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ABSTRACT. Let G be a discrete countable group, and let I" be an almost
normal subgroup. In this paper we investigate the classification of (projec-
tive, with 2-cocycle e € H?(G, T)) unitary representations 7 of G into the
unitary group of the Hilbert space [?(T", €) that extend the (projective, with
2-cocycle €) unitary left regular representation of I'. Representations with
this property are obtained by restricting to G (projective) unitary square
integrable representations of a larger semisimple Lie group G, containing
G as dense subgroup and such that I is a lattice in G. This type of unitary
representations of of G appear in the study of automorphic forms.

We obtain a classification of such (projective) unitary representations
and hence we obtain that the Ramanujan-Petersson problem regarding the
action of the Hecke algebra on the Hilbert space of I'-invariant vectors
for the unitary representation m ® 7 is an intrinsic problem on the outer
automorphism group of the skewed, crossed product von Neumann algebra
L(G x. L>=(G, 1)), where G is the Schlichting completion of G and y is
the canonical Haar measure on G.

1. INTRODUCTION, DEFINITIONS, AND MAIN RESULTS

Let G be a discrete group and let [" be an almost normal subgroup. In this
paper we investigate the classification, up to unitary equivalence, of (projec-
tive, with 2-cocycle e € H?(G, T)) unitary representations 7 of G on Hilbert
spaces H,, with the property that 7 restricted to I' is unitarily equivalent to
the (projective, with 2-cocycle ¢) unitary left regular representation of I'.
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Throughout this paper we assume that the cocycle € corresponds to a
finite central extension of the group GG, compatible with I', and to a central
character on the center of the central extension as in the papers [2], [28] (the
comments after the proof of Lemma 6.1) and [26], Remark 37. There exists a
canonical ( projective) left regular representation I associated to this data, that
is compatible with the action of GG. This construction is reviewed in Definition
1.

When the cocycle ¢ is trivial, such representations appear naturally in
the study of automorphic forms or Maass forms, where one studies the asso-
ciated vector spaces of 7(I")-invariant vectors ([20], [34], [11]). The space of
7(I")-invariant vectors, briefly referred to as the space of I'-invariant vectors
in this paper, is naturally a Hilbert space. In general this is not a subspace of
the original Hilbert space; it is related to the original Hilbert space if one con-
siders a rigged Hilbert space structure ([12]) on H (see e. g. the construction
in [30]).

Given such a unitary representation 7, one constructs a new unitary rep-
resentation 7 of GG, admitting proper ['-invariant vectors, which extends to a
profinite completion of G. The block matrix coefficients of this new represen-
tation, corresponding to the reduction to the subspace of I invariant vectors,
are the usual Hecke operators ([4], [15], [30]).

In this paper we analyze the representation 7 ® 7 and its extension Adnw
acting, by conjugation, on the space of bounded linear operators B(H, ). Here
7 is the complex conjugated representation associated with the representation
7. The representation 7 @7 is a (proper) unitary representation since ||? = 1.
In this paper we will make the assumption that the groups G and I" have i.c.c.
(infinite conjugacy classes), so that the associated von Neumann algebras are
factors (i.e. have trivial centers, see [36], [33]).

Consequently, in the case considered above, the Hilbert space of I'-
invariant vectors is canonically identified with the L?-space, associated to
the unique trace on the type II; factor commutant 7(I")’ (see e.g [16]). This
construction corresponds to the analysis of Hecke operators on Maass forms
([26],[28]). We note that different, but related approaches, are also considered
in the papers [9], [8], [6]. o

The unitary representation m ® 7, associated to the unitary representa-
tion 7 ® 7 considered above, is induced by a representation into the auto-
morphism group of a larger type II; factor. The additional structure on the
underlying unitary representation is used to determine canonical tensor prod-
uct decompositions of such representations (see e.g. Corollary 9).
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The data from a representation 7 as above, which is used to construct
Hecke operators, is transformed into data coming from a canonical unitary
representation of the Schlichting completion G of G (see [35]). Splittings
of canonical representations associated to GG are proven to be in one-to-one
correspondence with unitary representations 7, up to the obvious equivalence
relation on the space of such representations.

The main source of such unitary (projective) representations arises from
the square summable (projective) unitary representations II of a semisimple
Lie group G, containing G as a dense subgroup and so that I' is a lattice in G
(see [13], Section 3.3 and also [2]), into the unitary group U (Hﬁ) of a Hilbert

space Hp. The restriction m = ﬁ]G has the property that 7|1 is a multiple of
the (projective) left regular representation, with multiplicity

D, = dim{ﬂ(p)}//(Hﬁ) S (O, OO)

given by the Murray-von Neumann dimension of the Hilbert space Hp as left
module over the von Neumann algebra {7 (I")}” generated by the image of
the group representation. The dimension is proportional by Vol(G/I')~! to
the Plancherel coefficient of the square integrable representation II (see [1]
and [13], Section 3.3). In general the dimension D, is not always an integer
(see e.g [13], [2], [27] for more details on the non-integer case).

The classification of the (projective) unitary representations 7 of the
group G with D, = 1 is analyzed in detail in the first sections. This cor-
responds to the case where 7| is unitarily equivalent to the (projective) left
regular representation.

In the last section we also consider the situation D, # 1. Although this
is similar to the previous case, it requires additional formalism. In Theorem
35 (1) and formula (91), we introduce an alternative method to construct the
unitary representation of G that plays the essential role in the analysis of D, =
1 (cf. Theorem 6 (ii)) in the equivalent description of a unitary representation
7 as above.

We prove that the classification problem of (projective) unitary repre-
sentations 7 of GG as above, up to the equivalence relation corresponding to
conjugation by unitary operators, is determined by the first cohomology group

(1) H,(G,U(P))

of the group G, with values in the unitary group U (P) of a type II; factor P,
associated with a homomorphism « : G — Aut(P).

Both objects P and « are constructed canonically, starting from a fixed
unitary (projective) representation 7 of GG as above, through a process similar
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to an infinite, simultaneous, Jones’s basic construction ([16]), which we de-
scribe below (see formulae (5) and (14)). Since « is a lifting of a canonical
group homomorphism (see Definition 3) it follows that up to isomorphism, the
group H!(G,U(P)) is a canonical object associated with the given inclusion
I CG.

For a discrete group N we denote by L£(/NV) the associated von Neu-
mann algebra ([33], [32]). We describe below the necessary modifications for
the case when we are also given a group 2-cocycle ¢ defining an element in
H?(N,T), under additional assumptions (see [2], [28], ([26], Remark 37)).

Definition 1 (Projective, left regular representation). Let IV, € be as above.
In addition assume that there is a central extension, that is a surjective group
homeomorphism, ¥ : Ny — N by a finite (abelian) group Z C N, (the ker-
nel of V), and a unitary, complex valued character y of Z with the following
property:
(i). The class of the 2- cocycle € in H?(N, T) is determined by the character
X-

Let £ (N) be the subspace of £*(Ny) defined by the formula:

) Ei(N) = {¢ € A(Ny)|¢ (57 ng) = x(5)C(ng),Vz € Z,ng € Ny}

Let Ay, be the left regular representation associated with group Ny, acting on
(*(Np). The projection P, from ¢*(Np) onto 2 (N) is given by the formula

g Po= o SO XEAN ).
|Z| s€Z
Then P, is a central projection in the type II von Neumann algebra £(Nj).
We let L, (N) be the type II; factor P, L(Ny) acting on £3(N). Then
L, (N) is isomorphic to the II; factor L(V, ) associated to the group N and
the 2-cocycle e (we refer to [38], [22], [3] for the definition of L(N,¢) ).
When no confusion is possible, we will continue to denote the factor
L, (N) by L(N) and the space (3 (N) by (*(N) . We will use the same no-
tational pattern for skewed crossed algebras by the group N, if the action
extends to /Ny and the action of the center ~Z is trivial.

Definition 2. We will assume that the group GG admits a central extension
U : Gy — G by an abelian group Z; as in Definition 1. We assume that the
groups W~1(T";) have a fixed center Z C T'N Z, forall Ty € S.

We assume that the (projective, corresponding to ¢ € H*(G, T)) unitary
irreducible representations 7 of GG that we are considering in this paper all
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extend to GGy and induce a unitary character xo on Zy. Let x = xo|z. We
assume that the 2-cocycle ¢ in H*(G, T) corresponds to the character y,. We
assume that the representation 7 has the property that 7| is a multiple of the
projective, left regular representation A, of the group I'. Consequently, the
von Neumann algebra {7 (I")}"” is isomorphic to L(I',¢) = £, (I"). When no
confusion is possible we will omit the reference to the 2-cocycle € an we will
denote the later algebra simply by £(T").

The example that we have in mind here is the case Gy = SL(2, Q(,/p)),
G = PGLy(Z[1/p]), Iy = SL(2,Z) and I' = PSLyZ). Hence the center
group Z is isomorphic to Zs, and the character Y is the unique non-trivial char-
acter of Z,. The (projective) unitary representations of G = PG Ly(Z[1/p])
that correspond to this character are the representations 7, introduced below,
in the discrete series of SL(2,R) where n is an odd natural number n > 3.

For o in G, let
I',=clo Nl

be the finite index subgroup of I' associated to o. Let S be the downward
directed lattice of finite index subgroups of I', generated by the subgroups
I',, 0 € G. We assume that S separates the elements of I'. For simplicity,
for reasons concerning the construction of the tower of commutant algebras
below, we will assume that all the groups in S have the i.c.c. property.

We will assume in this paper that the following equality

) T:T,]=[:T,.],

holds true for all o € G.

By Jones’s index theory, the existence of a unitary representation 7 as
above automatically implies the equality of the indices, since 7(c’) conjugates
the subfactors {7(I',-1)}" and {7 (T,)}” in {7 (T")}". Let K be the profinite
completion of the subgroup I' with respect to the family of finite index sub-
groups S, and let 1 be the corresponding Haar measure on K ([35], [37]).
The equality of the indices proves that the (partial) action by left and right
multiplication by elements in GG preserves the Haar measure on K.

Then, the type II; factor

©) P =L(T % L™(K, ),

entering in the definition of the cohomology group describing the classifi-
cation of the (projective) unitary representations 7 as above, is the reduced
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skewed (by the 2-cocycle ¢) crossed product von Neumann algebra ([33],
[21], [3], [22], [38]) associated to the probability measure preserving action
of T, by left translations on (K, xt). In the setting of Definition 2, the action
of the center group Z is trivial. We let F, be the reduced crossed product von
Neumann algebra

(6) Py = LT x L¥(K, 1))

Then, since p, is a central projection we have, using the constructions in the
previous definitions,

() P = p Py C B(EA(I)).

When no confusion is possible, we will use in the rest of the paper the
crossed product notation L(I" x L>°(K, 1)) for the factor in formula (5) also
in the case when the cocycle ¢ € H?(T', T) is non-trivial.

To construct the homomorphism « : G — Aut(P), we identify the
type II; factor P with the output at infinity in the simultaneous Jones’s basic
construction associated to all the inclusions

) L(To) CLT), To€eS

The homomorphism « is obtained from a homomorphism of G into the au-
tomorphism group of a larger von Neumann algebra associated to an infinite,
simultaneous Jones’s basic construction for pairs of isomorphic subfactors
(see Proposition 13).

We represent the terms of the Jones’s basic construction in formula (8)
using commutant algebras. Since we are working in the case D, = 1, we can
use the canonical (anti-)isomorphism of the algebra L£(I") (see e.g [7],[32])
with the commutant algebra 7(T")".

Since the commutant von Neumann algebras 7(T", ) are type II; factors,
it follows that, for I'y C I'y, ['g, ['; € S, the embeddings

m(I')" € m(To)

are trace preserving.
Consider the type II; factor obtained, by completion, from the trace pre-
serving, inductive limit of the type II; factors w(I'y)’, Iy € S:

©) A = | (o).
Ioes

In the above formula the closure is taken with respect to the weak topology, in
the GNS construction associated to the unique trace on the tower of algebras.
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Then A, is a II; factor, anti-isomorphic to the simultaneous Jones basic
construction for all the inclusions

©(T,)" Cx(l)", oea.
For o € G, let K, be the closed subgroup of K defined by the formula
(10) K,=KnoKo '

Obviously K, is the closure, in the profinite completion, of the group I',.
We use the letter R to denote right convolutors. Then

A 2 R(T x L¥(K, ).

