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ABSTRACT. Let G be a discrete countable group, and let Γ be an almost
normal subgroup. In this paper we investigate the classification of (projec-
tive, with 2-cocycle ε ∈ H2(G,T)) unitary representations π of G into the
unitary group of the Hilbert space l2(Γ, ε) that extend the (projective, with
2-cocycle ε) unitary left regular representation of Γ. Representations with
this property are obtained by restricting to G (projective) unitary square
integrable representations of a larger semisimple Lie group G, containing
G as dense subgroup and such that Γ is a lattice in G. This type of unitary
representations of of G appear in the study of automorphic forms.

We obtain a classification of such (projective) unitary representations
and hence we obtain that the Ramanujan-Petersson problem regarding the
action of the Hecke algebra on the Hilbert space of Γ-invariant vectors
for the unitary representation π ⊗ π is an intrinsic problem on the outer
automorphism group of the skewed, crossed product von Neumann algebra
L(G oε L

∞(G, µ)), where G is the Schlichting completion of G and µ is
the canonical Haar measure on G.

1. INTRODUCTION, DEFINITIONS, AND MAIN RESULTS

LetG be a discrete group and let Γ be an almost normal subgroup. In this
paper we investigate the classification, up to unitary equivalence, of (projec-
tive, with 2-cocycle ε ∈ H2(G,T)) unitary representations π of G on Hilbert
spaces Hπ, with the property that π restricted to Γ is unitarily equivalent to
the (projective, with 2-cocycle ε) unitary left regular representation of Γ.
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Throughout this paper we assume that the cocycle ε corresponds to a
finite central extension of the group G, compatible with Γ, and to a central
character on the center of the central extension as in the papers [2], [28] (the
comments after the proof of Lemma 6.1) and [26], Remark 37. There exists a
canonical ( projective) left regular representation Γ associated to this data, that
is compatible with the action ofG. This construction is reviewed in Definition
1.

When the cocycle ε is trivial, such representations appear naturally in
the study of automorphic forms or Maass forms, where one studies the asso-
ciated vector spaces of π(Γ)-invariant vectors ([20], [34], [11]). The space of
π(Γ)-invariant vectors, briefly referred to as the space of Γ-invariant vectors
in this paper, is naturally a Hilbert space. In general this is not a subspace of
the original Hilbert space; it is related to the original Hilbert space if one con-
siders a rigged Hilbert space structure ([12]) on Hπ (see e. g. the construction
in [30]).

Given such a unitary representation π, one constructs a new unitary rep-
resentation π̃ of G, admitting proper Γ-invariant vectors, which extends to a
profinite completion ofG. The block matrix coefficients of this new represen-
tation, corresponding to the reduction to the subspace of Γ invariant vectors,
are the usual Hecke operators ([4], [15], [30]).

In this paper we analyze the representation π⊗ π and its extension Adπ
acting, by conjugation, on the space of bounded linear operatorsB(Hπ). Here
π is the complex conjugated representation associated with the representation
π. The representation π⊗π is a (proper) unitary representation since |ε|2 = 1.
In this paper we will make the assumption that the groups G and Γ have i.c.c.
(infinite conjugacy classes), so that the associated von Neumann algebras are
factors (i.e. have trivial centers, see [36], [33]).

Consequently, in the case considered above, the Hilbert space of Γ-
invariant vectors is canonically identified with the L2-space, associated to
the unique trace on the type II1 factor commutant π(Γ)′ (see e.g [16]). This
construction corresponds to the analysis of Hecke operators on Maass forms
([26],[28]). We note that different, but related approaches, are also considered
in the papers [9], [8], [6].

The unitary representation π̃ ⊗ π, associated to the unitary representa-
tion π ⊗ π considered above, is induced by a representation into the auto-
morphism group of a larger type II1 factor. The additional structure on the
underlying unitary representation is used to determine canonical tensor prod-
uct decompositions of such representations (see e.g. Corollary 9).
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The data from a representation π as above, which is used to construct
Hecke operators, is transformed into data coming from a canonical unitary
representation of the Schlichting completion G of G (see [35]). Splittings
of canonical representations associated to G are proven to be in one-to-one
correspondence with unitary representations π, up to the obvious equivalence
relation on the space of such representations.

The main source of such unitary (projective) representations arises from
the square summable (projective) unitary representations Π̃ of a semisimple
Lie group G, containing G as a dense subgroup and so that Γ is a lattice in G
(see [13], Section 3.3 and also [2]), into the unitary group U(HΠ̃) of a Hilbert
space HΠ̃. The restriction π = Π̃|G has the property that π|Γ is a multiple of
the (projective) left regular representation, with multiplicity

Dπ = dim{π(Γ)}′′(HΠ̃) ∈ (0,∞)

given by the Murray-von Neumann dimension of the Hilbert space HΠ̃ as left
module over the von Neumann algebra {π(Γ)}′′ generated by the image of
the group representation. The dimension is proportional by Vol(G/Γ)−1 to
the Plancherel coefficient of the square integrable representation Π̃ (see [1]
and [13], Section 3.3). In general the dimension Dπ is not always an integer
(see e.g [13], [2], [27] for more details on the non-integer case).

The classification of the (projective) unitary representations π of the
group G with Dπ = 1 is analyzed in detail in the first sections. This cor-
responds to the case where π|Γ is unitarily equivalent to the (projective) left
regular representation.

In the last section we also consider the situation Dπ 6= 1. Although this
is similar to the previous case, it requires additional formalism. In Theorem
35 (i) and formula (91), we introduce an alternative method to construct the
unitary representation ofG that plays the essential role in the analysis ofDπ =
1 (cf. Theorem 6 (ii)) in the equivalent description of a unitary representation
π as above.

We prove that the classification problem of (projective) unitary repre-
sentations π of G as above, up to the equivalence relation corresponding to
conjugation by unitary operators, is determined by the first cohomology group

(1) H1
α(G,U(P ))

of the group G, with values in the unitary group U(P ) of a type II1 factor P ,
associated with a homomorphism α : G→ Aut(P ).

Both objects P and α are constructed canonically, starting from a fixed
unitary (projective) representation π of G as above, through a process similar
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to an infinite, simultaneous, Jones’s basic construction ([16]), which we de-
scribe below (see formulae (5) and (14)). Since α is a lifting of a canonical
group homomorphism (see Definition 3) it follows that up to isomorphism, the
group H1

α(G,U(P )) is a canonical object associated with the given inclusion
Γ ⊆ G.

For a discrete group N we denote by L(N) the associated von Neu-
mann algebra ([33], [32]). We describe below the necessary modifications for
the case when we are also given a group 2-cocycle ε defining an element in
H2(N,T), under additional assumptions (see [2], [28], ([26], Remark 37)).

Definition 1 (Projective, left regular representation). LetN, ε be as above.
In addition assume that there is a central extension, that is a surjective group
homeomorphism, Ψ : N0 → N by a finite (abelian) group Z ⊆ N0 (the ker-
nel of Ψ), and a unitary, complex valued character χ of Z with the following
property:
(i). The class of the 2- cocycle ε in H2(N,T) is determined by the character
χ.

Let `2
χ(N) be the subspace of `2(N0) defined by the formula:

(2) `2
χ(N) = {ζ ∈ `2(N0)|ζ(s−1n0) = χ(s)ζ(n0), ∀z ∈ Z, n0 ∈ N0}.

Let λN0 be the left regular representation associated with group N0, acting on
`2(N0). The projection Pχ from `2(N0) onto `2

χ(N) is given by the formula

(3) Pχ =
1

|Z|
∑
s∈Z

χ(z)λN0(z).

Then Pχ is a central projection in the type II von Neumann algebra L(N0).
We let Lχ(N) be the type II1 factor PχL(N0) acting on `2

χ(N). Then
Lχ(N) is isomorphic to the II1 factor L(N, ε) associated to the group N and
the 2-cocycle ε (we refer to [38], [22], [3] for the definition of L(N, ε) ).

When no confusion is possible, we will continue to denote the factor
Lχ(N) by L(N) and the space `2

χ(N) by `2(N) . We will use the same no-
tational pattern for skewed crossed algebras by the group N , if the action
extends to N0 and the action of the center Z is trivial.

Definition 2. We will assume that the groupG admits a central extension
Ψ : G0 → G by an abelian group Z0 as in Definition 1. We assume that the
groups Ψ−1(Γ1) have a fixed center Z ⊆ Γ ∩ Z0 for all Γ1 ∈ S.

We assume that the (projective, corresponding to ε ∈ H2(G,T)) unitary
irreducible representations π of G that we are considering in this paper all
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extend to G0 and induce a unitary character χ0 on Z0. Let χ = χ0|Z . We
assume that the 2-cocycle ε in H2(G,T) corresponds to the character χ0. We
assume that the representation π has the property that π|Γ is a multiple of the
projective, left regular representation λχ of the group Γ. Consequently, the
von Neumann algebra {π(Γ)}′′ is isomorphic to L(Γ, ε) = Lχ(Γ). When no
confusion is possible we will omit the reference to the 2-cocycle ε an we will
denote the later algebra simply by L(Γ).

The example that we have in mind here is the case G0 = SL(2,Q(
√
p)),

G = PGL2(Z[1/p]), Γ0 = SL(2,Z) and Γ = PSL2Z). Hence the center
group Z is isomorphic to Z2 and the character χ is the unique non-trivial char-
acter of Z2. The (projective) unitary representations of G = PGL2(Z[1/p])
that correspond to this character are the representations πn, introduced below,
in the discrete series of SL(2,R) where n is an odd natural number n ≥ 3.

For σ in G, let
Γσ = σΓσ−1 ∩ Γ

be the finite index subgroup of Γ associated to σ. Let S be the downward
directed lattice of finite index subgroups of Γ, generated by the subgroups
Γσ, σ ∈ G. We assume that S separates the elements of Γ. For simplicity,
for reasons concerning the construction of the tower of commutant algebras
below, we will assume that all the groups in S have the i.c.c. property.

We will assume in this paper that the following equality

(4) [Γ : Γσ] = [Γ : Γσ−1 ],

holds true for all σ ∈ G.
By Jones’s index theory, the existence of a unitary representation π as

above automatically implies the equality of the indices, since π(σ) conjugates
the subfactors {π(Γσ−1)}′′ and {π(Γσ)}′′ in {π(Γ)}′′. Let K be the profinite
completion of the subgroup Γ with respect to the family of finite index sub-
groups S, and let µ be the corresponding Haar measure on K ([35], [37]).
The equality of the indices proves that the (partial) action by left and right
multiplication by elements in G preserves the Haar measure on K.

Then, the type II1 factor

(5) P = L(Γ oε L
∞(K,µ)),

entering in the definition of the cohomology group describing the classifi-
cation of the (projective) unitary representations π as above, is the reduced
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skewed (by the 2-cocycle ε) crossed product von Neumann algebra ([33],
[21], [3], [22], [38]) associated to the probability measure preserving action
of Γ, by left translations on (K,µ). In the setting of Definition 2, the action
of the center group Z is trivial. We let P0 be the reduced crossed product von
Neumann algebra

(6) P0 = L(Γ0 o L∞(K,µ)).

Then, since pχ is a central projection we have, using the constructions in the
previous definitions,

(7) P ∼= pχP0 ⊆ B(`2
χ(Γ)).

When no confusion is possible, we will use in the rest of the paper the
crossed product notation L(Γ o L∞(K,µ)) for the factor in formula (5) also
in the case when the cocycle ε ∈ H2(Γ,T) is non-trivial.

To construct the homomorphism α : G → Aut(P ), we identify the
type II1 factor P with the output at infinity in the simultaneous Jones’s basic
construction associated to all the inclusions

(8) L(Γ0) ⊆ L(Γ), Γ0 ∈ S.

The homomorphism α is obtained from a homomorphism of G into the au-
tomorphism group of a larger von Neumann algebra associated to an infinite,
simultaneous Jones’s basic construction for pairs of isomorphic subfactors
(see Proposition 13).

We represent the terms of the Jones’s basic construction in formula (8)
using commutant algebras. Since we are working in the case Dπ = 1, we can
use the canonical (anti-)isomorphism of the algebra L(Γ) (see e.g [7],[32])
with the commutant algebra π(Γ)′.

Since the commutant von Neumann algebras π(Γσ)′ are type II1 factors,
it follows that, for Γ0 ⊆ Γ1, Γ0,Γ1 ∈ S, the embeddings

π(Γ1)′ ⊆ π(Γ0)′

are trace preserving.
Consider the type II1 factor obtained, by completion, from the trace pre-

serving, inductive limit of the type II1 factors π(Γ0)′, Γ0 ∈ S:

(9) Ã∞ =
⋃

Γ0∈S

π(Γ0)′.

In the above formula the closure is taken with respect to the weak topology, in
the GNS construction associated to the unique trace on the tower of algebras.
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ThenA∞ is a II1 factor, anti-isomorphic to the simultaneous Jones basic
construction for all the inclusions

π(Γσ)′′ ⊆ π(Γ)′′, σ ∈ G.
For σ ∈ G, let Kσ be the closed subgroup of K defined by the formula

(10) Kσ = K ∩ σKσ−1.

Obviously Kσ is the closure, in the profinite completion, of the group Γσ.
We use the letterR to denote right convolutors. Then

Ã∞ ∼= R(Γ o L∞(K,µ)).

In the above isomorphism, the Jones’s projection eΓσ , associated to an inclu-
sion as in formula (8), corresponds to the characteristic function

χKσ = χΓσ
∈ L∞(K,µ).

