u, p̃] =

∫
dt

[
−i〈p̃, u̇+N [u]〉+

1

2
〈p̃, χp̃〉

]
.

For the purpose of convenience to obtain an Euclidian
path integral we now substitute p̃ with p, by use of the
relation p̃ = i p and obtain the Hamiltonian action

SH[u, p] =

∫
dt

[
〈p, u̇+N [u]〉 − 1

2
〈p, χp〉

]
. (9)

The next step is to minimize this action functional to
obtain the instanton solutions.

B. Instantons

We are interested in rare and large fluctuations of
velocity gradients ux(x, t) in the Burgers equation (1).
Since this chaotic and turbulent system is invariant un-
der time translations and Galilean transformations, the
probability function of velocity gradients can be cast into
the following form as a path integral

P(a) = 〈δ(ux(0, 0)− a)〉

=

∫
DuDp

∫
i∞

−i∞
dF exp{−SH + F [ux(0, 0)− a]} .

(10)

Here F stems from the Fourier transformat of the δ-
function and serves as a Lagrange multiplier. Hence,
from Eq. (9) we have

SH[u, p] =

∫ 0

−∞
dt

∫
dx p(x, t) (ut + uux − νuxx)

− 1

2

∫ 0

−∞
dt

∫
dx dx′ p(x, t)χ(x− x′)p(x′, t) .

(11)

Now F is treated as a large parameter so that the sad-
dle point approximation can be used in order to derive
instanton configurations, i.e. “classical” solutions that
minimize the action and therefore dominate the path in-
tegral of Eq. (10). The instanton equations are obtained
from the conditions

δS

δu
= 0 and

δS

δp
= 0 . (12)

When carried out, the functional derivatives above yield
the so called instanton equations:

ut + uux − νuxx = χ ∗ p , (13)

pt + upx + νpxx = F δ(t) δ′(x) , (14)

where u(x, t) and p(x, t) have the following boundary con-
ditions:

lim
t→−∞

u(x, t) = 0 lim
t→−∞

p(x, t) = 0

lim
|x|→+∞

u(x, t) = 0 lim
|x|→+∞

p(x, t) = 0

and χ ∗ p is the convolution

(χ ∗ p)(x) =

∫
dx′ χ(x− x′) p(x′, t) . (15)

Because of the δ-function, the RHS of Eq. (14) is an
initial condition for p. Furthermore, the RHS of Eq. (13)
will often be abbreviated:

χ ∗ p = P . (16)

Making use of Eqs. (11) and (13) we may calculate the
instanton action

SI(a) =
1

2

∫ 0

−∞
dt

∫
dx dx′ p(x, t)χ(x− x′) p(x′, t) ,

(17)
where I(a) denotes that the instanton has a gradient of
ux = a. We denote all other instanton related quantities
in a similar way.

III. INSTANTON BASED REWEIGHTING

The process of reweighting allows us to assemble the
PDF related to the stochastic Burgers equation by solv-
ing the stochastic PDE for the fluctuations around the
instanton. In order to derive the instanton equations,
we considered the minimum of the Janssen-de Dominicis
action SH[u, p]. However, to derive this stochastic PDE,
we will work again with the original Onsager-Machlup
action (see Eq. (6)):

SL[u, u̇] =
1

2

∫
dt 〈u̇+N [u], χ−1(u̇+N [u])〉

=
1

2

∫
dt dx dx′ [ut + uux − νuxx] (18)

× χ−1(x− x′) [ut + uux′ + νux′x′ ] .

We then decompose the field into instanton and fluctua-
tion

u = uI(a) + δu . (19)

This results in

SL =
1

2

∫
dt dx dx′

[
P I(a) + δut + δuδux − νδuxx

+ (uI(a)δu)x

]
χ−1(x− x′) [. . .]