In the above isomorphism, the Jones’s projection er,, associated to an inclu-
sion as in formula (8), corresponds to the characteristic function

Xk, = X1, € L™(K, p).
By using the canonical anti-isomorphism between the algebras of left and
respectively right convolutors ([7]), we obtain that the algebra A, the induc-

tive limit of II; factors in formula (9), is anti-isomorphic to the type II; factor
L(I' x L>®(K, 1)). Thus, in the sequel we let

Aw = L(T % L¥(K, p)) = P,

Using the above anti-isomorphism, the type II; factor 7 (I, )’ is identified
with the type II; factor

(11) Aor = £(T 3 1°(T/T,)) = {£(T), xx, " € Ase.

Note that, using the convention introduced in Definition 1, the above algebra
(as well as the algebra introduced in the next formula) is a skewed crossed
product algebra if the 2-cocycle ¢ € H*(G, T) is non-trivial.

Clearly, using any choice of left representatives of cosets for I', C I' we
obtain that

(12) P2 L(T, x L®(K,, 1)) ® B(*(T/T,)).

Denote the Hilbert space of the (projective) unitary representation m by H.

We consider the homomorphism Ad7 of G into the inner automorphism

group of the algebra B(H ). Note that, although 7 is a projective representa-

tion with non trivial cocycle €, Ad 7 is a proper representation since £2 = 1.

We observe that the automorphism Ad (o) leaves invariant the upward di-

rected union of commutants | J 7(T',)". Indeed, for o € G we have that
r,es

Ad7(o)[m(Cy-1)"] = 7(T,)".
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Hence
(13) Ad (o) (Tom1)] = 7(T,),
and therefore
Ad7n(0)[7n(Ty-1 NT)] = 7(TyNoToo ), To€S,0€q.

Consequently, the (proper, as g2 = 1) unitary action Ad7 induces a
homomorphism & : G — Aut(A ), obtained by requiring that

(14) 62|7T(FU_1FTF0)’ = Ad 7T(U)|ﬂ-(pa_lmro)/, I'ye S, oed.

Using the above mentioned anti-isomorphism between the type II; factors
R(I' x L*(K,pn)) and P = L(I" x L*(K, 1)), we construct from formula
(14) a canonical homomorphism « : G — Aut(P) which defines the classi-
fying cohomology group H}(G,U(P)).

We construct below a canonical subgroup of Out(P). The unitary repre-
sentations 7 as above are, up to unitary equivalence, in one-to-one correspon-
dence with the liftings of the above mentioned subgroup to Aut(P) (see e.g.
[7] for the relevant definitions concerning groups of automorphisms groups
of von Neumann algebras).

Definition 3. For 0 € G, let 0, : [',-1 — TI', be the group isomor-
phism induced by o. Using this isomorphism and the formula (12), when
e € H?*(G,T) is trivial it follows that any bijection between I'/T',-: and
I'/T, induces an isomorphism

(15) 0, € Aut(P),

with P as in formula (5). Then the isomorphisms 05; define a group homo-
morphism

(16) ¢ : G — Out(P) = Aut(P)/Int(P).

If ¢ € H?(G,T) is non-trivial, we use the assumptions in Definitions 1
and 2. We define for & € G the analogous automorphism 62 mapping the
von Neumann algebra of the group ~!(T",-1) into the von Neumann algebra
of the group ¥~(T',), where ¢ = ¥(5). Using the above bijection, we obtain
an automorphism #2 € Aut(P).

In this case, we let 6, € Aut(P) be defined by the formula

(17) 0, = p0l,, 7€ Gy

g
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It is obvious that the right hand side of the above equation depends only on
o = V(o) € G. This automorphism is an abstract model for the automor-
phism introduced in formula (13).

The group homomorphism introduced in formula (16) is (in both cases)
canonical, and it is independent on the choice of the coset representatives
made in formula (12).

The classification of the (projective) representations 7, up to unitary
equivalence, is equivalent to the classification of the liftings of the map @
to Aut(P). In particular, if there exists a (projective) unitary representation 7
as above, then @ is liftable to a group homomorphism. In Section 6 we will
prove the following:

Theorem 4. Suppose D, = 1 and let ® be as in (16). Then:
(i) Any (projective) unitary representation m of G as above defines a lifting

ar = (ox(g))gec

of ® to a group homomorphism o, : G — Aut(P), such that:

(a) Forevery o € G, a,(0) maps Ay—1r onto A,r (see formula (11)).

(b) ax|r = Idp.
(ii) For any two (projective) unitary representations 7, 7' of G as above, the
corresponding liftings o, o are cocycle conjugated.
(iii) Two (projective) unitary representations w and 7' of G, corresponding to
the same 2-cocycle ¢, are unitarily equivalent if and only if the corresponding
liftings o, o are conjugated by an automorphism in Int(P).

The above statement proves that if such a representation 7 exists, then
the canonical obstruction ([7], [17], [10]) in H?(G,U(P)), associated to the
homomorphism & into Out(P), vanishes.

Let G be the locally compact, totally disconnected group obtained as
the Schlichting completion ([35]) of G with respect to the subgroups in S.
Consider the (skewed, by the 2-cocycle €, determined by 7) crossed product
von Neumann algebra

(18) M = L(G x. L=(G, ).
Using the setting in Definition 2, let
(19) Mo = L(Go x. L=(G, 1)).

Since the center Zj of Gy acts trivially on L>(G, p) it follows that
(20) M = p Mo € B(G(G)) @ B(L*(G, ).
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When no confusion is possible we will simply write the skewed crossed
product as

M = L(G x L™(G, ).

Let G°P be the group GG with opposite multiplication. We let G x G°P
act on K by partial isomorphism, by left and right multiplication. Thus the
domain of (0,07 ') € G x G is K,-1. We also consider the 2-cocycle € x £
on G X G°P.

Definition 5. Consider the skewed, groupoid crossed product von Neu-
mann algebra

(21) Boo = L((G x GP) Xoyz LF(K, 1)).
We also consider the crossed product von Neumann algebra
(22) BY = L((Gy x GP) Xexz LZ(K, p)).

As above, the center Z x Z acts trivially on L>°(K, 1)), and hence, identifying
the projection corresponding to the character x x x with

Py ® px € Cla(Go) ® Crg(GY°),
we obtain that

(23) B = (py ® px) B

In the rest of the paper, when no confusion is possible, the skewed von
Neumann algebra crossed product defining B., will simply be denoted by
LG X G) x L*(K, ).

Let 8 : G — Aut(M) be the canonical homomorphism of G°P into the
automorphism group of M, which acts by leaving £((G) invariant and acts by
composition with right translation on L>(G, u).

To prove Theorem 4 we show that unitary representations 7 as in the
introduction are in one-to-one correspondence with tensor product splittings
of the canonical right action 5 = (8,)4ec. The case D, # 1 is outlined in
Section 7.

This proves that the homomorphisms « as above are tensor product fac-
tors of the homomorphism S. This is contained in the following theorem
and its corollary, which give equivalent descriptions for representations 7 as
above. Then G°P acts canonically on M, leaving £((G) invariant and acting
by left multiplication on the infinite measure space G.
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To state the next result, which will be proved in Sections 2 and 5, we
introduce the (algebraic) operator system
(24) SO=80(I'G)=C(G/T) & C((I'\G).
C(M\G/T)
We are not considering any norm on SO, but rather view it as a vector space
with internal operations.

Theorem 6. The following statements are equivalent:
(i) There exists a (projective) unitary representation 7 : G — U(H,) such
that 7|r is unitarily equivalent to the left regular representation of T.
(ii) There exists a representation t : SO — L(QG) of the (algebraic) operator
system SO, verifying the identities in the formulae (31), (32), (33).
(iii) There exists a (projective, with 2-cocycle <) unitary representation u of
the group G into B, = L((G x GP) x L=(K, 1)), of the form

(25) u(o) = XK(XF“F ® O'_I)XK, o€ @,

where, for each double coset T'oT, o € G, the element X' is a selfadjoint
element in L(G) N 1*(ToT).
(iv) There exists a matrix unit (’Ul"al?r‘g2)ro—17f‘o—26f‘\6‘ C M such that

(@) Vrore = X715 € L(G, 1), o0 €G,
(b) Bg(vra1,f‘az) = UFalg,Fazga g € G0p7 FO’l, FUQ S 1—‘\C;’

Part (iii) in the above theorem is an abstract C'*-algebraic point of view
for the representation 7. A unitary representation as in part (iii) may be con-
structed directly also in the case D, # 1 (see Theorem 35, Section 7). There is
a one-to-one correspondence between the constructions introduced in points
(1)-(iv) in the above theorem, which is made explicit in the proof.

The homomorphism o = «,; acts on the corner x x My g of the algebra
M introduced in formula (18).

We denote by pr\¢ the right quasi- regular representation of G into the
unitary group associated with the Hilbert space ¢*(I'\G). Then Ad pr\¢ is a
homomorphism from G into the inner automorphism group of B(¢*(T'\G)).

The following corollary will be proved in Section 2.

Corollary 7. We assume that the equivalent conditions (i)-(iv) in the
statement of Theorem 6 hold true. Recall that xx Mx is isomorphic to
P. The G°P-equivariant matrix unit constructed in part (iv) of the preceding
statement, yields a homomorphism

G?P 3 g — oy € Aut(xg Mxk)-

Then:
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(i) The algebra M splits as
(26) M = xgMxk @ B(P(T'\ G)).

(ii) The homomorphism () gecor into the automorphism group of M, splits
in the tensor product form

27) 0y @ Adprialg), g € G.

It may be easily observed that both homomorphisms « and 3 extend to
a representation of G. Indeed the C*-algebra associated to G is generated by
the elements g € G and by the characteristic functions of the form g, ,o €
G. To extend «, to such a characteristic function we make correspond the
(renormalized) conditional expectation onto A,r = {7(T',)}.

The following result, which will be proved in Section 3, summarizes
the relation of the above construction with the Hecke operators acting on the
Hilbert space of I'-invariant vectors for the representation 7 @ © = Ad .
Consider the canonical von Neumann conditional expectation (see e.g. [32])

LTxL®(K,
EL((F)XI ( M))( O,

defined on P = L(I" x L*(K, u)), with values onto L(I").

Theorem 8. Assume that the four equivalent properties in the above the-
orem hold true. Consider the x-algebra representation for the Hecke algebra
Hq constructed in [26], acting on the Hilbert space of I'-invariant vectors for
the unitary representation 7 @ 7T = Ad(n).

Then the above x-algebra representation of the algebra H is unitarily
equivalent to the representation of the Hecke algebra obtained by using the
completely positive maps Vr,r on L(I"), defined by the formula

(28)  Wror(e) = B, (0y(2), g € ToT,x € £(D).

In particular, the statement of the Ramanujan-Petersson conjectures for
the Hecke algebra representation into the Hilbert space of I'-invariant vectors
for the representation 7 ® T = Ad 7, is equivalent to the weak containment
of the unitary representation of G induced by « on L*(P) & C1, into the
restriction to GG of the left regular representation of the Schlichting completion
G of G (seee. g. [19]).

Assume that 7 belongs to the discrete series of PSLy(R), We consider
the restriction 7T|PGL2(Z[1 /p))» Where p a prime number. Then, by [26], the
Hecke operators associated to this representation, defined as above, are uni-
tarily equivalent to the Hecke operators acting on Maass forms.
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It is also possible to obtain a ”coordinate free” version of the above state-
ment. In this formulation we substitute the homomorphism « by a canonical
homomorphism. The drawback is that the type II; factor on which it acts is
defined only up to an isomorphism.

Recall that M is the reduced (skewed) crossed product von Neumann
algebra L(G x L>(G, 1)), with semifinite trace 7" induced by the G-invariant
measure i on G. Recall that the homomorphism 3 : G°P — Aut(M), where
each automorphism /3, acts by right translation by g on L>(G, i), and acts
identically on £(G), for g € G.