By using the canonical anti-isomorphism between the algebras of left and
respectively right convolutors ([7]), we obtain that the algebra Ã∞, the induc-
tive limit of II1 factors in formula (9), is anti-isomorphic to the type II1 factor
L(Γ o L∞(K,µ)). Thus, in the sequel we let

A∞ = L(Γ o L∞(K,µ)) = P.

Using the above anti-isomorphism, the type II1 factor π(Γσ)′ is identified
with the type II1 factor

(11) AσΓ = L(Γ o l∞(Γ/Γσ)) ∼= {L(Γ), χKσ}′′ ⊆ A∞.
Note that, using the convention introduced in Definition 1, the above algebra
(as well as the algebra introduced in the next formula) is a skewed crossed
product algebra if the 2-cocycle ε ∈ H2(G,T) is non-trivial.

Clearly, using any choice of left representatives of cosets for Γσ ⊆ Γ we
obtain that

(12) P ∼= L(Γσ o L∞(Kσ, µ))⊗B(`2(Γ/Γσ)).

Denote the Hilbert space of the (projective) unitary representation π by Hπ.
We consider the homomorphism Ad π of G into the inner automorphism
group of the algebra B(Hπ). Note that, although π is a projective representa-
tion with non trivial cocycle ε, Ad π is a proper representation since ε2 = 1.
We observe that the automorphism Ad π(σ) leaves invariant the upward di-
rected union of commutants

⋃
Γσ∈S

π(Γσ)′. Indeed, for σ ∈ G we have that

Ad π(σ)[π(Γσ−1)′′] = π(Γσ)′′.
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Hence

(13) Ad π(σ)[π(Γσ−1)′] = π(Γσ)′,

and therefore

Ad π(σ)[π(Γσ−1 ∩ Γ0)′] = π(Γσ ∩ σΓ0σ
−1)′, Γ0 ∈ S, σ ∈ G.

Consequently, the (proper, as ε2 = 1) unitary action Ad π induces a
homomorphism α̃ : G→ Aut(Ã∞), obtained by requiring that

(14) α̃|π(Γσ−1∩Γ0)′ = Adπ(σ)|π(Γσ−1∩Γ0)′ , Γ0 ∈ S, σ ∈ G.

Using the above mentioned anti-isomorphism between the type II1 factors
R(Γ o L∞(K,µ)) and P = L(Γ o L∞(K,µ)), we construct from formula
(14) a canonical homomorphism α : G → Aut(P ) which defines the classi-
fying cohomology group H1

α(G,U(P )).
We construct below a canonical subgroup of Out(P ). The unitary repre-

sentations π as above are, up to unitary equivalence, in one-to-one correspon-
dence with the liftings of the above mentioned subgroup to Aut(P ) (see e.g.
[7] for the relevant definitions concerning groups of automorphisms groups
of von Neumann algebras).

Definition 3. For σ ∈ G, let θσ : Γσ−1 → Γσ be the group isomor-
phism induced by σ. Using this isomorphism and the formula (12), when
ε ∈ H2(G,T) is trivial it follows that any bijection between Γ/Γσ−1 and
Γ/Γσ induces an isomorphism

(15) θ̃σ ∈ Aut(P ),

with P as in formula (5). Then the isomorphisms θ̃σ define a group homo-
morphism

(16) Φ : G→ Out(P ) = Aut(P)/Int(P ).

If ε ∈ H2(G,T) is non-trivial, we use the assumptions in Definitions 1
and 2. We define for σ̃ ∈ G0 the analogous automorphism θ0

σ̃ mapping the
von Neumann algebra of the group Ψ−1(Γσ−1) into the von Neumann algebra
of the group Ψ−1(Γσ), where σ = Ψ(σ̃). Using the above bijection, we obtain
an automorphism θ̃0

σ̃ ∈ Aut(P̃ ).
In this case, we let θ̃σ ∈ Aut(P ) be defined by the formula

(17) θ̃σ = pχθ̃
0
σ̃pχ, σ̃ ∈ G0.
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It is obvious that the right hand side of the above equation depends only on
σ = Ψ(σ̃) ∈ G. This automorphism is an abstract model for the automor-
phism introduced in formula (13).

The group homomorphism introduced in formula (16) is (in both cases)
canonical, and it is independent on the choice of the coset representatives
made in formula (12).

The classification of the (projective) representations π, up to unitary
equivalence, is equivalent to the classification of the liftings of the map Φ
to Aut(P ). In particular, if there exists a (projective) unitary representation π
as above, then Φ is liftable to a group homomorphism. In Section 6 we will
prove the following:

Theorem 4. Suppose Dπ = 1 and let Φ be as in (16). Then:
(i) Any (projective) unitary representation π of G as above defines a lifting

απ = (απ(g))g∈G

of Φ to a group homomorphism απ : G→ Aut(P ), such that:
(a) For every σ ∈ G, απ(σ) maps Aσ−1Γ onto AσΓ (see formula (11)).
(b) απ|Γ = IdP .

(ii) For any two (projective) unitary representations π, π′ of G as above, the
corresponding liftings απ, απ′ are cocycle conjugated.
(iii) Two (projective) unitary representations π and π′ of G, corresponding to
the same 2-cocycle ε, are unitarily equivalent if and only if the corresponding
liftings απ, απ′ are conjugated by an automorphism in Int(P ).

The above statement proves that if such a representation π exists, then
the canonical obstruction ([7], [17], [10]) in H2(G,U(P )), associated to the
homomorphism Φ into Out(P ), vanishes.

Let G be the locally compact, totally disconnected group obtained as
the Schlichting completion ([35]) of G with respect to the subgroups in S.
Consider the (skewed, by the 2-cocycle ε, determined by π) crossed product
von Neumann algebra

(18) M = L(Goε L
∞(G, µ)).

Using the setting in Definition 2, let

(19) M0 = L(G0 oε L
∞(G, µ)).

Since the center Z0 of G0 acts trivially on L∞(G, µ) it follows that

(20) M = pχM0 ⊆ B(`2
χ(G))⊗B(L2(G, µ)).
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When no confusion is possible we will simply write the skewed crossed
product as

M = L(Go L∞(G, µ)).

Let Gop be the group G with opposite multiplication. We let G × Gop

act on K by partial isomorphism, by left and right multiplication. Thus the
domain of (σ, σ−1) ∈ G×Gop is Kσ−1 . We also consider the 2-cocycle ε× ε
on G×Gop.

Definition 5. Consider the skewed, groupoid crossed product von Neu-
mann algebra

(21) B∞ = L((G×Gop) oε×ε L
∞(K,µ)).

We also consider the crossed product von Neumann algebra

(22) B0
∞ = L((G0 ×Gop

0 ) oε×ε L
∞(K,µ)).

As above, the center Z×Z acts trivially on L∞(K,µ)), and hence, identifying
the projection corresponding to the character χ× χ with

pχ ⊗ pχ ∈ C∗red(G0)⊗ C∗red(Gop
0 ),

we obtain that

(23) B∞ = (pχ ⊗ pχ)B0
∞.

In the rest of the paper, when no confusion is possible, the skewed von
Neumann algebra crossed product defining B∞ will simply be denoted by
L((G×Gop) o L∞(K,µ)).

Let β : G → Aut(M) be the canonical homomorphism of Gop into the
automorphism group ofM, which acts by leaving L(G) invariant and acts by
composition with right translation on L∞(G, µ).

To prove Theorem 4 we show that unitary representations π as in the
introduction are in one-to-one correspondence with tensor product splittings
of the canonical right action β = (βg)g∈G. The case Dπ 6= 1 is outlined in
Section 7.

This proves that the homomorphisms α as above are tensor product fac-
tors of the homomorphism β. This is contained in the following theorem
and its corollary, which give equivalent descriptions for representations π as
above. Then Gop acts canonically onM, leaving L(G) invariant and acting
by left multiplication on the infinite measure space G.
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To state the next result, which will be proved in Sections 2 and 5, we
introduce the (algebraic) operator system

(24) SO = SO(Γ, G) = C(G/Γ) ⊗
C(Γ\G/Γ)

C(Γ \G).

We are not considering any norm on SO, but rather view it as a vector space
with internal operations.

Theorem 6. The following statements are equivalent:
(i) There exists a (projective) unitary representation π : G → U(Hπ) such
that π|Γ is unitarily equivalent to the left regular representation of Γ.
(ii) There exists a representation t : SO → L(G) of the (algebraic) operator
system SO, verifying the identities in the formulae (31), (32), (33).
(iii) There exists a (projective, with 2-cocycle ε) unitary representation u of
the group Gop into B∞ = L((G×Gop) o L∞(K,µ)), of the form

(25) u(σ) = χK(XΓσΓ ⊗ σ−1)χK , σ ∈ G,
where, for each double coset ΓσΓ, σ ∈ G, the element XΓσΓ is a selfadjoint
element in L(G) ∩ l2(ΓσΓ).
(iv) There exists a matrix unit (vΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G ⊆M such that

(a) vΓσ,Γσ = χΓσ ∈ L∞(G, µ), σ ∈ G,
(b) βg(vΓσ1,Γσ2) = vΓσ1g,Γσ2g, g ∈ Gop,Γσ1,Γσ2 ∈ Γ\G.

Part (iii) in the above theorem is an abstract C∗-algebraic point of view
for the representation π. A unitary representation as in part (iii) may be con-
structed directly also in the caseDπ 6= 1 (see Theorem 35, Section 7). There is
a one-to-one correspondence between the constructions introduced in points
(i)-(iv) in the above theorem, which is made explicit in the proof.

The homomorphism α = απ acts on the corner χKMχK of the algebra
M introduced in formula (18).

We denote by ρΓ\G the right quasi- regular representation of G into the
unitary group associated with the Hilbert space `2(Γ\G). Then Ad ρΓ\G is a
homomorphism from G into the inner automorphism group of B(`2(Γ\G)).

The following corollary will be proved in Section 2.

Corollary 7. We assume that the equivalent conditions (i)-(iv) in the
statement of Theorem 6 hold true. Recall that χKMχK is isomorphic to
P . The Gop-equivariant matrix unit constructed in part (iv) of the preceding
statement, yields a homomorphism

Gop 3 g → αg ∈ Aut(χKMχK).

Then:
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(i) The algebraM splits as

(26) M∼= χKMχK ⊗B(l2(Γ \G)).

(ii) The homomorphism (βg)g∈Gop into the automorphism group ofM, splits
in the tensor product form

(27) αg ⊗ Ad ρΓ\G(g), g ∈ Gop.

It may be easily observed that both homomorphisms α and β extend to
a representation of G. Indeed the C∗-algebra associated to G is generated by
the elements g ∈ G and by the characteristic functions of the form χKσ , σ ∈
G. To extend α, to such a characteristic function we make correspond the
(renormalized) conditional expectation onto AσΓ = {π(Γσ)}′.

The following result, which will be proved in Section 3, summarizes
the relation of the above construction with the Hecke operators acting on the
Hilbert space of Γ-invariant vectors for the representation π ⊗ π ∼= Ad π.
Consider the canonical von Neumann conditional expectation (see e.g. [32])

E
L(ΓoL∞(K,µ))
L(Γ) ( · ),

defined on P = L(Γ o L∞(K,µ)), with values onto L(Γ).

Theorem 8. Assume that the four equivalent properties in the above the-
orem hold true. Consider the ∗-algebra representation for the Hecke algebra
H0 constructed in [26], acting on the Hilbert space of Γ-invariant vectors for
the unitary representation π ⊗ π ∼= Ad(π).

Then the above ∗-algebra representation of the algebra H0 is unitarily
equivalent to the representation of the Hecke algebra obtained by using the
completely positive maps ΨΓσΓ on L(Γ), defined by the formula

(28) ΨΓσΓ(x) = E
L(ΓoL∞(K,µ))
L(Γ) (αg(x)), g ∈ ΓσΓ, x ∈ L(Γ).

In particular, the statement of the Ramanujan-Petersson conjectures for
the Hecke algebra representation into the Hilbert space of Γ-invariant vectors
for the representation π ⊗ π ∼= Ad π, is equivalent to the weak containment
of the unitary representation of G induced by α on L2(P ) 	 C1, into the
restriction toG of the left regular representation of the Schlichting completion
G of G (see e. g. [19]).

Assume that π belongs to the discrete series of PSL2(R), We consider
the restriction π|PGL2(Z[1/p]), where p a prime number. Then, by [26], the
Hecke operators associated to this representation, defined as above, are uni-
tarily equivalent to the Hecke operators acting on Maass forms.
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It is also possible to obtain a ”coordinate free” version of the above state-
ment. In this formulation we substitute the homomorphism α by a canonical
homomorphism. The drawback is that the type II1 factor on which it acts is
defined only up to an isomorphism.

Recall that M is the reduced (skewed) crossed product von Neumann
algebra L(GoL∞(G, µ)), with semifinite trace T induced by the G-invariant
measure µ on G. Recall that the homomorphism β : Gop → Aut(M), where
each automorphism βg acts by right translation by g on L∞(G, µ), and acts
identically on L(G), for g ∈ G.

We also consider the algebra D ⊆ L∞(G, µ) ⊆ M consisting of left
K-invariant functions in L∞(G, µ). Obviously D ∼= `∞(Γ\G). We have (see
Section 3 for the proof):

Corollary 9. Assume that the equivalent conditions introduced above
hold true. Then:
(i) There exist a unitary representation θ : G → U(M) with the following
properties:

(a) The representation θ is unitarily equivalent to the right quasi-regular
representation ρΓ\G of G.