= SI(a) + S̃a − 1

2

∫
dt dx pI(a)

x (δu)2 , (20)
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with

S̃a =
1

2

∫
dt dx dx′ [δut + δuδux − νδuxx + (uI(a)δu)x]

× χ−1(x− x′) [. . .] . (21)

Here [. . .] denotes the appropriate expression evaluated
at the position x′. Note that all linear variations vanish
by definition of the instanton. Thus we define

∆Sa = SL − S̃a = SI(a) − 1

2

∫
dt dx pI(a)

x (δu)2 . (22)

Now to derive the stochastic equation corresponding to
the action S̃a, we reverse the derivation of the path inte-
gral formulation and obtain

δut + δuδux − νδuxx = η − (uI(a)δu)x . (23)

Next, we have to change the path measure for this
process in order to connect the statistics to the original
one. To do that, we first consider the identity

PSL(s) := δ(ux(0, 0)− s)e−SL

= δ(ux(0, 0)− s)e−(S̃a+∆Sa)

= δ(δux(0, 0) + a− s)e−S̃
a

e−∆Sa

, (24)

where PSL(s) denotes the path measure of the distribu-
tion of gradients, s = ux(x, t) at (x, t) = (0, 0) in the
original Burgers equation as one would obtain it by per-
forming numerical simulations of (1). On the other hand,
if we sample events for the gradient of the fluctuations,
δu, around the instanton I(a), i.e. when ux = a through
the new stochastic equation (23) we would get a PDF

generated by the measure e−S̃
a

. The last equality in (24)
tell us that in order to get the unbiased original PDF we
need to reweight with a factor e−∆Sa

. A similar approach
was formulated in a simpler setting by Bühler 58 .

If we would proceed in choosing one value ux = a to

calculate the instanton with u
I(a)
x (x = 0, t = 0) = a, we

will be able to sample the statistics near this value very
efficiently. However, values ux = s far away from a will
be sampled with poor performance. Thus a major step is
to choose s = a, which means that for every point ux = a
in the PDF we first calculate the instanton and then us-
ing Eq. (22) obtain the PDF at ux = a. This procedure is
further motivated in Fig. 1. This figure shows the PDFs
for the gradient of the fluctuations δux(0, 0) around the
instanton uI(a), measured at (0,0) and shifted by a (for
comparison) using six different values of ux = a, obtained
from simulations of Eq. (23). Thus the actual form of the
Girsanov transformation used in our instanton reweight-
ing approach reads

PSL(s) := δ(ux(0, 0)− s)e−SL

= δ(δux(0, 0))e−(S̃a+∆Sa) (25)

 0
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a = -29a = -38

x

FIG. 1: Shape of the PDFs for the gradient of the
fluctuations δux (shifted by a) around the instanton

uI(a) for six different values of ux = a.

IV. NUMERICAL SIMULATIONS OF RARE EVENTS

In this section we describe the numerical procedure to
calculate the full PDF of velocity gradients step by step.
The numerical integration of the stochastic PDE given
in Eq. (23)

δut + δuδux − νδuxx = η − (uI(a)δu)x

is achieved using the Euler-Maruyama method61 in com-
bination with an integrating factor62 for the dissipative
term. The spatial correlation function of the forcing (3)
follows a power law proportional to k−3 in Fourier space
and has a cutoff at kF = Nx/3, where Nx is the spatial
number of grid points. The nonlinear term is evaluated
with the pseudospectral method. The instanton equa-
tions (13)-(14) are solved using an iterative method as
described in Chernykh and Stepanov32,59.

Results of an instanton configuration for a certain gra-

dient u
I(a)
x (x = 0, t = 0) = a, and a snapshot of a typical

realization of Eq. (23) δu added with uI(a) are displayed
in Fig. 2.

A. Generating the PDF

In order to generate the PDF of velocity gradients,
we define a set of Lagrange multipliers F that implicitly
define the set of gradients a. For each of these Lagrange
multipliers we complete the following iteration scheme:

1. Solve the instanton equations Eqs. (13)-(14) and
save both the velocity field uI(a) and the auxiliary
field pI(a) as well as the convolution P I(a) in space
and time.