We also consider the algebra D C L*°(G, ) € M consisting of left
K -invariant functions in L>(G, ). Obviously D = (*(I'\G). We have (see
Section 3 for the proof):

Corollary 9. Assume that the equivalent conditions introduced above
hold true. Then:
(i) There exist a unitary representation 0 : G — U(M) with the following
properties:

(a) The representation 0 is unitarily equivalent to the right quasi-regular
representation pr\¢ of G.

(b) Forall g,h € G we have Ad(0,)|p = B,|p and 3,(6,) = 6(ghg™").
(ii) Let © C M be the type 1, factor generated by the image of the represen-
tation 0. Let A = © C D'. Obviously L(I') C A. Then A is a type II; factor
isomorphic to L(I" x K') with unique trace T induced by .
(iii) The homomorphism (B,)ec invariates © and hence it invariates A. The
homomorphism (84| 4)gec of GP into Aut(.A) is unitarily equivalent to the
homomorphism « introduced in Corollary 7. It extends obviously to G.

In particular, the Hecke algebra representation introduced in the previ-
ous theorem is unitarily equivalent to the representation of the Hecke algebra
obtained by using the completely positive maps defined by the formula

‘IJ([JFUF]<5U> = Ef(l‘)(ﬁd(x»? S A? oeG.

(iv) The classification of the unitary representations 0 as in (i) is determined
by the cohomology group H éu (G,U(A)).

Thus, the unitary representation of GG (extending to G) determining the
Hecke operators acting on the I'-invariant vectors for the representation 7 @7,
is an operator algebra object. The procedure to construct this operator alge-
bra object is as follows. Consider the homomorphism 5 : G? — Aut(M)
described above, acting by right translation on G and trivially on £(G). There
exists a type I, factor ©® C M such that ;| is unitarily equivalent to the
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homomorphism Adpr\¢ of G into B(¢*(I'\G)), induced by the right quasi-
regular representation and such that both 3, and Adpr\ ¢ act identically on the
diagonal algebra D = (*°(I'\G), and Adpr\¢(g9~*) o 3, is a homomorphism
for every g € G.

Then every (3, invariates A = ©' and the homomorphism (3, 4) e into
Aut(A) is conjugated to the homomorphism « into Aut(L(I" x K)).

The goal for Ramanujan-Petersson problem is to prove that the unitary
representation of G, induced by |4 on the orthogonal complement of the
scalars in L?(\A, 7), is weakly contained in the restriction to G of the left regu-
lar representation of G. This property obviously holds true for the unrestricted
unitary representation induced by the homomorphism 3 on L?(M,T). The
reason why this property doesn’t straightforwardly pass to a subalgebra is the
fact that the two traces defining the Hilbert spaces L*(A, 7) and L*(M,T)
are different: one is finite and the other one is semifinite.

2. CONSTRUCTION OF THE G°P-EQUIVARIANT SPLITTING
M =P ® B(I*(T\G)). PROOF OF THEOREM 6.

This section is mainly concerned with proving part of Theorem 6 and
Corollary 7. We use the matrix coefficients of the (projective) unitary repre-
sentation 7 of (G, which has the property that 7|1 is unitary equivalent to the
left regular representation of I'.

Let p ¢ be the right quasi-regular representation of G°® on I*(T'\G).
We construct directly a G°P-equivariant embedding of B(I*(T\G)) into M.
Here B(I*(I'\G)) is acted by Adp . We prove that this equivariant repre-
sentation of B(I?(I'\()) is splitting the algebra M G°P-equivariantly, in the
sense of tensor products.

We establish a correspondence between unitary representations 7 as above
and G°P-equivariant splittings of the form

(29) M= P B(X(I\G)),

of the crossed product von Neumann algebra M. In this identification the
type II; factor P, introduced in formula (5), is the corner algebra y x My of
M with unit g, the characteristic function of K.

The homomorphism « is then identified, in this setting, with the action
on the tensor product factor component x x M, in the representation from
formula (29), of the canonical embedding of the group G°P into the automor-
phism group of the algebra M = P @ B(I*(T\G)).
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We first recall the construction of the C*-representation ¢ of the Hecke
algebra of double cosets of I' in G into £(G), introduced in [26] (see also
[28]). This representation was subsequently extended to arbitrary Murray-von
Neumann dimensions in [27]. The representation will be used in the construc-
tion of the G°P-equivariant matrix unit corresponding to the G°P-equivariant
embedding of B(?(T'\G)) into M.

Let Hy = C(I' \ G/TI') be the Hecke algebra of double cosets (see e.g.
[5]). We let H, act canonically on left and respectively right cosets, by left
and respectively right multiplication. Let # C B(I*(T'\G)) be the uniform
norm closure of H,. In the terminology introduced in [5], the C*-algebra H is
the reduced Hecke von Neumann algebra associated to the inclusion I' C G.

In [26] (see also [28] for another exposition of the construction, and see
Section 7 for another proof of the extension of this construction to arbitrary
D,) we constructed, using the matrix coefficients of the representation 7, a
representation ¢ : H — L£(G) such that t*!' = ¢([['oT]) € I>(T'oT) N L(G).

When the 2-cocycle ¢ is trivial, the precise formula for the representation
t is as follows: let 1 be a trace vector for I in the Hilbert space H, = ¢*(T)
of the representation 7. For a subset A of (G, define

(30) th=t(A) =) (x(0)1,1)6.

feA
Then
[Tol] — ¢([Lol]), o€,

extends to a representation of H into L(G).

We will prove this statement in the case when ¢ is trivial. When the rep-
resentation 7 is projective ([26], Remark 37 and [28], Section 10), one has to
replace the Hilbert space H, by the Hilbert space Ei introduced in Definition
1, and to replace the sum in formula (30) by a sum over the preimage of the
coset ['oI" in Gy averaged by the character x (we are using here the notation
from the above mentioned definition).

We proved in [26] that formula (30) implies that the representation ¢ of
‘H, extends to a representation of the larger operator system SO defined in
formula (24). This system is canonically identified to the vector space

C{01F02 | 01,09 € G}

In [26] (see also [28]) we proved that the representation ¢ of H extends to a
representation ¢t : SO — L(G). This representation is constructed using the
matrix coefficients of the representation 7 as above in formula (30).
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Let e be the neutral element of (G, viewed as the identity element of the
algebra £(G). We say that ¢ is a representation of the operator system SO if
the following sets of identities hold true:

31) HI) = e.
(32) tlol)* =t(T'o™ ), o€q.
(33) t(o1D)t(Toy) = t(o1l0y), 01,09 € G.

We proved in [26] (see also [27], [29]) that there exists a one-to-one
correspondence between unitary representations 7 and representations ¢ of
the operator system SO with the above properties.

We identify the cosets of K with the cosets of I', by taking the closure in
the profinite completion. Let [*°(I'\G), {*°(G/T") be the algebras of bounded
left, and respectively right I'-invariant functions, that is the algebras gener-
ated by the characteristic functions of left (respectively right) cosets of G by
I'. These algebras are identified with the subalgebras of L>°(K\G, u) and
L>(G/K, ) of left, and respectively right, K-invariant bounded functions
on G. We denote by I?(T'\G), [?(G/T") the corresponding Hilbert spaces, and
by pr/a, Ag/r, the corresponding quasi-regular unitary representations of G.

For notational simplicity, when no confusion is possible, we denote in
the sequel the characteristic function Y, x of the coset c K' = o' C @G by Xors
foro € G.

In Theorem 6 we prove that an alternative method to obtain representa-
tions ¢ as above, is to the use of following GG°P-equivariant matrix unit embed-
ded in the crossed product algebra M:

tFUurgl

r
(Ural,rm )I‘al Toel\G = (XFal XToa )Fm JTo2eT\G-

The G°P-equivariance of the matrix unit is assumed to hold true with respect
to the adjoint of the right unitary representation pr\g of G° into I*(T"\ G).

The existence of such a matrix unit implies that the von Neumann alge-
bra M is G°P-equivariantly isomorphic to xx Mxx ® B(I*(T\G)). It also
implies the isomorphism

B4 xxMxx = xx(L(G x L=(G, p))xx = LI x L*(K, p)) = P.

This is a consequence of the fact that the projections in the family x,x, where
gI" runs over a family of coset representatives of I' in (7, are a partition of
unity. The unit of the algebra x x M x k is identified with xx = X7
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The G°P-equivariant isomorphism
L(G % L¥(G, p)) = xxMxx ® B(*(N\G))

holds true with respect to a tensor product representation of G°P into the au-
tomorphism group of x x My ® B(I*(T\G)), of the form

ay @ Adpra(g), g€ G™.

Recall that I' C G is a pair consisting of a discrete group G and an
almost normal subgroup I, both assumed to be i.c.c. Let S be the downward
directed class of subgroups of I" generated by I', = ol'c™' NI, 0 € G.
Assume that S separates the points of I. Let (K, i) be the corresponding
profinite completion of I'. Let (G, i) be the Schlichting extension of G, as
introduced in Section 2. Then p is the Haar measure on G, normalized by the
condition that y(K) = 1.

Recall that we are assuming that for all ¢ € G the subgroups I',, I',—1
have equal indices. In particular, the Haar measure on G is bivariant. Also,
we assume that GG acts ergodicaly on G, and that all groups in S are i.c.c.
Consequently, the reduced von Neumann algebra (skewed) crossed product
factors

M =L(G % LG, p)) and P =L x L*(K, )

are type Il (respectively II;) factors. Recall that if the unitary representation
7 is projective with cocycle ¢, then in the definitions of M and P we take the
e-skewed crossed product von Neumann algebras.

We consider the following outer action of G°? on M introduced in Sec-
tion 1.

Definition 10. Let  : G — Aut(M) be the canonical homomorphism
of G°P into the automorphism group of M, acting by leaving £(G) invariant
and by composition with right translation on L>°(G, 1).

Remark 11. Consider the canonical action by left and right multiplica-
tion of G X G°? on L>°(G, 11). To this action corresponds the reduced (skewed)
crossed product von Neumann algebra

L((G x GP) M.z L=(G, 11)).
As mentioned in the introduction, we use the notation
L((G x G) x L>(G, )

for the above (skewed) crossed product when no confusion is possible.
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The above action reduces to a canonical groupoid action of G x G°P on
K. This is obtained by letting, for ¢g;, g» € G, the domain of the transforma-
tion induced by (g1, g2) € G x G°P, be

{k € K|gikg;" € K}.
Obviously, G x G°P acts by measure preserving transformations on K. Let
By = L((G x G°P) x L™(K, u))

be the corresponding (skewed) reduced von Neumann groupoid crossed prod-
uct algebra. It is then obvious that

(35) Xk [L((G x GP) x L®(G, 1) xx = [LU(G x G®) x L=(K, p))].

Theorem 6 shows that the data from the representation 7 is encoded in
a (projective) unitary representation of a special form of G, into the unitary
group of the algebra B.,. Equivalently, this corresponds to a special G°P-
equivariant splitting of the algebra M.

Proof of Theorem 6. The matrix unit defined in point (iv) in the statement of
the theorem generates a copy of the type 1., algebra B(I*(T" \ G)) which is a
subalgebra of M. The diagonal algebra [*°(I" \ G) C B(I*(T'\ G)) is a fixed
algebra, independent of the choice of the matrix unit.

We consider the algebra L>°(K \ G, 11). This algebra is the weak closure
of the linear span of cosets of the form xy, with o € G. Then we have the
isomorphism:

(36) 20\ G) = L%(K \ G, 1) C L(G x L™(G, ).

The left coset Ko is T'o, where the closure is taken in G for 0 € G. To
simplify notation, recall that when no confusion is possible, we are denoting
the characteristic function Y,k of the coset ¢ K = oI by y,r for o € G.

The requirement in part (iv) is therefore to find a G°P-equivariant copy of
B(I*(T'\ @)) inside L(G x L>=(G, 1)), with the prescribed diagonal algebra
introduced in formula (36).

The implication (i) = (ii) was proved in [26] (see also [27], [28]).

The converse implication (ii) = (i) is the content of Proposition 58 in
[26]. For convenience of the reader, we recall this proof here in the case where
the representation is unitary (for the projective case see [26],[28]).