(b) For all g, h ∈ G we have Ad(θg)|D = βg|D and βg(θh) = θ(ghg−1).
(ii) Let Θ ⊆M be the type I∞ factor generated by the image of the represen-
tation θ. Let A = Θ′ ⊆ D′. Obviously L(Γ) ⊆ A. Then A is a type II1 factor
isomorphic to L(Γ oK) with unique trace τ induced by µ.
(iii) The homomorphism (βg)g∈G invariates Θ and hence it invariates A. The
homomorphism (βg|A)g∈G of Gop into Aut(A) is unitarily equivalent to the
homomorphism α introduced in Corollary 7. It extends obviously to G.

In particular, the Hecke algebra representation introduced in the previ-
ous theorem is unitarily equivalent to the representation of the Hecke algebra
obtained by using the completely positive maps defined by the formula

Ψ0
[ΓσΓ](x) = EAL(Γ)(βσ(x)), x ∈ A, σ ∈ G.

(iv) The classification of the unitary representations θ as in (i) is determined
by the cohomology group H1

β|A(G,U(A)).

Thus, the unitary representation of G (extending to G) determining the
Hecke operators acting on the Γ-invariant vectors for the representation π⊗π,
is an operator algebra object. The procedure to construct this operator alge-
bra object is as follows. Consider the homomorphism β : Gop → Aut(M)
described above, acting by right translation on G and trivially on L(G). There
exists a type I∞ factor Θ ⊆ M such that βg|Θ is unitarily equivalent to the
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homomorphism AdρΓ\G of G into B(`2(Γ\G)), induced by the right quasi-
regular representation and such that both βg and AdρΓ\G act identically on the
diagonal algebra D = `∞(Γ\G), and AdρΓ\G(g−1) ◦ βg is a homomorphism
for every g ∈ G.

Then every βg invariatesA = Θ′ and the homomorphism (βg|A)g∈G into
Aut(A) is conjugated to the homomorphism α into Aut(L(Γ oK)).

The goal for Ramanujan-Petersson problem is to prove that the unitary
representation of G, induced by β|A on the orthogonal complement of the
scalars in L2(A, τ), is weakly contained in the restriction toG of the left regu-
lar representation of G. This property obviously holds true for the unrestricted
unitary representation induced by the homomorphism β on L2(M, T ). The
reason why this property doesn’t straightforwardly pass to a subalgebra is the
fact that the two traces defining the Hilbert spaces L2(A, τ) and L2(M, T )
are different: one is finite and the other one is semifinite.

2. CONSTRUCTION OF THE Gop-EQUIVARIANT SPLITTING
M∼= P ⊗B(l2(Γ\G)). PROOF OF THEOREM 6.

This section is mainly concerned with proving part of Theorem 6 and
Corollary 7. We use the matrix coefficients of the (projective) unitary repre-
sentation π of G, which has the property that π|Γ is unitary equivalent to the
left regular representation of Γ.

Let ρ Γ\G be the right quasi-regular representation of Gop on l2(Γ\G).
We construct directly a Gop-equivariant embedding of B(l2(Γ\G)) intoM.
Here B(l2(Γ\G)) is acted by Adρ Γ\G. We prove that this equivariant repre-
sentation of B(l2(Γ\G)) is splitting the algebraM Gop-equivariantly, in the
sense of tensor products.

We establish a correspondence between unitary representations π as above
and Gop-equivariant splittings of the form

(29) M∼= P ⊗B(l2(Γ\G)),

of the crossed product von Neumann algebra M. In this identification the
type II1 factor P , introduced in formula (5), is the corner algebra χKMχK of
M with unit χK , the characteristic function of K.

The homomorphism α is then identified, in this setting, with the action
on the tensor product factor component χKMχK , in the representation from
formula (29), of the canonical embedding of the group Gop into the automor-
phism group of the algebraM∼= P ⊗B(l2(Γ\G)).
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We first recall the construction of the C∗-representation t of the Hecke
algebra of double cosets of Γ in G into L(G), introduced in [26] (see also
[28]). This representation was subsequently extended to arbitrary Murray-von
Neumann dimensions in [27]. The representation will be used in the construc-
tion of the Gop-equivariant matrix unit corresponding to the Gop-equivariant
embedding of B(l2(Γ\G)) intoM.

Let H0 = C(Γ \ G/Γ) be the Hecke algebra of double cosets (see e.g.
[5]). We let H0 act canonically on left and respectively right cosets, by left
and respectively right multiplication. Let H ⊆ B(l2(Γ\G)) be the uniform
norm closure ofH0. In the terminology introduced in [5], the C∗-algebraH is
the reduced Hecke von Neumann algebra associated to the inclusion Γ ⊆ G.

In [26] (see also [28] for another exposition of the construction, and see
Section 7 for another proof of the extension of this construction to arbitrary
Dπ) we constructed, using the matrix coefficients of the representation π, a
representation t : H → L(G) such that tΓσΓ = t([ΓσΓ]) ∈ l2(ΓσΓ) ∩ L(G).

When the 2-cocycle ε is trivial, the precise formula for the representation
t is as follows: let 1 be a trace vector for Γ in the Hilbert space Hπ

∼= `2(Γ)
of the representation π. For a subset A of G, define

(30) tA = t(A) =
∑
θ∈A

〈π(θ)1, 1〉θ.

Then
[ΓσΓ]→ t([ΓσΓ]), σ ∈ G,

extends to a representation ofH into L(G).
We will prove this statement in the case when ε is trivial. When the rep-

resentation π is projective ([26], Remark 37 and [28], Section 10), one has to
replace the Hilbert space Hπ by the Hilbert space `2

χ introduced in Definition
1, and to replace the sum in formula (30) by a sum over the preimage of the
coset ΓσΓ in G0 averaged by the character χ (we are using here the notation
from the above mentioned definition).

We proved in [26] that formula (30) implies that the representation t of
H0 extends to a representation of the larger operator system SO defined in
formula (24). This system is canonically identified to the vector space

C{σ1Γσ2 | σ1, σ2 ∈ G}.

In [26] (see also [28]) we proved that the representation t of H0 extends to a
representation t : SO → L(G). This representation is constructed using the
matrix coefficients of the representation π as above in formula (30).
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Let e be the neutral element of G, viewed as the identity element of the
algebra L(G). We say that t is a representation of the operator system SO if
the following sets of identities hold true:

(31) t(Γ) = e.

(32) t(σΓ)∗ = t(Γσ−1), σ ∈ G.

(33) t(σ1Γ)t(Γσ2) = t(σ1Γσ2), σ1, σ2 ∈ G.

We proved in [26] (see also [27], [29]) that there exists a one-to-one
correspondence between unitary representations π and representations t of
the operator system SO with the above properties.

We identify the cosets of K with the cosets of Γ, by taking the closure in
the profinite completion. Let l∞(Γ\G), l∞(G/Γ) be the algebras of bounded
left, and respectively right Γ-invariant functions, that is the algebras gener-
ated by the characteristic functions of left (respectively right) cosets of G by
Γ. These algebras are identified with the subalgebras of L∞(K\G, µ) and
L∞(G/K, µ) of left, and respectively right, K-invariant bounded functions
on G. We denote by l2(Γ\G), l2(G/Γ) the corresponding Hilbert spaces, and
by ρΓ/G, λG/Γ, the corresponding quasi-regular unitary representations of G.

For notational simplicity, when no confusion is possible, we denote in
the sequel the characteristic function χσK of the coset σK = σΓ ⊆ G by χσΓ,
for σ ∈ G.

In Theorem 6 we prove that an alternative method to obtain representa-
tions t as above, is to the use of followingGop-equivariant matrix unit embed-
ded in the crossed product algebraM:

(vΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G = (χΓσ1t
Γσ1σ

−1
2 ΓχΓσ2)Γσ1,Γσ2∈Γ\G.

The Gop-equivariance of the matrix unit is assumed to hold true with respect
to the adjoint of the right unitary representation ρΓ\G of Gop into l2(Γ \G).

The existence of such a matrix unit implies that the von Neumann alge-
bra M is Gop-equivariantly isomorphic to χKMχK ⊗ B(l2(Γ\G)). It also
implies the isomorphism

(34) χKMχK = χK(L(Go L∞(G, µ)))χK ∼= L(Γ o L∞(K,µ)) = P.

This is a consequence of the fact that the projections in the family χgK , where
gΓ runs over a family of coset representatives of Γ in G, are a partition of
unity. The unit of the algebra χKMχK is identified with χK = χΓ.
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The Gop-equivariant isomorphism

L(Go L∞(G, µ)) ∼= χKMχK ⊗B(l2(Γ\G))

holds true with respect to a tensor product representation of Gop into the au-
tomorphism group of χKMχK ⊗B(l2(Γ\G)), of the form

αg ⊗ AdρΓ\G(g), g ∈ Gop.

Recall that Γ ⊆ G is a pair consisting of a discrete group G and an
almost normal subgroup Γ, both assumed to be i.c.c. Let S be the downward
directed class of subgroups of Γ generated by Γσ = σΓσ−1 ∩ Γ, σ ∈ G.
Assume that S separates the points of Γ. Let (K,µ) be the corresponding
profinite completion of Γ. Let (G, µ) be the Schlichting extension of G, as
introduced in Section 2. Then µ is the Haar measure on G, normalized by the
condition that µ(K) = 1.

Recall that we are assuming that for all σ ∈ G the subgroups Γσ, Γσ−1

have equal indices. In particular, the Haar measure on G is bivariant. Also,
we assume that G acts ergodicaly on G, and that all groups in S are i.c.c.
Consequently, the reduced von Neumann algebra (skewed) crossed product
factors

M = L(Go L∞(G, µ)) and P = L(Γ o L∞(K,µ))

are type II∞ (respectively II1) factors. Recall that if the unitary representation
π is projective with cocycle ε, then in the definitions ofM and P we take the
ε-skewed crossed product von Neumann algebras.

We consider the following outer action of Gop onM introduced in Sec-
tion 1.

Definition 10. Let β : G → Aut(M) be the canonical homomorphism
of Gop into the automorphism group ofM, acting by leaving L(G) invariant
and by composition with right translation on L∞(G, µ).

Remark 11. Consider the canonical action by left and right multiplica-
tion ofG×Gop on L∞(G, µ). To this action corresponds the reduced (skewed)
crossed product von Neumann algebra

L((G×Gop) oε×ε L
∞(G, µ)).

As mentioned in the introduction, we use the notation

L((G×Gop) o L∞(G, µ))

for the above (skewed) crossed product when no confusion is possible.
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The above action reduces to a canonical groupoid action of G×Gop on
K. This is obtained by letting, for g1, g2 ∈ G, the domain of the transforma-
tion induced by (g1, g2) ∈ G×Gop, be

{k ∈ K|g1kg
−1
2 ∈ K}.

Obviously, G×Gop acts by measure preserving transformations on K. Let

B∞ = L((G×Gop) o L∞(K,µ))

be the corresponding (skewed) reduced von Neumann groupoid crossed prod-
uct algebra. It is then obvious that

(35) χK
[
L((G×Gop) o L∞(G, µ))

]
χK ∼=

[
L((G×Gop) o L∞(K,µ))

]
.

Theorem 6 shows that the data from the representation π is encoded in
a (projective) unitary representation of a special form of G, into the unitary
group of the algebra B∞. Equivalently, this corresponds to a special Gop-
equivariant splitting of the algebraM.

Proof of Theorem 6. The matrix unit defined in point (iv) in the statement of
the theorem generates a copy of the type I∞ algebra B(l2(Γ \ G)) which is a
subalgebra ofM. The diagonal algebra l∞(Γ \G) ⊆ B(l2(Γ \G)) is a fixed
algebra, independent of the choice of the matrix unit.

We consider the algebra L∞(K \G, µ). This algebra is the weak closure
of the linear span of cosets of the form χΓσ with σ ∈ G. Then we have the
isomorphism:

(36) l∞(Γ \G) ∼= L∞(K \ G, µ) ⊆ L(Go L∞(G, µ)).

The left coset Kσ is Γσ, where the closure is taken in G for σ ∈ G. To
simplify notation, recall that when no confusion is possible, we are denoting
the characteristic function χσK of the coset σK = σΓ by χσΓ for σ ∈ G.

The requirement in part (iv) is therefore to find aGop-equivariant copy of
B(l2(Γ \ G)) inside L(Go L∞(G, µ)), with the prescribed diagonal algebra
introduced in formula (36).

The implication (i)⇒ (ii) was proved in [26] (see also [27], [28]).
The converse implication (ii) ⇒ (i) is the content of Proposition 58 in

[26]. For convenience of the reader, we recall this proof here in the case where
the representation is unitary (for the projective case see [26],[28]).

For a subset A of G we use the notation

tA =
∑
θ∈A

t(θ)θ.
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When the 2-cocycle ε is non-trivial, the above formula is replaced by a finite
average over the group Z as in the first formula of Section 10 in [28] (see also
Remark 37 in [26]). Let σ ∈ G and let (si) be set of representatives for Γσ−1

in Γ. We define

π(σ)si = [tΓσsi(σsi)
−1]∗, i = 1, 2, . . . , [Γ : Γσ−1 ].

The element on the right hand side of the above equation belongs to L(Γ)
([26], [28], [29]).

The fact that π(σ) is a representation follows form the identity

t(θ1θ2) =
∑
γ∈Γ

t(θ1γ)t(γ−1θ2), θ1, θ2 ∈ G.

The above identity is in turn a consequence of the identity

tσ1ΓtΓσ2 = tσ1Γσ2 .

To prove (iv)⇒ (ii) we proceed as follows. For σ in G, let

(37) XΓσΓ =
∑

Γσ1σ
−1
2 Γ=ΓσΓ

vΓσ1,Γσ2 ,

with sum over all cosets Γσ1,Γσ2 ∈ Γ \G such that Γσ1σ
−1
2 Γ = [ΓσΓ].