2. Calculate the instanton action SI(a) according to
Eq. (17).
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FIG. 2: (a) Instanton solution uI(a) for Nx = 64,

Nt = 576, ν = 0.5, u
I(a)
x (0, 0) = a = −31.8. (b) A

realization u(x, t) = uI(a)(x, t) + δu(x, t), using the
above instanton after solving Eq. (23)

3. For a chosen number of realizations N :

(a) Calculate the fluctuations around the instan-
ton as stated in section (III), whilst calculat-
ing the space integral

1

2

∫
dx pI(a)

x (δu)2 (26)

at every time step, such that the sum over all
time steps gives the space time integral from
Eq. (22) that is required in order to calculate
the reweighting factor

∆Sa = SI(a) − 1

2

∫
dt dx pI(a)

x (δu)2 . (27)

(b) Add the instanton and the fluctuation

u = uI(a) + δu (28)

and subsequently calculate the gradient ux at
the space-time point (x, t) = (0, 0).

(c) Create the histogram of ux around a, where
the bin size corresponds to the spacing of
the gradients a, and the current realization of
ux(0, 0) is weighted by the factor e−∆Sa

.

4. Take the mean value of all the histograms to obtain
the value of the PDF at ux = a.

This structure allows it to run the process in parallel,
because each of the levels in the iteration scheme is in-
dependent. First the iteration for each of the Lagrange
multipliers can be done in parallel as well as the subrou-
tine for each of the realizations of the fluctuations.

B. Results

We performed two sets of simulations for two different
Reynolds numbers determined by the prescribed viscosi-
ties ν = 0.5 and ν = 0.2. A set consists of i) direct
numerical simulations (DNS) of the Burgers equation, ii)
a hybrid Monte Carlo57 (HMC) sampling of the path in-
tegral and iii) our instanton based importance sampling
(IbIS).

The hybrid Monte Carlo approach utilizes the action
S L (6) that depends on the flow configuration and con-
structs the measure as a weighted sum of all possible
flow-realizations. Then S L together with an additional
gradient maximization constraint

S′ = S L + c1ux(0, 0) (29)

is sampled via the HMC algorithm63, where the prefactor
c1 defines the strength of the constraint. The choice of
the additional functional can, in principle, be arbitrary,
here it is specifically designed to systematically generate
a large (positive, if c1 < 0 or negative, if c1 > 0) ve-
locity gradient at a specified space-time point, here at
(x, t) = (0, 0). Hence, the system favors the sampling of
extreme and rare events in a similar spirit as an a pos-
teriori filtering of strong gradient events generated by a
standard DNS64.

To test its validity and capabilities, the IbIS method is
put in comparison to the HMC and the DNS by measur-
ing the PDF of the velocity gradients. Both the IbIS and
the HMC consider the reweighted statistics of the veloc-
ity gradient measured only at (x, t) = (0, 0) (as explained
in Sec. IV A and in57), while for the DNS we consider any
site that belongs to the stationary regime. In Figs. 3(a,b)
we compare the cases of ν = 0.5 and ν = 0.2, respectively.
The inlet plot is an enlargement of the central region of
the PDF, to strain that both reweighted PDFs of IbIS
and HMC, successfully reproduce it. On the other hand,
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ν # meshpoints # timesteps time interval # realizations method computing time (cpu hrs)

0.5 64 576 6 1 × 109 DNS 1 × 103

0.5 64 576 6 6 × 105 HMC 1 × 103

0.5 64 576 6 170 × 105 IbIS 24

0.2 256 1152 4 2 × 108 DNS 2.7 × 103

0.2 256 1152 4 4 × 105 HMC 1.2 × 104

0.2 256 1152 4 180 × 105 IbIS 250

TABLE I: The parameters used for the numerical simulations. ν is the viscosity, # meshpoints is the number of grid points
Nx in space, # timesteps is the number of points Nt in time, while time interval denotes the physical temporal length. By #

realizations we denote the number of produced space-time configurations. In the case of the IbIS method the notation
170 × 105 implies that we produced 105 space-time configurations for each of the 170 instantons with a given ux(0, 0) = a.