For a subset A of G we use the notation

th =" #(0)0.

0cA
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When the 2-cocycle ¢ is non-trivial, the above formula is replaced by a finite
average over the group Z as in the first formula of Section 10 in [28] (see also
Remark 37 in [26]). Let 0 € G and let (s;) be set of representatives for I', -1
in I'. We define

m(o)s; = [t (0s;) 7, i=1,2,...,[[:Ton].

The element on the right hand side of the above equation belongs to £(I")
(1261, [28], [29D).
The fact that 7(0) is a representation follows form the identity

H(0:10:) = > t(O)t(y02), 01,0, € G.
~yel’

The above identity is in turn a consequence of the identity

talFtFag _ talFUQ-
To prove (iv) = (ii) we proceed as follows. For ¢ in G, let

ol §
(37) X - UFal JTo2s
Poyoy 'T=CoT

with sum over all cosets I'oy, oy € I' \ G such that ['oy0; 'T = [[oT).
We recall that the G°P-equivariance of the matrix unit

(Urahraz)ral,raz
means that
By(Vro, roy) = Urorglosgs 9 € G.
Hence
ﬁg(XF"F) = xtor geGP oed.

It follows from formula (37) that X ! belongs to the algebra M of fixed
points for the action of G on M. Since we assumed that G°P acts ergodicaly
on G, it follows that

ME = L(G),
and hence

X" € £(G), o€,

Obviously, since vr, 1, 1s equal to X1y, it follows that the partial isome-
try vre, 1o, Will map the space of the projection xr,, onto xr,,. Hence, using
formula (37) defining X'°T, it follows that if I'o;, [0 are so that

[Toy0,'T] = [Tol,
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then
XFJ1XFJFXF02 = Urgy,I'ogs 0,01,09 € G.
From formula (37) we also obtain that:

XFaXFUFXFﬁ = d[rap-1T],ToT]Ura,rg, @, 3,0 € G.

Here, we use the symbol ¢ to denote the Kronecker symbol.
Let 0 be any element in GG. Then the property that

XF018XF02 7é 07
is equivalent to the existence of 7;, 72 € I such that

0202 = 11071
This holds true if and only if § € 'y, 'T'. Consequently
X' e £(G)NI*(Tol).

We analyze the product of two elements X'71!" and X'2!" as in formula
(37), corresponding to two double cosets. The product corresponds to a pair-
ing of cosets in the product of the double cosets. Because (vry, 1oy )roy.ros 18
a matrix unit, the same pairing of cosets shows up in the product formula for
the corresponding double cosets [I'o; '] and [['o»I"] in the Hecke algebra H,.

This proves that the operators X'°"', ¢ € G, which are a priori affiliated
to L(G), have also the property that the correspondence

(38) Tol] - X' oce@

extends to a x-algebra representation of 7, = C(I' \ G/T"). Obviously, this is
trace-preserving with respect to the traces 7 on £(G) and the canonical trace
(-[T'], [T']) on Hg. Consequently, the x-representation in formula (38) extends
to a C*-representation of the reduced C*-Hecke algebra

H=Cra(D\G/D) = Hy © BI(1\G)).
Hence the elements
tFO’F — XFO’F’ = G
are bounded.
For all ¢ € G, we denote the coefficient of § € T'oT in t'1 € L(G) by
t(6). Thus
ol = 3" 160)0 € L(G), o€
9erol
The property that

—1 —1 -1
Xrat'®? FXF,Btm7 FXIW = xra" " "Xra
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implies, when moving in the left side member the characteristic function xrg
to the right (using the multiplication formula (80, Section 7)), a family of

identities of the form
D P ="

These family of identities, when summing over unions of cosets of subgroups
in § whose unions are I"-cosets, produces exactly the family of identities

toilglor —ygonlor 5 50 € G.

These identities are exactly the sufficient conditions that imply, as recalled
in the introductory part of this section (see [26]), that the map [o'] — t°F,
o € G, extends to a representation of the operator system SO, as in property
(i1) in the statement.

To prove (ii1) = (iv), we note that

(39) u(o) = (rrre®1)- (1®0 1) € L((G x GP) x L®(G, 1)), o€G.
Hence, using formula (25) it follows that

(40) Urre = XT ") xro-1

is an isometry in the von Neumann algebra M, with initial space xr and range
the space of the projection xr,-1.
We define

(41) Urey oy — 60’1 (UI‘IJQU;l), oy el \ G.

By G°P-equivariance and because of formula (40), the expression in (41) is

equal to

Foi0; T
Xf‘alt 172 XFO'Q‘

Again, because of the G°P-equivariance, this is a partial isometry from xr,,
onto Xt -

The property that the family of unitaries (u(0)),ecq i a representation
of G translates into the fact that the family

(Uf‘al Too )Fal JTo2eT\G>

defined in formula (41), is a matrix unit. Since G°P acts on M by leaving
L(G) invariant, and since it acts through by the Koopmann unitary represen-
tation by right translations on L>°(G, p), it follows that the above above matrix
unit is G°P-equivariant.

The proof of the implication (i) = (ii1) is postponed to Section 5. A
direct, alternative proof, valid also for D, # 1, will be given in Theorem 35
in Section 7. U
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Proof of Corollary 7. Recall that
P = xgMxx = xt(L(G > L>(G, 1)))xg = L(I' x L=(K, i1)).

Here the unit of the above algebra is identified with the characteristic function
X7- The construction of the G°P-equivariant splitting (29) is straightforward,
once a G°P-equivariant matrix unit is given.

For p € P, we define

(42) ag(p) = vrrgBy(p)vrgr

This is consistent with the fact that 5,(p) belongs to xpgMxr,, forall p € P
and g € G. O

Remark 12. The relation between the various constructions in the pre-
ceding statement is summarized as follows. As above, let  be a (projective)
unitary representation of GG. Consider the representation ¢ of the operator sys-
tem SO introduced in formula (24). Then
(1). The formula for the (projective) unitary representation v of G into B, is

ulo) =xx(t' @0 xk, o€G.
(i1). The formula that gives back the representation 7 from ¢ (or u) is
(0)(z) = Egpy (" zo™h), z€(D),0€G.

(iii). In the identification x xk Mxx = L(I' x L>(K, it)), the homomorphism
« coincides with the homomorphisms « constructed in the introduction, using
the simultaneous infinite Jones basic construction.

(iv) The restriction a/|r acts as the identity operator on the subalgebra

L(T) C L(T x L¥(K, ).

Proof. The only non-obvious property is contained in (iv). We use the nota-
tion from the proof of the previous statement. Since G°P acts trivially on G,
it follows that 3, acts trivially on £(I') for g € G. It follows that c, acts
trivially on £(I") for y in I'. Indeed, in this case, for every

z € L(I') © xpL(I'» L(K, 1)) xr,
and for every v € I'°P, we have that
o (r) = vprBy(7)vrr = 7,

showing that «|r acts identically on £(T). O
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In the proof of Theorem 6 we showed that there exists a correspondence
between representations 7 of G with the properties from (i) of the preced-
ing theorem and unitary representations v of GG, having an expression as in
formula (39), with values in the subgroup of elements of U/ (B.,) that are nor-
malize A,,. We state this separately in the following proposition.

Proposition 13. We use the notation and the equivalent hypothesis from
Theorem 6. Recall that

Ao = LT 3 LX(K, 1)), Boo = L(G x GP) x L>(K, p)).
We embed G into the first component of G x G°P, and canonically extend this
embedding to an embedding of A, into By,. Let u be the (projective) unitary
representation of G into U(By,), constructed in formula (39). Then
(i) For every o € G the unitary u(c) normalizes A..
(ii) The homomorphism o associated to m, constructed in Corollary 7 and
mapping G into Aut(P = A), is computed by the formula:
(43) ay = Adu(o)|a,, oc€G.
(iii) The homomorphism « extends to a homomorphism of G into Aut(A).
Proof. We use the notation from the previous theorem and its proof. We recall
that the formula (see formulae (65), (39)) for u(o) is
ulo) = xp(t" " @ D1 @0 )xp
=xv(t'" " @ )xm(l®@c ) =(rro@)(1®o!), oG,
Thus, for v = xpaxy € L(I' X L*>®(K, 1)), which is identified to
LT L= (K, ) @ 1,
we have that u(g)zu(g)* is equal, with the above identification, to

u(g)(z@1)u(9)" = (vrre @ ) xro(1@0™ ) [(xpaxr) ©1](1@0) (vror @1).
This is thus equal to

(vr,re o (z)vrer) ® 1,
and so the unitary u(o) € xp(L((GxGP)x L>*(G)))xp normalizes P (which
is identified to P ® 1) and

a,(r) = Adu(o)(z), =z € Poed.

This completes the proof of properties (i) and (i1) in the statement.

To prove (iii) we proceed as follows. For o € G, let xx, be the charac-
teristic function of the subgroup K, of K introduced in formula (10). Then
the convolutor in C*(G) by the function u(K,) 'k, is a projection, denoted
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by p,. Let Ar, be the subfactor introduced in formula (11). To extend « to a
homomorphism of the locally compact, totally disconnected group G, one rep-
resents the projection p,, in C*(G) by the conditional expectation Eﬁ;";. O

3. THE OPERATOR ALGEBRA REPRESENTATION OF THE HECKE ALGEBRA
ASSOCIATED TO THE REPRESENTATION 7™ ® 7. PROOF OF THEOREM 8§

In this section we describe the relation between the construction in the
previous theorem and the construction of Hecke operators in [26].

First we prove that the Hecke operators associated to the unitary repre-
sentation of G,

TRT=Adm,

constructed in [26], where 7 is as in part (i) of Theorem 6, may be constructed
directly using a splitting of the ergodic action of the group G' X G°? on G as in
part (iv) in Theorem 6, formulae (26) and (27). Let o be the homomorphism
of G into the automorphism group of P = £L(T" x K), constructed in Corollary
7.

Proof of Theorem 8. Note that the definition of W, is independent of the
choice of o in ['cI’, since by property (iv) in Remark 12 the homomorphism
a|r acts as the identity on £(I).

We also note that because L£(I") is the space of I'-invariant vectors in
P = L(I' x L>*(K, p)) for the homomorphism «, it follows that formula (28)
defines indeed a representation of the Hecke algebra.

Recall that by formula (42) in the proof of Corollary 7 we have

ay(p) = vrrgBy(p)orgr, pE P.
Because of formula (43), we obtain that for all o € GG and
x € L(T) S xpL(T" » L(K, p))xr,

we have

tFO’F tFUF

o (x) = Xrt 7 Xro@Xrot 7 XT
Note that the last expression depends only on the coset I'c € T"\ G.
In particular, for every

x € L(T) = xrpL(@)xr S xpL(I x L=(K, p))xp = LT 3 L=(K, p)),
we obtain that
(44) Eﬁ((g)xLoo(K,u))(aU(x» _ Z XftFJFXFJsixXFJsitFUFXf-

7
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Here, the families (s;), (¢;) are the Pimsner-Popa bases used in the proof of
(i) = (iii) in Theorem 6 from Section 5.
Then, the right hand term in the equation (44) is

This expression is further equal to the value at x of the completely positive

map constructed in [26], in correspondence with a representation 7 as in state-
ment (i) of the previous theorem. O

Consequently, the problem of determining the continuity of the repre-
sentation W of the Hecke algebra with respect to the norm on the C*-reduced
Hecke algebra ([5]), which is the essence of the Ramanujan-Petersson prob-
lem ([26]), is reduced to the analysis of the unitary representation induced by
« on the Hilbert space L?(P, 1) © C1.

We recall that in Proposition 13 we introduced the following notation:

Ao = LT ) L>®(K, 1)), Bs = L((G X GP) x L>(K, n)).

We use the trivial embedding G x {e} C G x G°P. We consider the reduced
crossed product von Neumann algebras

Coo = L(G % L®(G, 1)) € Do = LG x G) 1 LG 1)).
Note that

(45) Ao = XKkCooXK 3 Boo = Xk Doo Xk

We also consider the algebra D C L*(G, u) C C consisting of left K-
invariant functions in L>°(G, u). Obviously D = (>(T'\G).