We recall that the Gop-equivariance of the matrix unit

(vΓσ1,Γσ2)Γσ1,Γσ2

means that
βg(vΓσ1,Γσ2) = vΓσ1g,Γσ2g, g ∈ G.

Hence
βg(X

ΓσΓ) = XΓσΓ, g ∈ Gop, σ ∈ G.
It follows from formula (37) that XΓσΓ belongs to the algebraMG of fixed
points for the action of G onM. Since we assumed that Gop acts ergodicaly
on G, it follows that

MG = L(G),

and hence
XΓσΓ ∈ L(G), σ ∈ G.

Obviously, since vΓσ,Γσ is equal to χΓσ, it follows that the partial isome-
try vΓσ1,Γσ2 will map the space of the projection χΓσ2 onto χΓσ1 . Hence, using
formula (37) defining XΓσΓ, it follows that if Γσ1,Γσ2 are so that

[Γσ1σ
−1
2 Γ] = [ΓσΓ],
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then
χΓσ1X

ΓσΓχΓσ2 = vΓσ1,Γσ2 , σ, σ1, σ2 ∈ G.
From formula (37) we also obtain that:

χΓαX
ΓσΓχΓβ = δ[Γαβ−1Γ],[ΓσΓ]vΓα,Γβ, α, β, σ ∈ G.

Here, we use the symbol δ to denote the Kronecker symbol.
Let θ be any element in G. Then the property that

χΓσ1θχΓσ2 6= 0,

is equivalent to the existence of γ1, γ2 ∈ Γ such that

θγ2σ2 = γ1σ1.

This holds true if and only if θ ∈ Γσ1σ
−1
2 Γ. Consequently

XΓσΓ ∈ L(G) ∩ l2(ΓσΓ).

We analyze the product of two elements XΓσ1Γ and XΓσ2Γ as in formula
(37), corresponding to two double cosets. The product corresponds to a pair-
ing of cosets in the product of the double cosets. Because (vΓσ1,Γσ2)Γσ1,Γσ2 is
a matrix unit, the same pairing of cosets shows up in the product formula for
the corresponding double cosets [Γσ1Γ] and [Γσ2Γ] in the Hecke algebraH0.

This proves that the operators XΓσΓ, σ ∈ G, which are a priori affiliated
to L(G), have also the property that the correspondence

(38) [ΓσΓ]→ XΓσΓ, σ ∈ G
extends to a ∗-algebra representation ofH0 = C(Γ \G/Γ). Obviously, this is
trace-preserving with respect to the traces τ on L(G) and the canonical trace
〈·[Γ], [Γ]〉 on H0. Consequently, the ∗-representation in formula (38) extends
to a C∗-representation of the reduced C∗-Hecke algebra

H = C∗red(Γ \G/Γ) = H0
||·|| ⊆ B(`2(Γ\G)).

Hence the elements
tΓσΓ = XΓσΓ, σ ∈ G

are bounded.
For all σ ∈ G, we denote the coefficient of θ ∈ ΓσΓ in tΓσΓ ∈ L(G) by

t(θ). Thus
tΓσΓ =

∑
θ∈ΓσΓ

t(θ)θ ∈ L(G), σ ∈ G.

The property that

χΓαt
Γαβ−1ΓχΓβt

Γβγ−1ΓχΓγ = χΓαt
Γαγ−1ΓχΓα
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implies, when moving in the left side member the characteristic function χΓβ

to the right (using the multiplication formula (80, Section 7)), a family of
identities of the form ∑

tAitBi =
∑

tCj .

These family of identities, when summing over unions of cosets of subgroups
in S whose unions are Γ-cosets, produces exactly the family of identities

tσ1ΓtΓσ2 = tσ1Γσ2 , σ1, σ2 ∈ G.
These identities are exactly the sufficient conditions that imply, as recalled
in the introductory part of this section (see [26]), that the map [σΓ] → tσΓ,
σ ∈ G, extends to a representation of the operator system SO, as in property
(ii) in the statement.

To prove (iii)⇒ (iv), we note that

(39) u(σ) = (vΓ,Γσ⊗ 1) · (1⊗σ−1) ∈ L((G×Gop)oL∞(G, µ)), σ ∈ G.
Hence, using formula (25) it follows that

(40) vΓ,Γσ = χΓ(tΓσΓ)χΓσ−1

is an isometry in the von Neumann algebraM, with initial space χΓ and range
the space of the projection χΓσ−1 .

We define

(41) vΓσ1,Γσ2 = βσ1(vΓ,Γσ2σ
−1
1

), Γσ2 ∈ Γ \G.

By Gop-equivariance and because of formula (40), the expression in (41) is
equal to

χΓσ1t
Γσ1σ

−1
2 ΓχΓσ2 .

Again, because of the Gop-equivariance, this is a partial isometry from χΓσ2

onto χΓσ1 .
The property that the family of unitaries (u(σ))σ∈G is a representation

of G translates into the fact that the family

(vΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G,

defined in formula (41), is a matrix unit. Since Gop acts on M by leaving
L(G) invariant, and since it acts through by the Koopmann unitary represen-
tation by right translations onL∞(G, µ), it follows that the above above matrix
unit is Gop-equivariant.

The proof of the implication (i) ⇒ (iii) is postponed to Section 5. A
direct, alternative proof, valid also for Dπ 6= 1, will be given in Theorem 35
in Section 7. �
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Proof of Corollary 7. Recall that

P = χKMχK = χΓ(L(Go L∞(G, µ)))χΓ = L(Γ o L∞(K,µ)).

Here the unit of the above algebra is identified with the characteristic function
χΓ. The construction of the Gop-equivariant splitting (29) is straightforward,
once a Gop-equivariant matrix unit is given.

For p ∈ P , we define

(42) αg(p) = vΓ,Γgβg(p)vΓg,Γ.

This is consistent with the fact that βg(p) belongs to χΓgMχΓg, for all p ∈ P
and g ∈ G. �

Remark 12. The relation between the various constructions in the pre-
ceding statement is summarized as follows. As above, let π be a (projective)
unitary representation of G. Consider the representation t of the operator sys-
tem SO introduced in formula (24). Then
(i). The formula for the (projective) unitary representation u of G into B∞ is

u(σ) = χK(tΓσΓ ⊗ σ−1)χK , σ ∈ G.

(ii). The formula that gives back the representation π from t (or u) is

π(σ)(x) = E
L(G)
L(Γ) (tΓσΓxσ−1), x ∈ l2(Γ), σ ∈ G.

(iii). In the identification χKMχK ∼= L(ΓoL∞(K,µ)), the homomorphism
α coincides with the homomorphisms α constructed in the introduction, using
the simultaneous infinite Jones basic construction.
(iv) The restriction α|Γ acts as the identity operator on the subalgebra

L(Γ) ⊆ L(Γ o L∞(K,µ)).

Proof. The only non-obvious property is contained in (iv). We use the nota-
tion from the proof of the previous statement. Since Gop acts trivially on G,
it follows that βg acts trivially on L(Γ) for g ∈ G. It follows that αγ acts
trivially on L(Γ) for γ in Γ. Indeed, in this case, for every

x ∈ L(Γ) ⊆ χΓL(Γ o L∞(K,µ))χΓ,

and for every γ ∈ Γop, we have that

αγ(x) = vΓ,Γβγ(x)vΓ,Γ = x,

showing that α|Γ acts identically on L(Γ). �
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In the proof of Theorem 6 we showed that there exists a correspondence
between representations π of G with the properties from (i) of the preced-
ing theorem and unitary representations u of G, having an expression as in
formula (39), with values in the subgroup of elements of U(B∞) that are nor-
malize A∞. We state this separately in the following proposition.

Proposition 13. We use the notation and the equivalent hypothesis from
Theorem 6. Recall that

A∞ = L(Γ o L∞(K,µ)), B∞ = L((G×Gop) o L∞(K,µ)).

We embed G into the first component of G×Gop, and canonically extend this
embedding to an embedding of A∞ into B∞. Let u be the (projective) unitary
representation of G into U(B∞), constructed in formula (39). Then
(i) For every σ ∈ G the unitary u(σ) normalizes A∞.
(ii) The homomorphism α associated to π, constructed in Corollary 7 and
mapping G into Aut(P = A∞), is computed by the formula:

(43) ασ = Ad u(σ)|A∞ , σ ∈ G.
(iii) The homomorphism α extends to a homomorphism of G into Aut(A∞).

Proof. We use the notation from the previous theorem and its proof. We recall
that the formula (see formulae (65), (39)) for u(σ) is

u(σ) = χΓ(tΓσΓ ⊗ 1)(1⊗ σ−1)χΓ

= χΓ(tΓσΓ ⊗ 1)χΓσ(1⊗ σ−1) = (vΓ,Γσ ⊗ 1)(1⊗ σ−1), σ ∈ G.
Thus, for x = χΓxχΓ ∈ L(Γ o L∞(K,µ)), which is identified to

L(Γ o L∞(K,µ))⊗ 1,

we have that u(g)xu(g)∗ is equal, with the above identification, to

u(g)(x⊗1)u(g)∗ = (vΓ,Γσ⊗1)χΓσ(1⊗σ−1)[(χΓxχΓ)⊗1](1⊗σ)(vΓσ,Γ⊗1).

This is thus equal to
(vΓ,Γσβσ(x)vΓσ,Γ)⊗ 1,

and so the unitary u(σ) ∈ χΓ(L((G×Gop)oL∞(G)))χΓ normalizes P (which
is identified to P ⊗ 1) and

ασ(x) = Adu(σ)(x), x ∈ P, σ ∈ G.
This completes the proof of properties (i) and (ii) in the statement.

To prove (iii) we proceed as follows. For σ ∈ G, let χKσ be the charac-
teristic function of the subgroup Kσ of K introduced in formula (10). Then
the convolutor in C∗(G) by the function µ(Kσ)−1χKσ is a projection, denoted
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by pσ. Let AΓσ be the subfactor introduced in formula (11). To extend α to a
homomorphism of the locally compact, totally disconnected group G, one rep-
resents the projection pσ in C∗(G) by the conditional expectation EA∞AΓσ

. �

3. THE OPERATOR ALGEBRA REPRESENTATION OF THE HECKE ALGEBRA
ASSOCIATED TO THE REPRESENTATION π ⊗ π. PROOF OF THEOREM 8

In this section we describe the relation between the construction in the
previous theorem and the construction of Hecke operators in [26].

First we prove that the Hecke operators associated to the unitary repre-
sentation of G,

π ⊗ π ∼= Ad π,

constructed in [26], where π is as in part (i) of Theorem 6, may be constructed
directly using a splitting of the ergodic action of the group G×Gop on G as in
part (iv) in Theorem 6, formulae (26) and (27). Let α be the homomorphism
ofG into the automorphism group of P = L(ΓoK), constructed in Corollary
7.

Proof of Theorem 8. Note that the definition of ΨΓσΓ is independent of the
choice of σ in ΓσΓ, since by property (iv) in Remark 12 the homomorphism
α|Γ acts as the identity on L(Γ).

We also note that because L(Γ) is the space of Γ-invariant vectors in
P = L(ΓoL∞(K,µ)) for the homomorphism α, it follows that formula (28)
defines indeed a representation of the Hecke algebra.

Recall that by formula (42) in the proof of Corollary 7 we have

αg(p) = vΓ,Γgβg(p)vΓg,Γ, p ∈ P.
Because of formula (43), we obtain that for all σ ∈ G and

x ∈ L(Γ) ⊆ χΓL(Γ o L∞(K,µ))χΓ,

we have
ασ(x) = χΓt

ΓσΓχΓσxχΓσt
ΓσΓχΓ.

Note that the last expression depends only on the coset Γσ ∈ Γ \G.
In particular, for every

x ∈ L(Γ) = χΓL(Γ)χΓ ⊆ χΓL(Γ o L∞(K,µ))χΓ = L(Γ o L∞(K,µ)),

we obtain that

(44) E
L(ΓoL∞(K,µ))
L(Γ) (ασ(x)) =

∑
i

χΓt
ΓσΓχΓσsixχΓσsit

ΓσΓχΓ.
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Here, the families (si), (ti) are the Pimsner-Popa bases used in the proof of
(i)⇒ (iii) in Theorem 6 from Section 5.

Then, the right hand term in the equation (44) is

χΓt
ΓσΓxtΓσΓχΓ.

This expression is further equal to the value at x of the completely positive
map constructed in [26], in correspondence with a representation π as in state-
ment (i) of the previous theorem. �

Consequently, the problem of determining the continuity of the repre-
sentation Ψ of the Hecke algebra with respect to the norm on the C∗-reduced
Hecke algebra ([5]), which is the essence of the Ramanujan-Petersson prob-
lem ([26]), is reduced to the analysis of the unitary representation induced by
α on the Hilbert space L2(P, τ)	 C1.

We recall that in Proposition 13 we introduced the following notation:

A∞ = L(Γ o L∞(K,µ)), B∞ = L((G×Gop) o L∞(K,µ)).

We use the trivial embedding G× {e} ⊆ G×Gop. We consider the reduced
crossed product von Neumann algebras

C∞ = L(Go L∞(G, µ)) ⊆ D∞ = L((G×Gop) o L∞(G, µ)).

Note that

(45) A∞ = χKC∞χK ; B∞ = χKD∞χK .
We also consider the algebra D ⊆ L∞(G, µ) ⊆ C∞ consisting of left K-
invariant functions in L∞(G, µ). Obviously D ∼= `∞(Γ\G).

By ρΓ\G we denote the right regular representation of G into the unitary
group associated with the Hilbert space `2(Γ\G). With ρ = ρG we denote
the right regular representation of G. For g ∈ G, we identify the unitary
element ρg with the unitary, left convolution operator in L(Gop) ⊆ D∞ , that
corresponds to g. Then

(46) βg = Ad(ρg), g ∈ G,
defines an homomorphism from Gop into Aut(C∞).