Accordingly for the HMC we produced 105 configurations for each of the six values of c1: (1.9, 1.6, 1.2, -1, -10, -20) for
ν = 0.5, and of the four c1: (0.9, 0.8, 0.6, 0.5) for ν = 0.2, which were finally combined. The computing time in cpu hours is
the total budget required to produce the corresponding # realizations, that were used in Fig. 3. Notice that the IbIS method

is substantially cheaper than the HMC in providing similar quality of extreme events.
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FIG. 3: Velocity gradients PDF. Reweighted IbIS (red
filled squares) and HMC (green open circles) versus the
DNS (black line) and the instanton (open blue squares)

(a) Nx = 64, Nt = 576, ν = 0.5, scanning for
a ∈ (−46, 5). (b) Nx = 256, Nt = 1152, ν = 0.2,

scanning for a ∈ (−160, 10).

as expected, the instanton prediction for small negative
velocity gradients is wrong and underestimates the real
PDF, as in this region the instanton approach is invalid,
while in the case of the right tails the instanton predic-
tion is exact45. Most importantly, the far left tail of the
PDFs is reproduced identically both from the IbIS and
the HMC simulations. In addition, the PDFs approach
the instanton prediction for increasing |ux| as it is stated
by large deviation theory. This also constitutes a proof
of concept of the IbIS method, as both implementations
are completely different and independent.

In Fig. 4 we plot the relative error of the bins in
Fig. 3(a). We notice that in the case of the DNS, the
errors quickly deviate for large velocity gradients due to
the sparsity of the measurements. This result is expected
and underlines the need for rare-event algorithms in tur-
bulence. Contrary to the direct numerical simulations,
both the IbIS and the HMC provide sufficient statistics,
resulting to constant and controllable small relative er-
rors over a substantially extended range of values of the
PDF of velocity gradient fluctuations P(ux). In this re-
spect, both the HMC and IbIS strategy are of comparable
quality to capture rare events in turbulence.

The difference between the HMC and the IbIS meth-
ods is captured in Table I. This table does not only show
all parameters used in our simulations, but most impor-
tantly the run-time used for the different simulations.
First, we note the run-time for the DNS is about the size
(or even smaller) than the run-time used in the HMC sim-
ulations. However, we stress that the DNS is only capable
to capture a tiny fraction of the PDF. The remarkable
effectiveness of the IbIS compared to the HMC method
can be deduced from the ratio of their computing times.
Here for the parameters used in our test cases, the IbIS
method turns out to be two orders of magnitudes faster
than the HMC approach, a ratio that is even expected to
increase for higher Reynolds numbers.
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V. CONCLUSIONS AND OUTLOOK

In this paper we have presented a new method based on
instanton importance sampling to calculate the probabil-
ity distribution function of velocity gradients in Burgers
equation for both typical and extremely intense events.
By sampling fluctuations of the SPDE obtained on the
background of one given instanton with a fixed (negative)
intense velocity gradient in a certain (x, t) position, we
explore the fluctuations around that specific flow config-
uration. At varying the reference gradient, and with a
suitable reweighting protocol, we are able to reconstruct
the whole PDF. The method is fully general and can –
in principle– be applied to any SPDE. To be successful,
a necessary condition is that a large deviation principle
is applicable that guarantees the availability of unique
instanton solutions. The IbIS method will work most ef-
ficiently when the PDF obtained solely from the instan-
ton prediction is not to far from the true PDF. We also
compared this new method with a Hybrid Monte Carlo
approach57 which does not rely on these assumptions and
thus is applicable to a larger variety of physical problems.
Concerning the Burgers case, IbIS is orders of magni-
tudes faster then the HMC. Both methods are much bet-
ter than standard pseudo-spectral algorithms which are
unable to focus on extreme-rare events. With the IbIS
method it might be possible to calculate the scaling of
the algebraic power law prefactors, which characterizes
the inviscid limit of Burgers equations50,65 without using
Lagrangian particle and shock tracking methods66.
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