By pr\¢ we denote the right regular representation of G' into the unitary
group associated with the Hilbert space ¢*(T'\G). With p = pg we denote
the right regular representation of G. For ¢ € G, we identify the unitary
element p, with the unitary, left convolution operator in L(G?) C Dy , that
corresponds to g. Then

(46) By = Ad(py), g€G,

defines an homomorphism from G°P into Aut(C).

Itis obvious that every 3, acts on C., by right translation by g on L>(G, ).
Each automorphism [, acts identically on £(G).

We introduce below a different equivalent formulation to the four equiv-
alent statements in Theorem 6. This is used to describe the homomorphism «
introduced in Corollary 7, in a form that is independent of the choices made
in the tensor product splitting defining .
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Lemma 14. The equivalent statements in Theorem 6 are further equiv-
alent to the following statement:
(v) There exists a unitary representation 0 : G — U(Cy,) with the following
properties:

(v.1) The unitary representation 6 of G is unitarily equivalent to the rep-
resentation pr\g.

(v.2) For all g in G, the unitary element 0(g~")p(g) belongs to the rela-
tive commutant D' N Cy.. Equivalently,

Adb,|p = Adp,y|p, g€G.

(v.3) The unitaries
W, =0(g"")plg), g€,

define a unitary representation of G into the type II, von Neumann algebra
Po={6(G)} =2 A.

Proof. We use the notation from the statement and proof of Theorem 6. We
first prove that the equivalent conditions (i)-(iv) imply condition (v). Consider
the selfadjoint elements constructed in formula (37). Because these elements
generate a G°P-equivariant matrix unit, it follows that the formula

(47) 0= > XrogX"XKor g€G,
Toel\G

defines a unitary representation of G into C,, that is unitary equivalent to the
left regular quasi-representation pr\q.

For ¢ € G, both Adp, and Ad 0, normalize D and induce the same
action on the algebra D.

It remains to prove property (v.3). Formula (47) implies that

(48) pr(0g)pn-1 = O(hgh™), h,g € G.
The above formula obviously implies that
O(h™")pn € 0(G)', heG,

and also that that h — 6(h™')pj, is a unitary representation of G. This com-
pletes the proof of the direct implication.

To prove the converse, we note that the unitary representation in part (iii)
of Theorem 6 may be defined by the formula

u(g) = xkWyxx, ¢€G.
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We summarize the results from the previous lemma in the context of
Corollary 7.

Lemma 15. With the above introduced notation we define

By =AdWy)le.., g€G.
Then, we have the following G-invariant isomorphism:
Coo = Ay ® B(*(D\G)).

Using the above identification and the homomorphism o : G — Aut(Ay)
introduced in Proposition 7, we obtain:

Ad(6,)8, = B, = ay @ Idpema)).-

We provide now a “coordinate free” description of the homomorphism
a : G — Aut(A,). This is important because, as also mentioned above,
the Ramanujan-Petersson problem for the action of the Hecke operators on I'-
invariant vectors for the unitary representation 7 @ 7 is equivalent to the weak
containment of the unitary representation of G induced by o on L*( A, 7) ©
C1, in the restriction to GG of the unitary left regular representation of the
Schlichting completion G of G.

Recall that the action of 3, on C is defined as follows. The automor-
phism (3, acts by right translation by g on L>°(G, 1), and it acts identically on
L(G).

Proof of Corollary 9. Parts (i), (ii) follow immediately from Lemma 14 and
its proof (see formula (48)). Property (iii) follows from the representation
in Lemma 15. This is because the homomorphisms (3,|4)4e¢ and « are the
same. The difference between the two cases is that in the case considered in
this statement we no longer perform a splitting procedure to find explicitly the
factor A. On the other hand, in the present context the factor

L(D) 2 L(T x {e}) C Cu

is canonically embedded in the commutant algebra ©’, which by definition
is equal to A. The formula in part (iii) is then a direct consequence of the
corresponding formula in Theorem 8.

To prove the uniqueness in part (iv), note that if #' is another represen-
tation as in (i), then necessarily there exists a unitary w € D’ such that

0; =wl,w*, geaqG.
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We write the second condition in (b) for the representation *. It follows that

Br(w)Br(0g) Br(w*) = whpgp—1w*, g,h €G.
Hence
c(g) =wB(w)e® =A, geaq.
Thus c is defining a cocycle in the cohomology group H é(G JU(A)). Tts triv-
iality would imply that wAw* = A. O

Remark 16. Let 7 be a representation as in part (i) of Theorem 6. Since
7|r is unitarily equivalent to the left regular representation of T', we identify
the Hilbert space of the representation 7 with £2(T"). We may also assume that
the representation ¢ constructed in formula (30) has the property that ¢(I'oT")
belongs to the full C*-algebra C*(G) for all o in G. This is possible by
choosing a suitable cyclic trace vector in the formula defining ¢ (see [26]).

Let C*((G x G°P) x L*™(G, 1)) be the full crossed product C*- algebra
and let C*(G x G°P) x L*(K, ) be the full groupoid crossed product C*-
algebra. Let II be the obvious representation of C*(G' x G°P) x L*®(K, )
into B(¢*(T")). Then:

(1) The formula for the representation u in part (iii) of Theorem 6 defines
a representation U of the group G, with values in the unitary group of the
C*(G x G°P) x L*(K, ). The explicit formula for U is

(49) U(o) = xxg(t""" @ 07 )xxk.
(i1) The correspondence W defined by
(50) ToT = xx (™" @ " T)xk, o€G,

extends by linearity to a unital x-representation of the Hecke algebra H into
C*(G x G°P) x L*=(K, p).

(ii1) Composing the representations U, ¥ with representation II, one obtains
the representation 7, and respectively the representation W, of the Hecke al-
gebra into B(¢?*(T")) constructed in Theorem 8

Proof. The statements (i), (ii) follow from the results in Section 7. The last
statement is a direct consequence of the formula (28) and of Remark 12. [

4. THE ALGEBRAIZATION OF THE SPACE OF INTERTWINERS AND
JONES’S BASIC CONSTRUCTION FOR A PAIR OF ISOMORPHIC FACTORS

We first introduce an abstract setting that serves the purpose of describ-
ing the spaces of intertwiners between subalgebras of the form

W(Fo),, Fo € S.
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Let o € G, and let (if the 2-cocycle ¢ is trivial)

90 . Fo-fl — FU,

be the group homomorphism implemented on I', -1 by the adjoint map o - o ~*

of the group element 0. We obviously have the intertwining property

m(o)m(v0) = (05 (70))7(0), 0 € Tpm1.

If e € H?(2, T) is non-trivial we use the setting introduced in Definition 3.

To describe the space of all intertwiners with properties as above, we in-
troduce a construction similar to Jones’s basic construction. Instead of work-
ing with a single subfactor, we start with a pair of subfactors of equal index,
with a fixed isomorphism ¢, mapping one subfactors onto the other one.

As in the case of Jones’s simultaneous construction for the infinite family
of subgroups I'y € S, where the result was the inductive limit factor A, in
formula (9), we also perform an infinite simultaneous construction for the
pairs of subgroups.

The inductive limit for the space of von Neumann algebra intertwiners
between subgroups in S is the type II; factor

G Boo = xx(L((G x G) % L2(G, 1)) X ke

Then B, contains .A,.. By construction, the II; factor B, encodes the algebra
structure of the spaces of intertwiners, corresponding to all subgroups in S.

In the above correspondence between the space of intertwiners and the
algebra B, the (projective) unitary representation 7 then corresponds to a
(projective) unitary representation v of GG into the unitary group of the nor-
malizer of A, in B,,. We have already observed (see Proposition 13, formula
(43)) that

Adu(o)[Ax] = A, 0 €G.

The homomorphism « is obtained as the restriction to 4, of the adjoint rep-
resentation Ad u of G

a(o) =Adu(o)|a,, o0€G.

In the following lemma we present an abstract formalism which estab-
lishes a correspondence between intertwiners, such as 7(o), o € G, of the
algebras m(I',-1)" and 7(I',)’, with elements in the algebra associated to the
crossed product introduced in formula (51).

We make essential use of the abstract formalism of spaces of intertwiners
to see that the composition operation of two intertwiners corresponds to the
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product operation in the crossed product algebra B, introduced in formula
(51).

The above correspondence between the two product operations is used in
the proof of (1) = (ii1) in Theorem 6. It shows that the expression in formula
(64) defines a unitary representation of GG. For an alternative verification, one
could also use Theorem 35 (i) in Section 7.

The following two statements are probably known to specialists in sub-
factor theory. As we did not find a reference, we state and prove them directly.

We perform a construction which is analogous with Jones’s construction
of the first step in the basic construction ([16]). Recall that in that case of a
single factor N C M, the first term of the basic construction is the algebra

(M,en) = MexM® = N' C B(L*(M,T)).

Here we reproduce Jones’s basic construction for a pair of isomorphic subfac-
tors of equal index. For a pair of isomorphic subfactors Ny, Ny, we replace
the commutant algebra N’ = Mey M with the space of intertwiners. This
space also carries a natural Hilbert structure, which we describe below.

The following definition and lemma are also the subject of Appendix 1
in [26]. We reproduce the proofs from that paper in the actual context.

Definition 17. Let M be a II; factor with trace 7. Let Ny, N; be a pair
of finite index subfactors of M, having the same index [M : Ny| = [M : Ny].
Assume we are given a fixed isomorphism 6 : Ny — N;. Let ey, en, be the
corresponding Jones projections onto the subfactors Ny, N;. We introduce the
following constructions:

(i) The space of f-intertwiners is defined by the formula:

Il’ltg(No,N1> = {X € B(L2<M, 7')) | Xno = 9(710))(7 Ng € N()}
(ii) Define Wy : L2(Ny, ) — L*(Ny, 7) by
Wg(no) = H(no), ng € Np.

Viewed as an element of B(L?(M, 1)), W, is a partial isometry mapping the
projection ey, onto the projection ey, .

In analogy with the Hilbertian A/-bimodules Mey, M and Mey, M,
which are the Jones basic construction terms from the inclusions N; C M,
1 = 0,1, we construct a Hilbertian M -bimodule M WyM, corresponding to
the pair of isomorphic subfactors.
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Definition 18. The Hilbertian M -bimodule MW, M is obtained from
the free M-bimodule M x M, by taking the quotient corresponding to the
relations:

(1)

(52) Wyng = 0(no)Wy, ng € No,
(i1)

(53) Wy = Wyen, = en, Wo.

(iii) The elements mWym’ € MW, M depend only on mey, and ey,m’
(iv) The following formula defines a scalar product on MWy M.

(54)  (mWem!,aWya') = T(a*mb(En,(m'(a)*), m,m’,;a,a" € M.

In the previous definition, we have to justify the compatibility of the four
conditions that describe the subspace defining the quotient of the free module.
This is done in the following lemma:

Lemma 19. We use the notation from the previous statement. The as-
sumption (iv) means implicitly that we are factorizing the free bimodule M x
M by the vector space corresponding to vectors of zero norm with respect
to the scalar product introduced in formula (54). The definition of the corre-
sponding scalar product is compatible with the conditions (i)-(iii).

Proof. Let m,m/ a,a’ € M, ny € N;i. Using the scalar product introduced
in formula (54), we have to prove that

(mnyWem' — mW,e0~ " (ny)m’, aWya') = 0.
We have
(mnyWym', aWpa'y = 1(a*mni0(En,(m'(a')")
= (B0 ()6, (' (a))
= 7(a*mf (0" (m))(En, (m'(a)")))
= 7(a*mb(En, (07 (n))m/(a')"))).

Here we use the fact that Fy, is a conditional expectation and that 6~ (n,)
belongs to N. U

Note that the scalar product corresponds exactly to the Stinespring dila-
tion of the completely positive map m — 6(FEy,(m)), viewed as a map from
M with values into N; C M.
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Definition 20. We refer to the above definitions. Let V' be any unitary
operator in Inty(No, N1). Then
Intg(N(), Nl) = V(Ng)/ = (Nl)’V

Hence Intg(Ny, V1) carries a canonical scalar product, induced by the trace
on the commutant algebra V), or equivalently by the trace on the commutant
algebra N|. Let L?(Inty(Ny, N1)) be the Hilbert space completion. This is a
Hilbertian M -bimodule.