It is obvious that every βg acts on C∞ by right translation by g onL∞(G, µ).
Each automorphism βg acts identically on L(G).

We introduce below a different equivalent formulation to the four equiv-
alent statements in Theorem 6. This is used to describe the homomorphism α
introduced in Corollary 7, in a form that is independent of the choices made
in the tensor product splitting defining α.
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Lemma 14. The equivalent statements in Theorem 6 are further equiv-
alent to the following statement:
(v) There exists a unitary representation θ : G → U(C∞) with the following
properties:

(v.1) The unitary representation θ of G is unitarily equivalent to the rep-
resentation ρΓ\G.

(v.2) For all g in G, the unitary element θ(g−1)ρ(g) belongs to the rela-
tive commutant D′ ∩ C∞. Equivalently,

Adθg|D = Adρg|D, g ∈ G.
(v.3) The unitaries

Wg = θ(g−1)ρ(g), g ∈ G,
define a unitary representation of G into the type II1 von Neumann algebra

P0 = {θ(G)}′ ∼= A∞.

Proof. We use the notation from the statement and proof of Theorem 6. We
first prove that the equivalent conditions (i)-(iv) imply condition (v). Consider
the selfadjoint elements constructed in formula (37). Because these elements
generate a Gop-equivariant matrix unit, it follows that the formula

(47) θg =
∑

Γσ∈Γ\G

χKσgX
ΓσΓχKσ, g ∈ G,

defines a unitary representation of G into C∞ that is unitary equivalent to the
left regular quasi-representation ρΓ\G.

For g ∈ G, both Adρg and Ad θg normalize D and induce the same
action on the algebra D.

It remains to prove property (v.3). Formula (47) implies that

(48) ρh(θg)ρh−1 = θ(hgh−1), h, g ∈ G.
The above formula obviously implies that

θ(h−1)ρh ∈ θ(G)′, h ∈ G,
and also that that h → θ(h−1)ρh is a unitary representation of G. This com-
pletes the proof of the direct implication.

To prove the converse, we note that the unitary representation in part (iii)
of Theorem 6 may be defined by the formula

u(g) = χKWgχK , g ∈ G.
�
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We summarize the results from the previous lemma in the context of
Corollary 7.

Lemma 15. With the above introduced notation we define

β̃g = Ad(Wg)|C∞ , g ∈ G.

Then, we have the following G-invariant isomorphism:

C∞ ∼= A∞ ⊗B(`2(Γ\G)).

Using the above identification and the homomorphism α : G → Aut(A∞)
introduced in Proposition 7, we obtain:

Ad(θg)βg = β̃g = αg ⊗ IdB(`2(Γ\G)).

We provide now a ”coordinate free” description of the homomorphism
α : G → Aut(A∞). This is important because, as also mentioned above,
the Ramanujan-Petersson problem for the action of the Hecke operators on Γ-
invariant vectors for the unitary representation π⊗π is equivalent to the weak
containment of the unitary representation of G induced by α on L2(A∞, τ)	
C1, in the restriction to G of the unitary left regular representation of the
Schlichting completion G of G.

Recall that the action of βg on C∞ is defined as follows. The automor-
phism βg acts by right translation by g on L∞(G, µ), and it acts identically on
L(G).

Proof of Corollary 9. Parts (i), (ii) follow immediately from Lemma 14 and
its proof (see formula (48)). Property (iii) follows from the representation
in Lemma 15. This is because the homomorphisms (βg|A)g∈G and α are the
same. The difference between the two cases is that in the case considered in
this statement we no longer perform a splitting procedure to find explicitly the
factor A. On the other hand, in the present context the factor

L(Γ) ∼= L(Γ× {e}) ⊆ C∞
is canonically embedded in the commutant algebra Θ′, which by definition
is equal to A. The formula in part (iii) is then a direct consequence of the
corresponding formula in Theorem 8.

To prove the uniqueness in part (iv), note that if θ1 is another represen-
tation as in (i), then necessarily there exists a unitary w ∈ D′ such that

θ1
g = wθgw

∗, g ∈ G.
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We write the second condition in (b) for the representation θ1. It follows that

βh(w)βh(θg)βh(w
∗) = wθhgh−1w∗, g, h ∈ G.

Hence
c(g) := w∗βh(w) ∈ Θ′ = A, g ∈ G.

Thus c is defining a cocycle in the cohomology group H1
β(G,U(A)). Its triv-

iality would imply that wAw∗ = A. �

Remark 16. Let π be a representation as in part (i) of Theorem 6. Since
π|Γ is unitarily equivalent to the left regular representation of Γ, we identify
the Hilbert space of the representation π with `2(Γ). We may also assume that
the representation t constructed in formula (30) has the property that t(ΓσΓ)
belongs to the full C∗-algebra C∗(G) for all σ in G. This is possible by
choosing a suitable cyclic trace vector in the formula defining t (see [26]).

Let C∗((G×Gop) o L∞(G, µ)) be the full crossed product C∗- algebra
and let C∗(G × Gop) o L∞(K,µ) be the full groupoid crossed product C∗-
algebra. Let Π be the obvious representation of C∗(G × Gop) o L∞(K,µ)
into B(`2(Γ)). Then:
(i) The formula for the representation u in part (iii) of Theorem 6 defines
a representation U of the group G, with values in the unitary group of the
C∗(G×Gop) o L∞(K,µ). The explicit formula for U is

(49) U(σ) = χK(tΓσΓ ⊗ σ−1)χK .

(ii) The correspondence Ψ defined by

(50) ΓσΓ→ χK(tΓσΓ ⊗ tΓσ−1Γ)χK , σ ∈ G,
extends by linearity to a unital ∗-representation of the Hecke algebra H0 into
C∗(G×Gop) o L∞(K,µ).
(iii) Composing the representations U ,Ψ with representation Π, one obtains
the representation π, and respectively the representation Ψ, of the Hecke al-
gebra into B(`2(Γ)) constructed in Theorem 8

Proof. The statements (i), (ii) follow from the results in Section 7. The last
statement is a direct consequence of the formula (28) and of Remark 12. �

4. THE ALGEBRAIZATION OF THE SPACE OF INTERTWINERS AND
JONES’S BASIC CONSTRUCTION FOR A PAIR OF ISOMORPHIC FACTORS

We first introduce an abstract setting that serves the purpose of describ-
ing the spaces of intertwiners between subalgebras of the form

π(Γ0)′, Γ0 ∈ S.
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Let σ ∈ G, and let (if the 2-cocycle ε is trivial)

θσ : Γσ−1 → Γσ,

be the group homomorphism implemented on Γσ−1 by the adjoint map σ ·σ−1

of the group element σ. We obviously have the intertwining property

π(σ)π(γ0) = π(θσ(γ0))π(σ), γ0 ∈ Γσ−1 .

If ε ∈ H2(2,T) is non-trivial we use the setting introduced in Definition 3.
To describe the space of all intertwiners with properties as above, we in-

troduce a construction similar to Jones’s basic construction. Instead of work-
ing with a single subfactor, we start with a pair of subfactors of equal index,
with a fixed isomorphism θ, mapping one subfactors onto the other one.

As in the case of Jones’s simultaneous construction for the infinite family
of subgroups Γ0 ∈ S, where the result was the inductive limit factor A∞ in
formula (9), we also perform an infinite simultaneous construction for the
pairs of subgroups.

The inductive limit for the space of von Neumann algebra intertwiners
between subgroups in S is the type II1 factor

(51) B∞ = χK(L((G×Gop) o L∞(G, µ)))χK .

Then B∞ containsA∞. By construction, the II1 factor B∞ encodes the algebra
structure of the spaces of intertwiners, corresponding to all subgroups in S.

In the above correspondence between the space of intertwiners and the
algebra B∞, the (projective) unitary representation π then corresponds to a
(projective) unitary representation u of G into the unitary group of the nor-
malizer ofA∞ in B∞. We have already observed (see Proposition 13, formula
(43)) that

Adu(σ)[A∞] = A∞, σ ∈ G.
The homomorphism α is obtained as the restriction to A∞ of the adjoint rep-
resentation Ad u of G:

α(σ) = Adu(σ)|A∞ , σ ∈ G.

In the following lemma we present an abstract formalism which estab-
lishes a correspondence between intertwiners, such as π(σ), σ ∈ G, of the
algebras π(Γσ−1)′ and π(Γσ)′, with elements in the algebra associated to the
crossed product introduced in formula (51).

We make essential use of the abstract formalism of spaces of intertwiners
to see that the composition operation of two intertwiners corresponds to the
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product operation in the crossed product algebra B∞, introduced in formula
(51).

The above correspondence between the two product operations is used in
the proof of (i)⇒ (iii) in Theorem 6. It shows that the expression in formula
(64) defines a unitary representation of G. For an alternative verification, one
could also use Theorem 35 (i) in Section 7.

The following two statements are probably known to specialists in sub-
factor theory. As we did not find a reference, we state and prove them directly.

We perform a construction which is analogous with Jones’s construction
of the first step in the basic construction ([16]). Recall that in that case of a
single factor N ⊆M , the first term of the basic construction is the algebra

〈M, eN〉 = MeNM
op ∼= N ′ ⊆ B(L2(M, τ)).

Here we reproduce Jones’s basic construction for a pair of isomorphic subfac-
tors of equal index. For a pair of isomorphic subfactors N0, N1, we replace
the commutant algebra N ′ ∼= MeNM with the space of intertwiners. This
space also carries a natural Hilbert structure, which we describe below.

The following definition and lemma are also the subject of Appendix 1
in [26]. We reproduce the proofs from that paper in the actual context.

Definition 17. Let M be a II1 factor with trace τ . Let N0, N1 be a pair
of finite index subfactors of M , having the same index [M : N0] = [M : N1].
Assume we are given a fixed isomorphism θ : N0 → N1. Let eN0 , eN1 be the
corresponding Jones projections onto the subfactorsN0, N1. We introduce the
following constructions:
(i) The space of θ-intertwiners is defined by the formula:

Intθ(N0, N1) = {X ∈ B(L2(M, τ)) | Xn0 = θ(n0)X, n0 ∈ N0}.

(ii) Define Wθ : L2(N0, τ)→ L2(N1, τ) by

Wθ(n0) = θ(n0), n0 ∈ N0.

Viewed as an element of B(L2(M, τ)), Wθ is a partial isometry mapping the
projection eN0 onto the projection eN1 .

In analogy with the Hilbertian M -bimodules MeN0M and MeN1M ,
which are the Jones basic construction terms from the inclusions Ni ⊆ M ,
i = 0, 1, we construct a Hilbertian M -bimodule MWθM , corresponding to
the pair of isomorphic subfactors.
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Definition 18. The Hilbertian M -bimodule MWθM is obtained from
the free M -bimodule M × M , by taking the quotient corresponding to the
relations:
(i)

(52) Wθn0 = θ(n0)Wθ, n0 ∈ N0,

(ii)

(53) Wθ = WθeN0 = eN1Wθ.

(iii) The elements mWθm
′ ∈MWθM depend only on meN1 and eN0m

′.
(iv) The following formula defines a scalar product on MWθM .

(54) 〈mWθm
′, aWθa

′〉 = τ(a∗mθ(EN0(m′(a′)∗), m,m′, a, a′ ∈M.

In the previous definition, we have to justify the compatibility of the four
conditions that describe the subspace defining the quotient of the free module.
This is done in the following lemma:

Lemma 19. We use the notation from the previous statement. The as-
sumption (iv) means implicitly that we are factorizing the free bimodule M ×
M by the vector space corresponding to vectors of zero norm with respect
to the scalar product introduced in formula (54). The definition of the corre-
sponding scalar product is compatible with the conditions (i)-(iii).

Proof. Let m,m′, a, a′ ∈ M , n1 ∈ N1. Using the scalar product introduced
in formula (54), we have to prove that

〈mn1Wθm
′ −mWθθ

−1(n1)m′, aWθa
′〉 = 0.

We have
〈mn1Wθm

′, aWθa
′〉 = τ(a∗mn1θ(EN0(m′(a′)∗)

= τ(a∗mθ(θ−1(n1))θ(EN0(m′(a′)∗)))

= τ(a∗mθ(θ−1(n1))(EN0(m′(a′)∗)))

= τ(a∗mθ(EN0(θ−1(n1)m′(a′)∗))).

Here we use the fact that EN0 is a conditional expectation and that θ−1(n1)
belongs to N0. �

Note that the scalar product corresponds exactly to the Stinespring dila-
tion of the completely positive map m→ θ(EN0(m)), viewed as a map from
M with values into N1 ⊆M .
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Definition 20. We refer to the above definitions. Let V be any unitary
operator in Intθ(N0, N1). Then

Intθ(N0, N1) = V (N0)′ = (N1)′V.

Hence Intθ(N0, N1) carries a canonical scalar product, induced by the trace
on the commutant algebra N ′0, or equivalently by the trace on the commutant
algebra N ′1. Let L2(Intθ(N0, N1)) be the Hilbert space completion. This is a
Hilbertian M -bimodule.

Using the above definition, we prove in this more general setting that
the correspondence in the Jones basic construction for a subfactor inclusion
N ⊆ M between N ′ and MeNM , holds true also in the case of a pair of
isomorphic subfactors.

Lemma 21. LetL2(MWθM) be the Hilbert space completion ofMWθM
with respect to the scalar product introduced in formula (54). Then:
(i) The Hilbertian M -bimodules L2(Intθ(N0, N1)) and L2(MWθM) are iso-
morphic by the following the M -bimodule anti-linear map:

Φθ : Intθ(N0, N1)→ L2(MWθM),

defined by the relation

(55) 〈mWθm
′,Φθ(X)〉 = τ(X(m′)m), m,m′ ∈M.

(ii) Φθ extends to an isometry on the Hilbert space completion of Intθ(N0, N1),
with respect to the given scalar products.

Proof. To prove (i), by bijectivity we may instead verify the converse. We
have to check that, with the definition in formula (55),

X(n0m) = θ(n0)X(m), n0 ∈ N0, m ∈M.

By taking a trace of a product with an elementm′ ∈M , we have to check that

τ(X(n0m)m′) = τ(X(m)m′θ(n0)).

By using the above definition of Φθ(X) this amounts to

〈m′σn0m, θ(X)〉 = 〈m′θ(n0)σm, θ(X)〉, n0 ∈ N,m,m′ ∈M.

This is true from the definition of the bimodule property of MWθM . �

If N1 ⊆ N ⊆M is a chain of subfactors, then the inclusion

N ′ ⊆ (N1)′,
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may be interpreted in terms of the Jones bimodules structure of the bimodules
associated to the basic construction as an inclusion

MeN1M ⊆MeNM.

We extend this to the case of pairs of subfactors. For simplicity, we assume
that all indices are integer valued.

Definition 22. We use the definitions and notation assumed above. We
restrict the isomorphism θ to an isomorphism of a smaller pair of subfactors
N1

0 ⊆ N0, N
1
1 ⊆ N1 such that θ(N1

0 ) = N1
1 . Assume that the inclusions

N1
i ⊆ Ni have equal, integer index.

It is obvious that

(56) Intθ(N0, N1) ⊆ Intθ(N
1
0 , N

1
1 ).

Since the index of the inclusion N1
0 ⊆ N0 is an integer, we may find a

Pimsner-Popa basis (rj) for N1
0 ⊆ N0, consisting of unitaries. Let eN0 , eN1

0

be the corresponding Jones projection. Then eN0 is given by

eN0 =
∑
j

rjeN1
0
r∗j .

Hence, since
Wθ|N1

0
= WθeN1

0
,

we have a formal inclusion

(57) MWθM = MWθeN0M ⊆MWθeN1
0
M = MWθ|N1

0
M.

Lemma 23. The maps Φθ and Φθ|N1
0

are compatible with the inclusions
in formulae (56) and (57)

Proof. To prove part (ii), we have to check the compatibility with inclusion
of the maps Φ. In the bimodule construction, this corresponds to replacing in
the above bimodule the partial isometry Wθ by

WθeN1
0

= eN1
1
Wθ = Wθ|

N1
0

.

When using the maps Φθ, Φθ|N1
0

the above formal inclusion expresses exactly
the compatibility of Φθ, Φθ|N1

0
with the inclusion maps. �

In the following lemma, we obtain an explicit formula for the map Φθ

constructed above. As in the previous statements we assume that all sub-
factors have integer index. This condition is probably not necessary, but we
consider it to have a simpler form of the statements.
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Lemma 24. In the context introduced above, let k = [M : N0] and
assume that (sj)

k
j=1 is a left Pimsner-Popa orthonormal basis for N0 in M .

Then Φθ has the following formula:

(58) Φθ(X) =
∑
j

(X(sj))
∗Wθsj, X ∈ Intθ(N0, N1).

Proof. We note that the decomposition

MWθM
op =

⋃
j

[MWθsj]

is orthogonal. Fix X ∈ Intθ(N0, N1). By the orthogonality property, we may
assume that

Φθ(X) =
∑
j

xjWθsj.

By hypothesis, as left N0-bimodule, M is the (N0-orthogonal) sum of
N0sj . Then

X(n0sj) = θ(n0)X(sj), n0 ∈ N0.

Denote tj = X(sj). Then (tj) is a Pimsner-Popa orthonormal basis for
N1 in M .

The relation between Φθ(X) and X is:

〈m0Wθm1,Φθ(X)〉 = τ(X(m1),m0).

Hence
〈X(m1),m0〉 = 〈m∗0Wθm1,Φθ(X)〉.

Hence, for a fixed j, taking m1 = sj we obtain:

〈tj,m0〉 = 〈X(sj),m0〉 = 〈m∗0Wθsj,Φθ(X)〉 = 〈m∗0Wθsj, xiWθsj〉.
Hence, it follows that for all m0 ∈M we have

〈tj,m0〉 = 〈m∗0, xj〉,
or that τ(tjm

∗
0) = τ(x∗jm

∗
0) and hence tj = x∗j , leading to

Φθ(X) =
∑
j

t∗jWθsj.

�

We use the previous construction to transform the unitary representation
π of G considered in part (i) of Theorem 6, into a unitary representation of
G with values in the algebra B∞. The next lemma translates for the product
formula for intertwiners in the context of spaces of bimodules.
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For simplicity, we assume from now on in this section that the factor M
is a group von Neumann algebra (eventually skewed by a cocycle), and that
all subfactors that are considered correspond to subgroups of finite index. We
also assume that all isomorphisms between subfactors are induced by sub-
group isomorphisms (this condition may certainly be relaxed, but in our main
application this condition is verified anyway).

Lemma 25. Consider two pairs of equal index subfactors N0, N1 and
N1, N2 as above, and isomorphisms θ0 : N0 → N1 and θ1 : N1 → N2.
Assume that there exists a pair (N1

0 , N
1
2 ) of equal finite index subfactors of

M , N1
0 ⊆ N0, N1

2 ⊆ N2. Assume also that there exists an isomorphism θ1
0

mapping N1
0 onto N1

2 , such that the composition θ1 ◦ θ0 is defined on N1
0 and

it is equal to θ1
0. Then:

(i) The composition operation

(59) Intθ0(N0, N1)× Intθ1(N1, N2)→ Intθ1
0
(N1

0 , N
1
2 )

is well-defined.

(ii) The product operation in formula (59) induces a product map

(60) MWθ0M ×MWθ1M →MWθ1
0
M,

compatible with the the maps Φθ0 ,Φθ1 ,Φθ1
0

constructed in Lemma 21, corre-
sponding to the composition of θ1 with θ0.

The image ofMWθ0M×MWθ1M in (60) is a sub-bimodule ofMWθ1
0
M .

Proof. The only verification that needs checking is the fact the product for-
mula on products of bimodules corresponds to the composition of intertwin-
ers. To verify the product formula, by linearity it is sufficient to consider
simple intertwiners that map a set of coset representatives into a set of coset
representatives. In this case the product formula is just a consequence of the
enumeration of cosets for subgroups and of subgroups of subgroups �

Remark 26. More generally, one may consider a family, indexed by a
set S, of pairs of equal index subfactors, along with isomorphisms mapping
the first subfactors into the second:

N s
0
θs→N s

1 , s ∈ S.

By the technical assumption, the Jones projections for the subfactors N s
0 , N

s
1

mutually commute for all s ∈ S.
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We assume that for any two elements θs1 , θs2 in the family (θs)s∈S , there
exists a third element θs0 in the family such that the composition θs1 ◦ θs2
restricts to θs0 .

Let B∞ be the union of all bimodules in the family. Then B∞ has the
associative ∗-algebra structure introduced in formula (60) . We define a trace
on B∞ by composing the trace on M with the projection onto the M -th com-
ponent.

By performing the above construction, we obtain a von Neumann alge-
bra B∞, the simultaneous Jones’s basic construction for the family of pairs of
subfactors (N s

0
θs→N s

1 )s∈S . Then B∞ is isomorphic to the algebra of all inter-
twiners in the family (θs)s∈S , containing all intertwiners Wθs , s ∈ S, all the
corresponding Jones projections, and the algebra M .

5. PROOF OF THE IMPLICATION (I)⇒ (III) IN THEOREM 6

In this section we complete the proof of Proposition 6 by using the con-
struction from Section 4. A different proof follows from part (i) in Theorem
35. The latter proof has the advantage that it also works in the case Dπ 6= 1.
On the other hand, the realization of spaces of intertwiners in terms of bimod-
ules, as in this section, will be used in Section 6, Proposition 29 (i), formula
(73), to find a compact formula for cocycles for unitary perturbations of uni-
tary representations as in part (iii) of Theorem 6.

Proof of the implication (i)⇒ (iii) in Theorem 6. To construct the unitary rep-
resentation u of G into

χΓ(L((G×Gop) o L∞(G, µ)))χΓ,

we use Lemma 17 and Lemma 25 .
For every σ ∈ G we consider the subgroup Γσ ⊆ Γ. If the 2-cocycle ε

is trivial, we let the isomorphism

θσ : L(Γσ−1)→ L(Γσ)

be the conjugation by σ. In the general case (when ε is non-trivial we use the
construction for θσ introduced in Definition 3). By taking inductive limit as in
Remark 26, we obtain a type II1 factor B∞. We denote by Wθσ the isometry
Wσ = θσ restricted to `2(Γσ−1) (for non-trivial ε we use the space `2

χ(Γσ−1) ).
The bimodules constructed in Lemma 17 are of the form:

L(Γ)(Wσ)eΓσ−1L(Γ) = L(Γ)eΓσ(Wσ)L(Γ), σ ∈ G.
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We identify the partial isometry Wσ with the partial isometry

(σ ⊗ σ−1)eΓσ−1 = eΓσ(σ ⊗ σ−1), σ ∈ G.

In this identification, the algebra B∞ is generated by L(Γ) ⊗ 1, the partial
isometries (Wσ)σ∈G and the Jones projections (eΓσ)σ∈G.

Then B∞ is isomorphic to a corner of the reduced von Neumann algebra
crossed product L((G×Gop) o L∞(G, µ)), as follows:

(61) B∞ = χΓ(L((G×Gop) o L∞(G, µ)))χΓ.

We recall that by Remark 11 it follows that using the groupoid action of
G×Gop on K, we obtain the isomorphism

(62) B∞ ∼= L((G×Gop) o L∞(K,µ)),

with unit identified to χΓ.
For σ ∈ G, using the definition of the isomorphism θσ, we have that

π(σ) ∈ Intθσ(π(Γσ−1), π(Γσ)).

Let
si ∈ L(Γ) ∼= π(Γ)′′, i = 1, . . . , [Γ : Γσ],

be a system of Γσ-left coset representatives. More generally, we could only
assume that the family (si)is a Pimsner-Popa basis for the subfactor inclusion
L(Γσ) ⊆ L(Γ). We let

ti = π(σ)si, i = 1, . . . , [Γ : Γσ].

With the identification for the space of intertwiners used in formula (58),
each intertwining operator π(σ), corresponds, because of Lemma 24, to

(63)
∑
i

t∗iWθσsi ∈ B∞.

Consequently, for all σ ∈ G, using the isomorphism from formula (62),
the unitaries π(σ) correspond to the unitary elements u(σ) given by the for-
mula:

(64)
∑
i

(t∗i ⊗1)(σ⊗σ−1)eΓσ−1 (si⊗1) ∈ χΓ(L((G×Gop)oL∞(G, µ)))χΓ.

The above formula gives, for every σ ∈ G,

u(σ) =
∑
i

χΓ(t∗i ⊗ 1)(σ ⊗ σ−1)(si ⊗ 1)χΓ =
∑
i

χΓ(t∗iσsi)⊗ σ−1χΓ.
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We denote by tΓσΓ ∈ L(G) the sum
∑
i

t∗iσsi. Note that this is exactly

the expression used in formula (30). Consequently, we have the following
expression for the unitary u(σ):

(65) u(σ) = χΓ(tΓσΓ ⊗ 1)(1⊗ σ−1)χΓ, σ ∈ G.
Recall that σ → π(σ) is a unitary (projective) representation of G.

Hence, by using the product operation introduced in formula (60) from Lemma
25, it follows that formula (65) defines a unitary representation u of Gop into

L((G×G) o L∞(K,µ)) = χΓL((G×Gop) o L∞(G, µ))χΓ.

We note that, a priori, in the above construction we are initially working
with a larger C∗-norm on the crossed product C∗-algebra, coming from the
full crossed product C∗-algebra

C∗((G×G) o L∞(K,µ)).

The initial choice of this C∗-algebra crossed product norm corresponds
to the fact that we are working initially with a representation of the above
groupoid crossed product C∗-algebra into B(`2(Γ)). This representation is
obtained by letting G × Gop act by left and right multiplication operators on
`2(Γ). This is due to the fact that the values of the unitary u(σ) belong in the
first identification to bimodules of the form

L2(L(Γ)(Wσ)eΓσ−1L(Γ)).

On this bimodules, we have a left and a right action of G by multiplication.
On the other hand, the support of u(σ) on the component corresponding

to Gop is a singleton, so with respect to the component of Gop we may use the
reduced C∗-norm topology. Similarly, corresponding to the G-component of
the crossed product, the values of the unitary u(σ) are already in l2(ΓσΓ).

Hence the unitary representation u of G takes values in the reduced von
Neumann algebra crossed product. Consequently, we may use indeed for
the algebra B∞ the reduced, groupoid, skewed, von Neumann algebra norm.
Thus the representation u has values in the von Neumann reduced (skewed)
groupoid crossed product ([31]). �

6. THE CLASSIFICATION OF THE REPRESENTATIONS π UP TO UNITARY
CONJUGACY. PROOF OF THEOREM 4

In this section we prove that the unitary representations π of the groupG
with the property that the restriction of π to Γ is unitary equivalent to the left
regular representation (Dπ = 1) are classified, up to unitary conjugacy, by the
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first group of cohomology of the group Γ with values in the unitary group of
the factor P .