Using the above definition, we prove in this more general setting that
the correspondence in the Jones basic construction for a subfactor inclusion
N C M between N’ and Mey M, holds true also in the case of a pair of
isomorphic subfactors.

Lemma 21. Let L?( MWy M) be the Hilbert space completion of MWy M
with respect to the scalar product introduced in formula (54). Then:
(i) The Hilbertian M-bimodules L?(Inty(Ny, N1)) and L*(MWyM) are iso-
morphic by the following the M -bimodule anti-linear map:

@y : Intg(No, N1) — L (MW, M),
defined by the relation
(55) (mWom!, ®9(X)) = 7(X(m')Ym), m,m’ € M.

(ii) Py extends to an isometry on the Hilbert space completion of Intg( Ny, N1),
with respect to the given scalar products.

Proof. To prove (i), by bijectivity we may instead verify the converse. We
have to check that, with the definition in formula (55),

X(ngm) = 0(ng)X(m),ng € No, m € M.
By taking a trace of a product with an element m’ € M, we have to check that
7(X (ngm)m') = 7(X (m)m'f(nyg)).

By using the above definition of ®y(.X) this amounts to

(m'ongm, 0(X)) = (m'0(ng)om,0(X)), ng€ N,m,m' € M.
This is true from the definition of the bimodule property of MWy M. U

If N' C N C M is a chain of subfactors, then the inclusion

N’ C (N,
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may be interpreted in terms of the Jones bimodules structure of the bimodules
associated to the basic construction as an inclusion

Men1M C MenM.

We extend this to the case of pairs of subfactors. For simplicity, we assume
that all indices are integer valued.

Definition 22. We use the definitions and notation assumed above. We
restrict the isomorphism 6 to an isomorphism of a smaller pair of subfactors
Nj C Ny, N} C N such that 6(Ny) = Ni. Assume that the inclusions
N}! C N, have equal, integer index.

It is obvious that

(56) Intg(No, N1) C Intg(Ng, N7).

Since the index of the inclusion NO1 C Ny is an integer, we may find a
Pimsner-Popa basis (r;) for Nj C Ny, consisting of unitaries. Let ey,, e N
be the corresponding Jones projection. Then ey, is given by

en, = Z TENIT].
J
Hence, since
Wona = Woepn,
we have a formal inclusion

(57) MWyM = MWyen,M € MWyens M = MWeyni M.

Lemma 23. The maps ®g and ®y 1 are compatible with the inclusions
in formulae (56) and (57)

Proof. To prove part (i1), we have to check the compatibility with inclusion
of the maps ®. In the bimodule construction, this corresponds to replacing in
the above bimodule the partial isometry Wy by

WgeN& = €N11W9 = W9|N6.

When using the maps @y, ®yy: the above formal inclusion expresses exactly
the compatibility of ®y, g y: with the inclusion maps. U

In the following lemma, we obtain an explicit formula for the map @y
constructed above. As in the previous statements we assume that all sub-
factors have integer index. This condition is probably not necessary, but we
consider it to have a simpler form of the statements.
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Lemma 24. In the context introduced above, let k = [M : Ny| and
assume that (s;)¥_, is a left Pimsner-Popa orthonormal basis for Ny in M.
Then ®g has the following formula:

(58) Dp(X) =D (X(s5;) Wpsj, X € Intg(No, V).
J
Proof. We note that the decomposition
MWy M = |_J[MWys;]
J
is orthogonal. Fix X € Inty(NVy, V7). By the orthogonality property, we may
assume that

Dp(X) =D ;Wps;.
J

By hypothesis, as left Ny-bimodule, M is the (/Ny-orthogonal) sum of
Noys;. Then
X(TLQSj) = 9(710)X(Sj), Ng € No.
Denote t; = X (s;). Then (¢;) is a Pimsner-Popa orthonormal basis for
Ny in M.
The relation between ®4(X) and X is:
(moWomy, ®g(X)) = 7(X(mq), mg).
Hence
(X(ma), mo) = (mgWymy, ©9(X)).
Hence, for a fixed j, taking m; = s; we obtain:
(tj,mo) = (X(s;),mo) = (mgWes;, ®a(X)) = (mgWes;, 2:Wos;).
Hence, it follows that for all mq € M we have
<tjv m0> = <m87 xj>a

or that 7(t;mg) = 7(xmg) and hence ¢; = 7, leading to
Dp(X) =D t5Wps;.
J

g

We use the previous construction to transform the unitary representation
7 of G considered in part (i) of Theorem 6, into a unitary representation of
G with values in the algebra B.,. The next lemma translates for the product
formula for intertwiners in the context of spaces of bimodules.
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For simplicity, we assume from now on in this section that the factor M
is a group von Neumann algebra (eventually skewed by a cocycle), and that
all subfactors that are considered correspond to subgroups of finite index. We
also assume that all isomorphisms between subfactors are induced by sub-
group isomorphisms (this condition may certainly be relaxed, but in our main
application this condition is verified anyway).

Lemma 25. Consider two pairs of equal index subfactors Ny, N1 and
N1, Ny as above, and isomorphisms 0y : Ny — Ny and 01 : Ny — Na.
Assume that there exists a pair (Ng, N3) of equal finite index subfactors of
M, N& C Ny, ]\721 C N,. Assume also that there exists an isomorphism 6’(1)
mapping Ng onto N3, such that the composition 0 o 0, is defined on N and
it is equal to 0}. Then:
(i) The composition operation

(59) Intg, (No, N1) x Intg, (N1, Na) — Intgr (Ng, Ny)
is well-defined.

(ii) The product operation in formula (59) induces a product map
(60) MWoy M x MWy M — MWq M,

compatible with the the maps ®q,, Pg,, Pg1 constructed in Lemma 21, corre-
sponding to the composition of 0, with 0.
The image of MW, M x MWy, M in (60) is a sub-bimodule of MW 1 M.

Proof. The only verification that needs checking is the fact the product for-
mula on products of bimodules corresponds to the composition of intertwin-
ers. To verify the product formula, by linearity it is sufficient to consider
simple intertwiners that map a set of coset representatives into a set of coset
representatives. In this case the product formula is just a consequence of the
enumeration of cosets for subgroups and of subgroups of subgroups U

Remark 26. More generally, one may consider a family, indexed by a
set S, of pairs of equal index subfactors, along with isomorphisms mapping
the first subfactors into the second:

NS Np, ses.

By the technical assumption, the Jones projections for the subfactors Nj, N7
mutually commute for all s € S.
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We assume that for any two elements 0;,, 0, in the family (;);cs, there
exists a third element 6, in the family such that the composition 6, o 6,
restricts to 0, .

Let B, be the union of all bimodules in the family. Then B, has the
associative x-algebra structure introduced in formula (60) . We define a trace
on B, by composing the trace on M with the projection onto the M-th com-
ponent.

By performing the above construction, we obtain a von Neumann alge-
bra B, the simultaneous Jones’s basic construction for the family of pairs of

subfactors (N 5N 7)ses. Then B, is isomorphic to the algebra of all inter-
twiners in the family (6;)scs, containing all intertwiners Wj_, s € S, all the
corresponding Jones projections, and the algebra M.

5. PROOF OF THE IMPLICATION (1) = (1II) IN THEOREM 6

In this section we complete the proof of Proposition 6 by using the con-
struction from Section 4. A different proof follows from part (i) in Theorem
35. The latter proof has the advantage that it also works in the case D, # 1.
On the other hand, the realization of spaces of intertwiners in terms of bimod-
ules, as in this section, will be used in Section 6, Proposition 29 (i), formula
(73), to find a compact formula for cocycles for unitary perturbations of uni-
tary representations as in part (iii) of Theorem 6.

Proof of the implication (i)=> (iii) in Theorem 6. To construct the unitary rep-
resentation u of (G into

XE(L((G x G) 3 L(G, 1)) xr

we use Lemma 17 and Lemma 25 .
For every 0 € G we consider the subgroup I', C T'. If the 2-cocycle
is trivial, we let the isomorphism

0, : L(T,—1) — L(T,)

be the conjugation by o. In the general case (when ¢ is non-trivial we use the

construction for #, introduced in Definition 3). By taking inductive limit as in

Remark 26, we obtain a type II; factor B,,. We denote by Wy, _ the isometry

W, = 6, restricted to £*(T',-1) (for non-trivial € we use the space 3 (I'y-1) ).
The bimodules constructed in Lemma 17 are of the form:

L) Wo)er,  £(T) = LD)er, (W)L(T), o €C.
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We identify the partial isometry W, with the partial isometry
(c® 0_1)ep0_1 =er,(c®0c™h), oc€d.

In this identification, the algebra B, is generated by £(I') ® 1, the partial
isometries (W, ),cc and the Jones projections (er, )seq-

Then B, is isomorphic to a corner of the reduced von Neumann algebra
crossed product L((G x G°P) x L>(G, p)), as follows:

(61) Boo = xr(L((G x G) x L>(G, 1)) X

We recall that by Remark 11 it follows that using the groupoid action of
G x G°P on K, we obtain the isomorphism

(62) B = L((G x G) 3 L™(K, 1)),

with unit identified to xF.
For o € G, using the definition of the isomorphism 6,,, we have that

7(o) € Intg, (m(I'y-1), 7(Ly)).

Let
s,e LO) 2D, i=1,...,[[:T,],
be a system of I',-left coset representatives. More generally, we could only

assume that the family (s;)is a Pimsner-Popa basis for the subfactor inclusion
L(T,) C L(T). We let

ti=m(o)s;, i=1,...,[:T,]

With the identification for the space of intertwiners used in formula (58),
each intertwining operator (o), corresponds, because of Lemma 24, to

(63) S Wy, s € B,

Consequently, for all o € G, using the isomorphism from formula (62),
the unitaries (o) correspond to the unitary elements u (o) given by the for-
mula:

(64) Z(tf®1)(0®0‘1)6r(,71 (si®1) € xp(LU(G X GP)x L™(G, 1)) Xr-

The above formula gives, for every o € G,

u(o) = ZXf(t;‘k @) (e @0 ")(si ® L)xgp = ZXf(thSz‘) ® o 'xr.

(2
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We denote by t'°" € L£(G) the sum Y t;os;. Note that this is exactly

the expression used in formula (30). Consequently, we have the following
expression for the unitary u(o):

(65) u(o) = xg(t"" @ 1) (1®o Xy o €G.

Recall that o — (o) is a unitary (projective) representation of G.
Hence, by using the product operation introduced in formula (60) from Lemma
25, it follows that formula (65) defines a unitary representation u of G°P into

LG x G) 3 L=(K, ) = xpL£((G x G) X L=(G, 1)) xr-

We note that, a priori, in the above construction we are initially working
with a larger C*-norm on the crossed product C*-algebra, coming from the
full crossed product C*-algebra

C*((G x G) x L¥(K, ).

The initial choice of this C*-algebra crossed product norm corresponds
to the fact that we are working initially with a representation of the above
groupoid crossed product C*-algebra into B(¢*(T")). This representation is
obtained by letting G x G°P act by left and right multiplication operators on
(*(T"). This is due to the fact that the values of the unitary u(o) belong in the
first identification to bimodules of the form

L*(L(T)(Wy)er,_, L(T)).

On this bimodules, we have a left and a right action of G’ by multiplication.
On the other hand, the support of u(c) on the component corresponding
to G°P is a singleton, so with respect to the component of G°? we may use the
reduced C*-norm topology. Similarly, corresponding to the G-component of
the crossed product, the values of the unitary u(c) are already in [?(T'oT).
Hence the unitary representation u of G takes values in the reduced von
Neumann algebra crossed product. Consequently, we may use indeed for
the algebra B, the reduced, groupoid, skewed, von Neumann algebra norm.
Thus the representation « has values in the von Neumann reduced (skewed)
groupoid crossed product ([31]). U

6. THE CLASSIFICATION OF THE REPRESENTATIONS 7 UP TO UNITARY
CONJUGACY. PROOF OF THEOREM 4

In this section we prove that the unitary representations 7 of the group G
with the property that the restriction of 7 to I' is unitary equivalent to the left
regular representation (D, = 1) are classified, up to unitary conjugacy, by the
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first group of cohomology of the group I with values in the unitary group of
the factor P.