Remark 27. Let π and π1 be two unitary representations of G such
that π|Γ = π1|Γ = λΓ. Assume there exists a unitary Ũ conjugating π

with π1. Then necessary Ũ ∈ R(Γ). Using the canonical anti-isomorphism
R(Γ) ∼= L(Γ), the unitary Ũ corresponds to a unitary operator U ∈ L(Γ),
with the properties introduced bellow, in formula (66). Let t, respectively t1,
be the representations of the Hecke algebra constructed in formula (30) that
are respectively associated with the representations π, respectively π1.

Then:

(66) t1(ΓσΓ) = U [t(ΓσΓ)]U∗, σ ∈ G.

In the above equality we replaced Ũ by U because we are passing, using
the canonical anti-isomorphism, from right convolutors to left convolutors.
The above identity is a consequence of the fact that in order to compute the
coefficients for the representation t1 as in formula (30), one has to substitute
the cyclic and separating trace vector 1, used to compute the coefficients of t,
by the vector U ∈ L(Γ) ⊆ `2(Γ) ∼= H .

The converse also holds true: Let π, π1 be two unitary representations
of G, whose restriction to Γ is the left regular representation. Let t, t1 be the
associated representations of the Hecke algebra introduced in formula (30).
Assume that the equation (66) holds true for U a unitary operator in L(Γ).
Using the canonical anti-isomorphism L(Γ) ∼= R(Γ) we obtain a unitary
Ũ ∈ R(Γ) = π(Γ)′ = π1(Γ)′. Then the unitary Ũ conjugates the unitary
representation π and π1 of G.

Indeed the equality in formula (66) implies that the matrix coefficients
of the two representations coincide.

We prove in this section that the homomorphism α : G → Aut(P ),
constructed in Theorem 6, is uniquely determined up to cocycle conjugacy.
Moreover, the representations π are classified, up to unitary conjugacy, by the
cohomology group H1

α(Γ,U(P )).
Recall that u : G→ U(P ) is a 1-cocycle with respect to the action α if

ug1g2 = ug1αg1(ug2), g1, g2 ∈ G.

We have:
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Proposition 28. Let π be a (projective) unitary representation of the
group G as above. Let α : G → Aut(P ) be the homomorphism constructed
in Corollary 7. Then
(i) Any other homomorphism α̃ : G→ Aut(P ) obtained from a similar split-
ting data as in Theorem 6, is of the form α̃g = Ad(ug)αg, where ug ∈ U(P )
is a 1-cocycle of G with respect to αg, with values in the unitary group U(P ).
(ii) The unitary representations π′ of G, whose restrictions to Γ are unitarily
equivalent to the left regular representation of Γ are classified, up to unitary
conjugacy, by the first cohomology group H1

α(G,U(P )).
(iii) A cocycle c in the cohomology group H1

α(G,U(P )) is trivial if and only
if c is the coboundary of a unitary element in L(Γ) ⊆ P = L(ΓoL∞(K,µ)).

Proof. Let α = (αg)g∈G be as in Theorem 6. ThenM = L(G o L∞(G, µ))
has theGop-equivariant tensor decomposition P⊗B(l2(Γ\G)). The canonical
action of Gop ontoM is

αg ⊗ AdρΓ/G(g), g ∈ G.

Elements inM are consequently identified with infinite matrices

(pΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G,

where the entries pΓσ1,Γσ2 belong to the algebra P . Because any two matrix
units are unitarily equivalent in a type II∞ factor, it follows that any other
Gop-equivariant matrix unit will be of the form

(u(Γσ1)u(Γσ2)∗)Γσ1,Γσ2∈Γ\G,

where u(Γσ) are unitaries in P for all Γσ ∈ Γ \G.
For every σ ∈ G, we identify the coset Γσ with the characteristic func-

tion χKσ. Then the diagonal algebra

D = l∞(Γ \G) ⊆ B(l2(Γ \G)) ⊆ B(L2(Go L∞(G, µ))

is independent of the choice of an equivariant matrix unit.
The family (u(Γσ))Γσ∈Γ\G defines the unitary

(67) w =
∑

Γσ∈Γ\G

u(Γσ)⊗ χΓσ.

Then the unitary w belongs to the unitary group of the algebra

D′ ∩ L(Go L∞(G, µ)).
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We denote the initial matrix unit associated to the homomorphism α, splitting
the action of Gop, by

(vΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G.

We impose the Gop-equivariance condition on the perturbed matrix unit

ṽΓσ1,Γσ2 = u(Γσ1)∗u(Γσ2)⊗ vΓσ1,Γσ2 , Γσ1,Γσ2 ∈ Γ\G.
We consider the type I∞ von Neumann algebra generated by the matrix

units introduced above:

B = {vΓσ1,Γσ2| Γσ1,Γσ2 ∈ Γ\G}′′, B̃ = {ṽΓσ1Γσ2| Γσ1,Γσ2 ∈ Γ\G}′′.
For every double coset ΓσΓ in G, let

(68) XΓσΓ =
∑

Γσ1σ
−1
2 Γ=ΓσΓ

vΓσ1,Γσ2 , X̃ΓσΓ =
∑

Γσ1σ
−1
2 Γ=ΓσΓ

ṽΓσ1,σ2Γ.

These are the elements constructed in formula (37) in the proof of the impli-
cation (iv)⇒ (ii) in Theorem 6.

Consider the correspondence mapping [ΓσΓ] → XΓσΓ and the corre-
spondence mapping [ΓσΓ] → X̃ΓσΓ, where [ΓσΓ] runs over double cosets.
Then both correspondences extend by linearity to ∗-representations of the al-
gebraH0 = C(Γ \G/Γ). As explained in the proof of Theorem 6, this repre-
sentations extend to representations of the reduced Hecke C∗-algebraH, with
values into the algebra L(G). Then we have:

(69) w
[
(vΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G

]
w∗ = (ṽΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G.

Consequently
wBw∗ = B̃,

and
wXΓσΓw∗ = X̃ΓσΓ,

for all double cosets [ΓσΓ].
The Gop-invariance of the perturbed matrix unit (ṽΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G

implies that the unitary βg(w) has the same properties as w. Consequently
βg(w)∗w belongs to B′ = P ⊗ I .

It follows that
c(g) = βg(w)∗w, g ∈ G,

is a 1-cocycle for the group G with respect to αg, with values in U(P ).
Let α̃ : G→ Aut(P ) be the homomorphism associated in Theorem 6 to

the Gop-matrix unit (ṽΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G. Then

α̃g = Adc(g)αg, g ∈ G.
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This completes the proof of part (i) in the statement.

If, in the first cohomology group H1
α(G,P ), the 1-cocycle c with values

in P ∼= P ⊗ 1 = B′ ⊆ D′ vanishes, then it follows that there exists a unitary
p ∈ P such that

(70) c(g) = βg(p
∗)p, g ∈ G.

Let w be the unitary introduced in formula (67). Then

(71) βg(w
∗)w = βg(p

∗)p,

for all g in G. Hence
βg(wp

∗) = wp∗, g ∈ G.
Consequently the unitary operatorwp∗ belongs to the subspace ofGop-invariant
elements of L(Go L∞(G, µ)). Hence

wp∗ ∈ L(G).

Since both w, p belong to D′ it follows that

wp∗ ∈ L(G) ∩ l∞(Γ \G)′ = L(Γ).

We obtain that there exists a unitary operator x ∈ L(Γ) such that w = xp.
Recall that, by definition, the unitary p ∈ P commutes with the matrix unit
(vΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G. Using equation (69) we obtain that

w
[
(vΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G

]
w∗ = x

[
(vΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G

]
x∗

= (ṽΓσ1,Γσ2)Γσ1,Γσ2∈Γ\G,

and
wBw∗ = xBx∗ = B̃.

Using equations (68) we obtain that

X̃ΓσΓ = xXΓσΓx∗, σ ∈ G.
Recall that in Theorem 6 we proved that the elements constructed as

in the formulae (68) are the same as the elements t(ΓσΓ), t′(ΓσΓ), σ ∈ G,
associated to the (projective) unitary representations π and π′ in part (ii) of
the above mentioned theorem (formula (30)).

Using Remark 27, it follows that the unitary representations π and π′ are
conjugated by a unitary. The last statement is done in two steps: first we may
assume, up to conjugation by a unitary operator, that the unitary representa-
tions π and π′, when restricted to Γ, are equal the left regular representation of
the group Γ. In a second step, we use the unitary x constructed above to verify
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the hypothesis of the converse statement in the above mentioned remark. This
completes the proof of part (ii) in the statement.

To prove part (iii) we use the above arguments. Assume that c is the
cocycle relating two homomorphisms α and α̃ of G as above. The cocycle
c(g) relating the homomorphisms α and α̃ is trivial if and only if there exists
a unitary p ∈ P such that equation (70) holds true.

From the previous part it follows that α̃g differs from αg by conjugation
with Ad(x), where x is a unitary element in L(Γ).

The homomorphisms α and α̃ of G into Aut(L(Γ o L∞(K,µ))) are as-
sociated to the representations π and respectively π′ by the correspondence
introduced in Corollary 7. The equivalent construction for the homomor-
phisms α and α̃ described in the introduction, is realized by conjugating first
the representations π, π′ by a unitary so that π|Γ, π′|Γ are the left regular
representation of Γ.

We have therefore proved that if c is trivial, then the unitary p in the
above mentioned formula may be replaced by a unitary x in L(Γ) ⊆ P. Thus

c(g) = βg(x
∗)x, g ∈ G.

�

In the next proposition we prove that the value at σ ∈ G of the 1-cocycles
relating two unitary representations as in part (iii) of Theorem 6, have an
expression that depends only on the double coset ΓσΓ.

Proposition 29. Given a representation π as in Theorem 6 (i), consider
as in part (iii) of the above mentioned theorem, the associated (projective)
unitary representation u : G → U(B∞). Let u′ be the (projective) unitary
representation of G into B∞ corresponding to another representation π′ of G,
as above. Let v : G→ U(A∞) in Z1

α(G,U(A∞)) be the 1-cocycle defined by

(72) u′(σ) = v(σ)u(σ), σ ∈ G.

Then:
(i) The 1-cocycle v has the following form: For each double coset ΓσΓ, there
exist Pimsner-Popa bases (x

[ΓσΓ]
i ), (y

[ΓσΓ]
i ) in L(Γ), i = 1, 2, ..., [Γ : Γσ], for

the inclusions L(Γσ) ⊆ L(Γ) and respectively L(Γσ−1) ⊆ L(Γ), such that

(73) v(σ) =

[Γ:Γσ ]∑
i=1

x
[ΓσΓ]
i χKσy

[ΓσΓ]
i ⊗ 1 ∈ A∞ ⊆ B∞.
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(ii) The (projective) unitary representation π is unitarily equivalent to π′ if
and only if v is a coboundary. In this case, there exist a unitary w ∈ L(Γ)
such that

v(g) = w∗[u(g)(w)u(g)∗], g ∈ G.

Proof. We may assume that the unitary representations π, π′ act on the same
Hilbert space and that π|Γ = π′|Γ. The formula (72) is a consequence of the
previous statement and of Proposition 13, since by the ergodicity assumptions,
the relative commutant of A∞ in B∞ is trivial.

For σ ∈ G, let

V (σ) = π′(σ)π(σ)∗.

By definition, we have that

(74) V (σ) ∈ π(Γσ)′.

It follows that V (σ) depends only on the coset σΓ for σ ∈ G. We have

(75) V (γσ) = π(γ)V (σ)π(γ)∗, γ ∈ Γ, σ ∈ G.

Using the identification in Section 4 of intertwiners with elements in the alge-
bra B∞ it follows that V (σ), as a self-intertwiner of the von Neumann algebra
π(Γσ)′ corresponds to a 1-cocycle v as in formula (72).

Using the identification in formula (11), formula (75) translates into a
similar formula corresponding to the canonical right action of γ ∈ Γ, map-
ping AΓσ into AΓσγ . This fact and equation (75) are translated, using the
terminology from the previous section, into the content of statement (i).

The statement (ii) is a direct consequence of Proposition 28. �

Proof of Theorem 4. The proof of the implication (i) ⇒ (iii) in Theorem 6
proves that the homomorphism α constructed in Corollary 7 coincides with
the homomorphism α : G→ Aut(P ) introduced in formula (14). The latter is
automatically a lifting of the map Φ to a homomorphism from G into Aut(P ).
This completes the proof of part (i).

Part (ii) is a direct consequence of formula (74). This, combined with
the result in Proposition 28, proves part (iii). �
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7. GENERALIZING TO THE SITUATION Dπ 6= 1

In this section we construct the technical tools necessary to generalize
the previous results to the case when the unitary representation π that re-
stricted to Γ is a multiple (not necessary an integer) of the left regular repre-
sentation of Γ. In this section we assume that π is a proper unitary represen-
tation (we are assuming that the cocycle ε is trivial).

Recall that the Schlichting completion G of the group G is a locally
compact group, that is totally disconnected and contains G as a dense sub-
group. The Haar measure on G is denoted as before by µ. We denote by S
the lattice of finite index subgroups of K generated by subgroups of the form
K ∩ σKσ−1, σ ∈ G.

We consider the following reduced crossed product C∗ algebras:

(76) A = C∗red(G o L∞(G, µ)),

(77) B = C∗red((G ×Gop) o L∞(G, µ)).

For a measurable subset A of G, we identify the characteristic function with
the corresponding projection χA ∈ L∞(G, µ).

By L(χA) we denote the corresponding left convolutor in C∗red(G). By
R(χA) we denote the corresponding right convolutor, viewed as an element
in C∗red(Gop).