Remark 27. Let 7 and 7; be two unitary representations of G such
that 7|r = m|r = Ar. Assume there exists a unitary U conjugating
with 7r;. Then necessary U € R(I'). Using the canonical anti-isomorphism
R(T') = L(T), the unitary U corresponds to a unitary operator U € £(T),
with the properties introduced bellow, in formula (66). Let ¢, respectively ¢,
be the representations of the Hecke algebra constructed in formula (30) that

are respectively associated with the representations 7, respectively ;.
Then:

(66) t,(ToT) = Ut(ToD)|U*, o € G.

In the above equality we replaced U by U because we are passing, using
the canonical anti-isomorphism, from right convolutors to left convolutors.
The above identity is a consequence of the fact that in order to compute the
coefficients for the representation ¢; as in formula (30), one has to substitute
the cyclic and separating trace vector 1, used to compute the coefficients of ¢,
by the vector U € L(T") C ¢*(T') = H.

The converse also holds true: Let 7,7 be two unitary representations
of GG, whose restriction to I' is the left regular representation. Let ¢, ¢; be the
associated representations of the Hecke algebra introduced in formula (30).
Assume that the equation (66) holds true for U a unitary operator in £(I").
Using the canonical anti-isomorphism £(I') = R(I') we obtain a unitary
U € R(I') = 7(I') = m (). Then the unitary U conjugates the unitary
representation 7 and m; of G.

Indeed the equality in formula (66) implies that the matrix coefficients
of the two representations coincide.

We prove in this section that the homomorphism o : G — Aut(P),
constructed in Theorem 6, is uniquely determined up to cocycle conjugacy.
Moreover, the representations 7 are classified, up to unitary conjugacy, by the
cohomology group H} (T',U(P)).

Recall that u : G — U(P) is a 1-cocycle with respect to the action « if

Ugrgy = Ugi Agy (ugz)a 91,92 € G.

We have:
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Proposition 28. Let m be a (projective) unitary representation of the
group G as above. Let o : G — Aut(P) be the homomorphism constructed
in Corollary 7. Then
(i) Any other homomorphism & : G — Aut(P) obtained from a similar split-
ting data as in Theorem 6, is of the form &, = Ad(uy)cy,, where u, € U(P)
is a I-cocycle of G with respect to oy, with values in the unitary group U(P).
(ii) The unitary representations 7' of G, whose restrictions to I are unitarily
equivalent to the left regular representation of I are classified, up to unitary
conjugacy, by the first cohomology group HL(G,U(P)).

(iii) A cocycle c in the cohomology group HL(G,U(P)) is trivial if and only
if ¢ is the coboundary of a unitary element in L(I') C P = L(I' x L>(K, p)).

Proof. Let a = (a)4ec be as in Theorem 6. Then M = L(G »x L>(G, n))
has the G°P-equivariant tensor decomposition P® B(I*(T'\G)). The canonical
action of G°P onto M is

oy ® Adpr/a(g), g €G.

Elements in M are consequently identified with infinite matrices

(pFal JToo )Fo‘l JLo2e’\G>

where the entries pr,, ro, belong to the algebra P. Because any two matrix
units are unitarily equivalent in a type Il factor, it follows that any other
G°P-equivariant matrix unit will be of the form

(u(ral)u(FUQ)*)FU1,P02€F\G7

where u(I'o) are unitaries in P forall['oc € '\ G.
For every o € (G, we identify the coset I'c with the characteristic func-
tion xx,. Then the diagonal algebra

D=1\ G) € BI*(I'\ G)) € B(LX(G % L*(G, )

is independent of the choice of an equivariant matrix unit.
The family (u(I'0))roer\¢ defines the unitary

(67) w= > ul0)® xr.
Foel'\G

Then the unitary w belongs to the unitary group of the algebra
D'NL(G x L>®(G, ).
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We denote the initial matrix unit associated to the homomorphism «, splitting
the action of G°P, by

(Ural,rag)ral,razer\a-
We impose the G°P-equivariance condition on the perturbed matrix unit

51“01,1‘02 = u(Fal)*u(Fag) X Uloy,Toas FO’l, FO’Q € F\G

We consider the type 1, von Neumann algebra generated by the matrix
units introduced above:

B = {1, 10y| Doy, Doy € T\GY', B = {Urg,r0,| T'o1, Loy € T\G}.

For every double coset I'oI" in G, let
68)  X"T= N vrere, XT= ) e

Loioy 'T=Tol Loioy 'T=Tol

These are the elements constructed in formula (37) in the proof of the impli-
cation (iv) = (ii) in Theorem 6.

Consider the correspondence mapping [['oT’] — XT°! and the corre-
spondence mapping [[oT'] — X'°T, where [['oT] runs over double cosets.
Then both correspondences extend by linearity to *-representations of the al-
gebra Hy = C(I'\ G/T"). As explained in the proof of Theorem 6, this repre-
sentations extend to representations of the reduced Hecke C'*-algebra H, with
values into the algebra £(G). Then we have:

(69) w [(Ufol,Faz)Fal,FazeF\G} w* = (5ral,1“02)ral,roger\c-
Consequently

wBw* = B ,
and

U)XFUFUJ* — XFO’F’
for all double cosets [['oT'].

The G°P-invariance of the perturbed matrix unit (Ure, 1o, )roy,leser\G
implies that the unitary (,(w) has the same properties as w. Consequently
By(w)*w belongs to B’ = P ® I.

It follows that

c(g) = By(w)'w, g€@G,
is a 1-cocycle for the group G with respect to «,, with values in U (P).

Let & : G — Aut(P) be the homomorphism associated in Theorem 6 to

the G°P-matrix unit (Ure, re, )ro, reser\c- Then

a, = Ade(g)ay, ge€G.
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This completes the proof of part (i) in the statement.

If, in the first cohomology group H] (G, P), the 1-cocycle ¢ with values
in P~ P® 1= B C D’ vanishes, then it follows that there exists a unitary
p € P such that

(70) c(g9) = By(p*)p, g €G.
Let w be the unitary introduced in formula (67). Then
(71) By(w*)w = By(p")p,

for all g in G. Hence

Bg(wp®) = wp", g € G.
Consequently the unitary operator wp* belongs to the subspace of G°P-invariant
elements of L(G x L>(G, u)). Hence

wp* € L(G).
Since both w, p belong to D’ it follows that
wp* € L(G)NI®(T\G) = L(T).

We obtain that there exists a unitary operator x € L£(I') such that w = xp.
Recall that, by definition, the unitary p € P commutes with the matrix unit
(Urey Tos )Tor Taser\- Using equation (69) we obtain that

w [(Urol,rag)ral,r@er\e] w'=ux [(UF0'1,F02>F0'1,F0'26F\G:| z*
= (Ure,,Tos )To1,lonel\G
and
wBw* = zBaz* = B.
Using equations (68) we obtain that
XToT = X' el

Recall that in Theorem 6 we proved that the elements constructed as
in the formulae (68) are the same as the elements t(I'oT"), t'(I'ol’), 0 € G,
associated to the (projective) unitary representations 7 and 7’ in part (ii) of
the above mentioned theorem (formula (30)).

Using Remark 27, it follows that the unitary representations 7 and 7’ are
conjugated by a unitary. The last statement is done in two steps: first we may
assume, up to conjugation by a unitary operator, that the unitary representa-
tions 7 and 7/, when restricted to I, are equal the left regular representation of
the group I'. In a second step, we use the unitary x constructed above to verify
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the hypothesis of the converse statement in the above mentioned remark. This
completes the proof of part (ii) in the statement.

To prove part (ii1) we use the above arguments. Assume that c is the
cocycle relating two homomorphisms « and « of GG as above. The cocycle
c¢(g) relating the homomorphisms « and « is trivial if and only if there exists
a unitary p € P such that equation (70) holds true.

From the previous part it follows that oy, differs from o, by conjugation
with Ad(x), where x is a unitary element in £(I").

The homomorphisms « and & of G into Aut(L(I" x L®(K, u))) are as-
sociated to the representations 7 and respectively 7’ by the correspondence
introduced in Corollary 7. The equivalent construction for the homomor-
phisms « and «a described in the introduction, is realized by conjugating first
the representations 7, 77’ by a unitary so that 7|, 7'|p are the left regular
representation of I.

We have therefore proved that if c is trivial, then the unitary p in the
above mentioned formula may be replaced by a unitary x in £(I') C P. Thus

c(g) = By(z")z, geG.
U

In the next proposition we prove that the value at o € G of the 1-cocycles
relating two unitary representations as in part (iii) of Theorem 6, have an
expression that depends only on the double coset I'oT".

Proposition 29. Given a representation  as in Theorem 6 (i), consider
as in part (iii) of the above mentioned theorem, the associated (projective)
unitary representation v : G — U(By). Let u' be the (projective) unitary
representation of G into B, corresponding to another representation 7w’ of G,

as above. Let v : G — U(Aw) in ZL(G,U(A)) be the 1-cocycle defined by
(72) u' (o) =v(o)u(o), o€QG.

Then:

(i) The 1-cocycle v has the following form: For each double coset I'cl’, there
exist Pimsner-Popa bases (IEFGF]), (yl[rar]) in L(T'),i=1,2,...,[ : T,], for
the inclusions L(I',) C L(T") and respectively L(I',-1) C L(T"), such that

| R Y|

[
(73) vio) =3 ok @1 € Ax C B
i=1
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(ii) The (projective) unitary representation 7 is unitarily equivalent to 7' if
and only if v is a coboundary. In this case, there exist a unitary w € L(I)
such that

v(g) = wlu(g)(w)ulg)], geG.

Proof. We may assume that the unitary representations 7, 7’ act on the same
Hilbert space and that 7| = 7’|r. The formula (72) is a consequence of the
previous statement and of Proposition 13, since by the ergodicity assumptions,
the relative commutant of A, in B, is trivial.

Foro € G, let

By definition, we have that

(74) V(o) e n(T,)".

It follows that V(o) depends only on the coset o' for o € G. We have
(75) Viyo) =7(y)V(o)r(7)", veTl o€

Using the identification in Section 4 of intertwiners with elements in the alge-
bra B, it follows that V' (¢), as a self-intertwiner of the von Neumann algebra
7(I';)" corresponds to a 1-cocycle v as in formula (72).

Using the identification in formula (11), formula (75) translates into a
similar formula corresponding to the canonical right action of v € I', map-
ping Ar, into Ar,,. This fact and equation (75) are translated, using the
terminology from the previous section, into the content of statement (1).

The statement (i1) is a direct consequence of Proposition 28. U

Proof of Theorem 4. The proof of the implication (i) = (iii) in Theorem 6
proves that the homomorphism « constructed in Corollary 7 coincides with
the homomorphism « : G — Aut(P) introduced in formula (14). The latter is
automatically a lifting of the map ® to a homomorphism from G into Aut(P).
This completes the proof of part (i).

Part (ii) is a direct consequence of formula (74). This, combined with
the result in Proposition 28, proves part (iii). U
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7. GENERALIZING TO THE SITUATION D, # 1

In this section we construct the technical tools necessary to generalize
the previous results to the case when the unitary representation 7 that re-
stricted to I' is a multiple (not necessary an integer) of the left regular repre-
sentation of I'. In this section we assume that 7 is a proper unitary represen-
tation (we are assuming that the cocycle ¢ is trivial).

Recall that the Schlichting completion G of the group G is a locally
compact group, that is totally disconnected and contains GG as a dense sub-
group. The Haar measure on G is denoted as before by p. We denote by S
the lattice of finite index subgroups of A generated by subgroups of the form
KnoKo ' oed.

We consider the following reduced crossed product C* algebras:

(76) A = r*ed(g X LOO(g7 ,LL)),

(77) B = :ed«g X GOP) X LOO(QM))

For a measurable subset A of G, we identify the characteristic function with
the corresponding projection x4 € L*(G, ).

By L(xa) we denote the corresponding left convolutor in C,(G). By
R(xa) we denote the corresponding right convolutor, viewed as an element

in O:od(gop)'
We also consider the C*-algebras:
(78) C= XKBXK = C:ed((g X Gop) X LOO(Ka :u)) and
D= (G X GP) x L>(G,
79 XK Creal( ) (G, 1)xx

= Creal(§ x G) x LX(K, ).

In the above equations, the groups G x G°P and G x G°P have an obvious action
by partial measure preserving isomorphisms on K, and the second algebra in
both equations is a reduced crossed product groupoid C*-algebra. Let Ay, By,
Co, Dy be the corresponding involutive unital subalgebras of the C*-algebras
A, B, C, D that are generated by the characteristic functions of cosets in G of
subgroups in S, by convolutors with such characteristic functions and, in the
case of the algebra B, by the elements of the group algebra, over C, of the
group G.

Remark 30. The multiplication rule in the C*-crossed product algebra
A= CF (G x L>(G, ) is determined as follows:
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(i) For every I'y € S, let Xk, be the characteristic function of a subgroup
Ko = I'y. Then for all g € G we have

L(XKO)XKOQ = XKOQL(XKO) :

(ii) If A, B are measurable subsets of G, such that there exists a subgroup K|
as above and finite families (s;), (¢;) in G with

A= USiK07 B = UKOtja
i J

then
B0)  L(xa)X5 =Y L(Xsx0)Xkot, = sz o, LXsio )
1,j
Proof. Property (1) is obvious since K is a subgroup. Property (ii) is a direct

consequence of Property (i). O

First we prove that the unitary representations v and ¥ from Theorems
6 and 8 have an abstract counterpart, taking values in the algebras C and D.

Theorem 31. For o € G, let xk,x be the characteristic function of the
double coset Ko K. Define

(81) U(o) = xx(L(xkox) ® 0 ')xk €C,
(82) Uo(Tol') = xx (L(XKkor) @ R(XKo-1k))XK € D.
Then:

(i) U is a unitary representation of G into U(C).

(ii) The correspondence associating to a double coset I'cl" of T in G the ele-
ment Wo(T'oT") extends by linearity to a x-representation of the Hecke algebra
Hq into D.

Proof. Fix an element 0; € G. Let (s;) be a family of coset representatives
forT,, = o;To;'NTinT. For # € G, let Ky be the subgroup §K0~' N K.
It is then obvious that

U<Ul) - Z<L(XK‘7151) ® Ufl)XKﬂsfloflKal
(83)
- Z XKO’lsl ® 01 )Xs;lK e
71
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Let o, be another element in G. Let (r;) be a system of coset representatives
forI',, in I'. Then

U(O_Z)U(Ul) = XK[Z(L(XKO'QT‘J-UL%) ® 01_10—2_1)XKﬁsi_101_1K011| :
(2]
This is further equal to
(84) Z(L(XKagrjals,-) X 0-1_10-2_1)XBM7
,J
where
B'L’,j = {k’ S K\Ulsikafl S K, agrj[alsik‘afl]agl € K}
Thus, for a fixed ¢, B; ; C s; lKafl is the preimage, through the map

o18; - 07,
of the partition of the subgroup K, given by
(Tj_lKUz N KU1>Z}J"

Since the cosets s; 1K01—1 are disjoint, (B; ;); ; is a partition of K.
On the other hand a term of the form

(85) Xk (L(XKa @ 0703 ) XK,
is different from zero if and only if K« is contained in K10,/ . Hence
& = 092017,

where v 1s a coset representative for I',,,, in I'. Thus a non-zero term in
formula (85) is necessarily of the form:

(86) L(XKo ® 07 oy )Xot

When v runs over the set of coset representatives for I',,,, in I', the sum
of the terms in formula (86) is

Kioyop—1-

U(0201) = Xx(L(XKor0ax @ 07 05" )Xxc
Since both families (v"' K (y,,,)-1), and (B;;);; are partitions of K, it
follows that sum of the terms in formula (84) is also equal to U (o201 ), and
hence U is a unitary representation of G.
The second formula is proven by a similar argument (see also [30]) not-
ing that,in the above notation, one has that

X (LOXxoi) @ R(X ko1 6))XK = D L(XKos)DR(Xo15-15) X ks o1 Kcos,

27‘7
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g

Definition 32. Consider the following operator system inside C'*.,(G):

€ = Sp{L(Xo.x)L(XKoy)|o1,02} C Crea(G).
Obviously the Hecke algebra of double cosets

HU = Sp {L(XKO’K>|U c G},

is a subspace of £.
Using the product in the algebra C (G), it follows that every double
coset X kox acts on &, extending by linearity the correspondence

(87) L(XalK)L(XKUz) - L(XalK)L<XK0K)L(XK02> € gv 01,02 € G.

Definition 33. Let I/ be an abstract involutive algebra over C. Assume
that U contains L>°(G, 1) and an involutive subalgebra V' such that

U= Sp[V - L=(G,p)]= Sp[L=(G,pu) V]

We say that a linear map ®, defined on A, with values into I/, is a SO-system
map if the following properties hold true:
(i) The restriction of ¢ preserves the operation described in Definition 32.
Thus we assume that for all o, 01, 09 € GG we have
(83)

(L (Xo 1) L(X KoK ) L(XK02)) = P(L(X01 ) P(L(X Ko 1)) P(L(Xo 1))

(i1) The map P is x-preserving, that is, for all 0 € GG, we have

(xxo)" = P(Xok)-
(iii) The map & is preserving the support in L>°(G, ), that is:

(89) (I)(lefZ):flq)(X)an fl>f2€Loo(g7:u)7X€€

We recall the context from the paper [27]. Let 7 be a unitary represen-
tation of (7 into a Hilbert space H. Assume that 7| admits a closed subspace
L C H such that

m(L L L yel\{e},

and

Sp{r(y)Lly €'} = H.
We will call such a subspace a I'-wandering generating subspace of H. In
particular 7| is a multiple of the left regular representation A\r with multi-
plicity equal to dimcL. Assuming the above conditions and assuming that
dimcL is a finite integer, the following proposition was proved in [27]. Let
pr : ' — U(F*(T)) be the left regular representation of I'. Let pg be the right
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regular representation of G. Let R(G), respectively R(I'), be the II; von
Neumann algebras generated by the right regular representations of G' and I"
respectively.

Proposition 34. (see [27], [30]). Let P;, be the orthogonal projection
from H onto L. For A a coset of a subgroup in S define

(90) ®.(L(xa)) = > p(0) @ PLr(6) P,

0cA

Then ® takes values in R(G) ® B(L) and ®|¢ is a representation of the
operator system &, that verifies properties (i) and (ii) from Definition 33.

Using this, we can easily show that one can construct a representation
into R(G) ® B(L) = L(G) ® B(L) of the unitary representation and the
Hecke algebra representation constructed in Theorem 31. With the notation
from the previous proposition we can prove the following:

Theorem 35. (i) For every o € G, the formula
U(o) = xx(Px(xror) @ 0 xx € L((G®GP) x K)® B(L)

defines a unitary representation U of G into L((G ® G°P) x K) ® B(L).
(ii) The mapping

T(xror) = X&(P(XTor) ® ®(X1ro-11))XK € L((G ® G?P) x K) ® B(L)

extends by linearity to a representation of the Hecke algebra H, into L((G ®
G°?) x K) ® B(L).

Proof. We extend ® to the algebra generated by £ and L>°(G, i) in Ag. It is
obvious that this can be done by letting ¢ be equal to the identity on L>°(G, 1).
Because of the formula (90) and using the results from Proposition 34, it
follows that the extension of ® verifies the conditions from Definition 33.
Since the verifications of the statement of Theorem 31 involve only identities
of the type considered in Definition 33, it follows that the extension of ¢
to the corresponding algebras translates the content of Theorem 31 into the
statement of the present theorem. U

Remark 36. Having constructed the unitary representation U as in part
(ii1) of Theorem 6, one may repeat ad-litteram, in this more general setting,
the proof of the statements from the previous sections.

The case where 7|r is a finite, but not necessary an integer multiple of
the left regular representation, may be treated as in [27]. One assumes that
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the representation 7 admits a G-invariant subspace H, such that in the com-
mutant of 7(I"), the projection P, onto Hy has trace ¢, a positive real number.
Then one considers the unitary representation m(g) = Fym(g)P, g € G,
which corresponds to the case where the multiplicity of the left regular rep-
resentation A\ in mo|r is equal to ¢ (in the sense of the Murray-von Neumann
dimension theory). In this case all the above arguments may be repeated,
replacing formula (90) by the formula

1) = p(0) @ Prro(6) P

feA
The case where the representation 7 (and hence 7) is unitary, projective is
treated as in [26] (see also [28]).

We note a few remarks regarding the relation of this paper with the re-
sults in [30].

Remark 37. Consider a general representation 7, on a Hilbert space H,
such that 7o |r is a multiple of the left regular representation Ar. In [30] we
proved that there is a corresponding representation 7! on a Hilbert space

", encoding all the information on the action of the representation 7, on
the extended vector space of vectors that are invariant to subgroups in S.
The representation 7¢ is obtained through an adelic completion proce-
dure, and therefore we will use the symbol = to denote an object obtained
through such a construction. For the conjugate Hilbert spaces and represen-
tation, we will use as usual the bar symbol. The essential property of the
representation 7, is the fact that it extends to a C*-representation, also de-

noted by 7;*, of the amalgamated free product C*-algebra
(92) C*(G) *c(xy [C(K = L¥(K, )]
into B (Foad). It is proved in [30] that the character of the representation 75!
is determined completely by the character of the representation 7.
In general, if L is a Hilbert subspace such that

Hy = L® (*(T)
and
7T0|F = Id@)\r,

then L is identified with the subspace of ['-invariant vectors. For I'y € S, the
space H,° of T-invariant vectors is

(93) Hy° =2 L@ 3(To\I).
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The space Foad is then defined by
" = Lo LXK, p).

The factor L>°(K, 1) in formula (92) acts in this representation by multipli-
cation on the factor L*(K, i) in formula (93).

In the case presented in this work, for a unitary representation 7 as in
the statement of Theorem 6, the unitary representation 7, is Ad(7(g)),ec
acting on the space of Hilbert-Schmidt operators on the Hilbert space H.
Equivalently, 7, is the unitary representation 7 ® 7 acting on H, ® H,. The
hypothesis that D, = 1 corresponds to the fact that

Hy=H,® H, = *(T') @ (I).

Then

Frad ~ )2 2

Hy =)@ L* (K, ).
Clearly, since

L*(P,7) = L*(L(T = L®(K, p))) = *(T) @ L*(K, ),
we obtain, using the algebras introduced in formula (11), that
Hyo =2 L*(Aor,7) 2 (D) @ C(T,\D), o€,

and
" = A1) ® LXK, j) = L*(P,7).
The homomorphism « : G — Aut(P), which extends to C*(G) using condi-
tional expectation on the algebras A,r, o € GG, yields a unitary representation
U, of G into L*(P, T).
Then, using the above isomorphism, the representation U, is unitarily

equivalent to the unitary representation 7.

We use the context from the Remark 37 to state the following conjecture:

Remark 38. The statement of the Ramanujan-Petersson conjectures may
be generalized ([26]) to the question regarding weak containment of the uni-
tary representation 7>? of G (equivalently of G) in the left regular represen-
tation of G (restricted to G if we analyze only representations of GG). Thus an
equivalent form of the above conjecture is the question whether the unitary
representation U, | r2(p)ac1 18 weakly contained in the restriction of the left
regular representation of G to G.

Recall, as observed in Theorem 4, that factorizing the homomorphism «
to the group Out(P) = Aut(P)/Int(P), one obtains a canonical homomor-
phism G — Out(P) that is independent of choices. We also recall that the
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canonical Cartan subalgebra in the II; factor £(I" x L> (K, p)) is unique, up
to inner automorphisms ([21], see also [14], [24]).

We conjecture that the property of weak containment in the left regular
representation introduced above is independent of a cocycle perturbation of
the representation U, as in Theorem 28.
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