We also consider the C∗-algebras:

(78) C = χKBχK ∼= C∗red((G ×Gop) o L∞(K,µ)) and

D = χKC
∗
red((G × Gop) o L∞(G, µ))χK

∼= C∗red((G × Gop) o L∞(K,µ)).
(79)

In the above equations, the groups G×Gop and G×Gop have an obvious action
by partial measure preserving isomorphisms on K, and the second algebra in
both equations is a reduced crossed product groupoid C∗-algebra. LetA0, B0,
C0, D0 be the corresponding involutive unital subalgebras of the C∗-algebras
A, B, C, D that are generated by the characteristic functions of cosets in G of
subgroups in S, by convolutors with such characteristic functions and, in the
case of the algebra B0, by the elements of the group algebra, over C, of the
group G.

Remark 30. The multiplication rule in the C∗-crossed product algebra
A = C∗red(G o L∞(G, µ)) is determined as follows:
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(i) For every Γ0 ∈ S , let χK0 be the characteristic function of a subgroup
K0 = Γ0. Then for all g ∈ G we have

L(χK0)χK0g = χK0gL(χK0).

(ii) If A,B are measurable subsets of G, such that there exists a subgroup K0

as above and finite families (si), (tj) in G with

A =
⋃
i

siK0, B =
⋃
j

K0tj,

then

(80) L(χA)χB =
∑
i,j

L(χsiK0)χK0tj =
∑
i,j

χs−1
i K0tj

L(χsiK0).

Proof. Property (i) is obvious since K0 is a subgroup. Property (ii) is a direct
consequence of Property (i). �

First we prove that the unitary representations u and Ψ from Theorems
6 and 8 have an abstract counterpart, taking values in the algebras C and D.

Theorem 31. For σ ∈ G, let χKσK be the characteristic function of the
double coset KσK. Define

(81) U(σ) = χK(L(χKσK)⊗ σ−1)χK ∈ C,

(82) Ψ0(ΓσΓ) = χK(L(χKσK)⊗R(χKσ−1K))χK ∈ D.

Then:
(i) U is a unitary representation of G into U(C).
(ii) The correspondence associating to a double coset ΓσΓ of Γ in G the ele-
ment Ψ0(ΓσΓ) extends by linearity to a ∗-representation of the Hecke algebra
H0 into D.

Proof. Fix an element σ1 ∈ G. Let (si) be a family of coset representatives
for Γσ1 = σ1Γσ−1

1 ∩ Γ in Γ. For θ ∈ G, let Kθ be the subgroup θKθ−1 ∩K.
It is then obvious that

U(σ1) =
∑
i

(L(χKσ1si)⊗ σ−1
1 )χK∩s−1

i σ−1
1 Kσ1

=
∑
i

(L(χKσ1si)⊗ σ−1
1 )χs−1

i K
σ−1

1

.
(83)
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Let σ2 be another element in G. Let (rj) be a system of coset representatives
for Γσ2 in Γ. Then

U(σ2)U(σ1) = χK
[∑
i,j

(L(χKσ2rjσ1si)⊗ σ−1
1 σ−1

2 )χK∩s−1
i σ−1

1 Kσ1

]
.

This is further equal to

(84)
∑
i,j

(L(χKσ2rjσ1si)⊗ σ−1
1 σ−1

2 )χBi,j ,

where

Bi,j = {k ∈ K|σ1sikσ
−1
1 ∈ K, σ2rj[σ1sikσ

−1
1 ]σ−1

2 ∈ K}.
Thus, for a fixed i, Bi,j ⊆ s−1

i Kσ−1
1

is the preimage, through the map

σ1si · σ−1
1 ,

of the partition of the subgroup Kσ1 given by

(r−1
j Kσ2 ∩Kσ1)i,j.

Since the cosets s−1
i Kσ−1

1
are disjoint, (Bi,j)i,j is a partition of K.

On the other hand a term of the form

(85) χK(L(χKα ⊗ σ−1
1 σ−1

2 )χK ,

is different from zero if and only if Kα is contained in Kσ1σ2K. Hence

α = σ2σ1v,

where v is a coset representative for Γσ2σ1 in Γ. Thus a non-zero term in
formula (85) is necessarily of the form:

(86) L(χKv ⊗ σ−1
1 σ−1

2 )χv−1K(σ2σ1)−1
.

When v runs over the set of coset representatives for Γσ2σ1 in Γ, the sum
of the terms in formula (86) is

U(σ2σ1) = χK(L(χKσ1σ2K ⊗ σ−1
1 σ−1

2 )χK .

Since both families (v−1K(σ2σ1)−1)v and (Bi,j)i,j are partitions of K, it
follows that sum of the terms in formula (84) is also equal to U(σ2σ1), and
hence U is a unitary representation of G.

The second formula is proven by a similar argument (see also [30]) not-
ing that,in the above notation, one has that

χK(L(χKσK)⊗R(χKσ−1K))χK =
∑
i,j

L(χKσsi)⊗R(χs−1
j σ−1K)χK∩s−1

i σ−1Kσsj
.
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�

Definition 32. Consider the following operator system inside C∗red(G):

E = Sp {L(χσ1K)L(χKσ2)|σ1, σ2} ⊆ C∗red(G).

Obviously the Hecke algebra of double cosets

H0 = Sp {L(χKσK)|σ ∈ G},
is a subspace of E .

Using the product in the algebra C∗red(G), it follows that every double
coset χKσK acts on E , extending by linearity the correspondence

(87) L(χσ1K)L(χKσ2)→ L(χσ1K)L(χKσK)L(χKσ2) ∈ E , σ1, σ2 ∈ G.

Definition 33. Let U be an abstract involutive algebra over C. Assume
that U contains L∞(G, µ) and an involutive subalgebra V such that

U = Sp [V · L∞(G, µ)] = Sp [L∞(G, µ) · V ].

We say that a linear map Φ, defined onA0 with values into U , is a SO-system
map if the following properties hold true:
(i) The restriction of Φ preserves the operation described in Definition 32.
Thus we assume that for all σ, σ1, σ2 ∈ G we have
(88)

Φ(L(χσ1K)L(χKσK)L(χKσ2)) = Φ(L(χσ1K))Φ(L(χKσK))Φ(L(χσ2K)).

(ii) The map Φ is ∗-preserving, that is, for all σ ∈ G, we have

Φ(χKσ)∗ = Φ(χσK).

(iii) The map Φ is preserving the support in L∞(G, µ), that is:

(89) Φ(f1Xf2) = f1Φ(X)f2, f1, f2 ∈ L∞(G, µ), X ∈ E .

We recall the context from the paper [27]. Let π be a unitary represen-
tation of G into a Hilbert space H . Assume that π|Γ admits a closed subspace
L ⊆ H such that

π(γ)L ⊥ L, γ ∈ Γ \ {e},
and

Sp {π(γ)L|γ ∈ Γ} = H.

We will call such a subspace a Γ-wandering generating subspace of H . In
particular π|Γ is a multiple of the left regular representation λΓ with multi-
plicity equal to dimCL. Assuming the above conditions and assuming that
dimCL is a finite integer, the following proposition was proved in [27]. Let
ρΓ : Γ→ U(`2(Γ)) be the left regular representation of Γ. Let ρG be the right
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regular representation of G. Let R(G), respectively R(Γ), be the II1 von
Neumann algebras generated by the right regular representations of G and Γ
respectively.

Proposition 34. (see [27], [30]). Let PL be the orthogonal projection
from H onto L. For A a coset of a subgroup in S define

(90) Φπ(L(χA)) =
∑
θ∈A

ρ(θ)⊗ PLπ(θ)PL

Then Φ takes values in R(G) ⊗ B(L) and Φ|E is a representation of the
operator system E , that verifies properties (i) and (ii) from Definition 33.

Using this, we can easily show that one can construct a representation
into R(G) ⊗ B(L) ∼= L(G) ⊗ B(L) of the unitary representation and the
Hecke algebra representation constructed in Theorem 31. With the notation
from the previous proposition we can prove the following:

Theorem 35. (i) For every σ ∈ G, the formula

U(σ) = χK(Φπ(χΓσΓ)⊗ σ−1)χK ∈ L((G⊗Gop) oK)⊗B(L)

defines a unitary representation U of G into L((G⊗Gop) oK)⊗B(L).
(ii) The mapping

T (χΓσΓ) = χK(Φ(χΓσΓ)⊗ Φ(χΓσ−1Γ))χK ∈ L((G⊗Gop) oK)⊗B(L)

extends by linearity to a representation of the Hecke algebraH0 into L((G⊗
Gop) oK)⊗B(L).

Proof. We extend Φ to the algebra generated by E and L∞(G, µ) in A0. It is
obvious that this can be done by letting Φ be equal to the identity onL∞(G, µ).
Because of the formula (90) and using the results from Proposition 34, it
follows that the extension of Φ verifies the conditions from Definition 33.
Since the verifications of the statement of Theorem 31 involve only identities
of the type considered in Definition 33, it follows that the extension of Φ
to the corresponding algebras translates the content of Theorem 31 into the
statement of the present theorem. �

Remark 36. Having constructed the unitary representation U as in part
(iii) of Theorem 6, one may repeat ad-litteram, in this more general setting,
the proof of the statements from the previous sections.

The case where π|Γ is a finite, but not necessary an integer multiple of
the left regular representation, may be treated as in [27]. One assumes that
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the representation π admits a G-invariant subspace H0 such that in the com-
mutant of π(Γ), the projection P0 onto H0 has trace t, a positive real number.
Then one considers the unitary representation π0(g) = P0π(g)P0, g ∈ G,
which corresponds to the case where the multiplicity of the left regular rep-
resentation λG in π0|Γ is equal to t (in the sense of the Murray-von Neumann
dimension theory). In this case all the above arguments may be repeated,
replacing formula (90) by the formula

(91) Φπ(L(χA)) =
∑
θ∈A

ρ(θ)⊗ PLπ0(θ)PL.

The case where the representation π (and hence π0) is unitary, projective is
treated as in [26] (see also [28]).

We note a few remarks regarding the relation of this paper with the re-
sults in [30].

Remark 37. Consider a general representation π0 on a Hilbert space H0

such that π0|Γ is a multiple of the left regular representation λΓ. In [30] we
proved that there is a corresponding representation π0

ad on a Hilbert space
H0

ad
, encoding all the information on the action of the representation π0 on

the extended vector space of vectors that are invariant to subgroups in S.
The representation π0

ad is obtained through an adelic completion proce-
dure, and therefore we will use the symbol · ad to denote an object obtained
through such a construction. For the conjugate Hilbert spaces and represen-
tation, we will use as usual the bar symbol. The essential property of the
representation π0

ad is the fact that it extends to a C∗-representation, also de-
noted by π0

ad, of the amalgamated free product C∗-algebra

(92) C∗(G) ∗C∗(K)

[
C∗(K o L∞(K,µ))

]
into B(H0

ad
). It is proved in [30] that the character of the representation π0

ad

is determined completely by the character of the representation π0.
In general, if L is a Hilbert subspace such that

H0
∼= L⊗ `2(Γ)

and
π0|Γ ∼= Id⊗ λΓ,

then L is identified with the subspace of Γ-invariant vectors. For Γ0 ∈ S, the
space HΓ0

0 of Γ0-invariant vectors is

(93) HΓ0
0
∼= L⊗ `2(Γ0\Γ).
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The space H0
ad

is then defined by

H0
ad ∼= L⊗ L2(K,µ).

The factor L∞(K,µ) in formula (92) acts in this representation by multipli-
cation on the factor L2(K,µ) in formula (93).

In the case presented in this work, for a unitary representation π as in
the statement of Theorem 6, the unitary representation π0 is Ad(π(g))g∈G
acting on the space of Hilbert-Schmidt operators on the Hilbert space Hπ.
Equivalently, π0 is the unitary representation π ⊗ π acting on Hπ ⊗Hπ. The
hypothesis that Dπ = 1 corresponds to the fact that

H0 = Hπ ⊗Hπ
∼= `2(Γ)⊗ `2(Γ).

Then
H0

ad ∼= `2(Γ)⊗ L2(K,µ).

Clearly, since

L2(P, τ) = L2(L(Γ o L∞(K,µ))) ∼= `2(Γ)⊗ L2(K,µ),

we obtain, using the algebras introduced in formula (11), that

HΓσ
0
∼= L2(AσΓ, τ) ∼= `2(Γ)⊗ `2(Γσ\Γ), σ ∈ G,

and
H0

ad ∼= `2(Γ)⊗ L2(K,µ) ∼= L2(P, τ).

The homomorphism α : G→ Aut(P ), which extends to C∗(G) using condi-
tional expectation on the algebrasAσΓ, σ ∈ G , yields a unitary representation
Uα of G into L2(P, τ).

Then, using the above isomorphism, the representation Uα is unitarily
equivalent to the unitary representation π0

ad.

We use the context from the Remark 37 to state the following conjecture:

Remark 38. The statement of the Ramanujan-Petersson conjectures may
be generalized ([26]) to the question regarding weak containment of the uni-
tary representation π0

ad of G (equivalently of G) in the left regular represen-
tation of G (restricted to G if we analyze only representations of G). Thus an
equivalent form of the above conjecture is the question whether the unitary
representation Uα|L2(P )	C1 is weakly contained in the restriction of the left
regular representation of G to G.

Recall, as observed in Theorem 4, that factorizing the homomorphism α
to the group Out(P ) = Aut(P )/Int(P ), one obtains a canonical homomor-
phism G → Out(P ) that is independent of choices. We also recall that the
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canonical Cartan subalgebra in the II1 factor L(Γ o L∞(K,µ)) is unique, up
to inner automorphisms ([21], see also [14], [24]).

We conjecture that the property of weak containment in the left regular
representation introduced above is independent of a cocycle perturbation of
the representation Uα, as in Theorem 28.
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