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Abstract We present a global analysis of the center manifold of the collinear points in the
circular restricted three-body problem. The phase-space structure is provided by a family
of resonant 2-DOF Hamiltonian normal forms. The near 1:1 commensurability leads to the
construction of a detuned Birkhoff-Gustavson normal form. The bifurcation sequences of
the main orbit families are investigated by a geometric theory based on the reduction of the
symmetries of the normal form, invariant under spatial mirror symmetries and time rever-
sion. This global picture applies to any values of the mass parameter.
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1 Introduction

Motion around the collinear points of the spatial restricted three-body system is a classical
and rich problem in Celestial Mechanics. Historically the study started with the investiga-
tion of orbit families with particular emphasis on the ‘halo’ orbits, using at first pioneering
numerical methods (Farquhar & Kamel 1973; Hénon 1973) and subsequently perturbation
theory methods like the Poincaré-Lindstedt approach (Richardson 1980; Jorba & Masde-
mont 1999). Whereas the description of these orbits became satisfactory enough to be use-
fully exploited as a basis for space missions (Howell 1984; Gómez et al. 2001), a deep and
general understanding of the general orbit structure has been obtained only quite recently
with works devoted to the systematic construction of the invariant manifolds around the
equilibria (Gómez & Mondelo 2001; Ceccaroni et al. 2016; Delshams et al. 2016; Guzzo &
Lega 2018; Walawska & Wilczak 2019).

Here we want to describe the main features of the center manifold of L1 and L2, namely
the subspace remaining after the elimination of the stable/unstable submanifolds at each en-
ergy level. The motivation comes from the necessity of ‘seeing’ their orbit structure, using
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an expression due to Guzzo (2018) and has also been inspired by the approach adopted by
Lara (2017) to treat the case of the Hill problem. The structure of the center manifold can
most effectively be obtained from a normal form (Celletti et al. 2015; Ceccaroni et al. 2016)
which captures both the hyperbolic dynamics normal to and the elliptic dynamics on the
center manifold. The normal form is constructed from the hyperbolic-elliptic-elliptic linear
term in which the two unperturbed elliptic frequencies are very close to resonance and the
hyperbolic dynamics are encoded in the conservation of a formal integral of motion. Af-
ter the center manifold reduction, performed by choosing initial data such that this integral
vanishes, what remains is a standard ‘detuned’ resonant normal form (Henrard 1970; Ver-
hulst 1979). Here we show that already the first-order truncation of the normal form series
is generic in such a way to capture the main features of the phase-space around the collinear
equilibria (Marchesiello & Pucacco 2014, 2016). Higher-order terms improve only quanti-
tatively the analytical predictions.

A most effective description is achieved by means of the invariants of the isotropic oscil-
lator (Cushman & Bates 1997; Hanßmann & Hoveijn 2018) which plays the role of resonant
unperturbed system. Then, a singular reduction process of the normal form (Efstathiou 2005)
does the rest of the job. Fitting the coefficients of the normal form in order to get a model
valid for arbitrary values of the mass parameter, as done in Ceccaroni et al. (2016), we get a
‘universal’ description of the main bifurcations associated to the resonance.

We stress here the global structural stability of this family of models: their features do
not change under small perturbations of the parameters. The proof of this statement can most
easily be obtained by exploiting the geometric reduction approach. The main ideas on which
this method grounds (Cushman & Rod 1982; Hanßmann 2007) are highlighted hereafter in
order to have a self-contained setting. The resulting tool-box is a set of actions and mappings
from orbits on the phase-space to points on a reduced space. In particular, periodic orbits are
mapped to critical points. Their cardinality and nature provide the backbone of the family
of models. Changes produced by varying the energy level are associated with bifurcations
and stability transitions. The normal modes of the system (the ‘Lyapunov orbits’) exist at
arbitrary energy. At specific energy thresholds, bifurcation of periodic orbits in ‘generic
position’ (Sanders et al. 2007) occur, producing the halo (oscillations in quadrature of the
resonating modes) and, possibly, the ‘anti-halo’ periodic orbits (oscillations in phase). Their
existence organise the whole structure of the family of models.

A remarkable feature of the family, valid for arbitrary µ , is that it is quite close to the
degenerate case proper of the detuned Hènon-Heiles system (Hanßmann & Sommer 2001),
but always distinct from it. This produces a relatively low value for the energy threshold
at which halo orbits appear and, at much higher energy levels, a close pair of energy val-
ues at which the ‘bridge’ of the anti-halo families bifurcate from the planar Lyapunov and
annihilate on the vertical one. The momentum map can be easily computed (Pucacco &
Marchesiello 2014) providing a clear view of the invariant structure of periodic orbits and
invariant tori. Implications on the original system can be deduced by inverting the normal-
ising transformation.

The plan of the paper is as follows: in Section 2 we compute the resonant normal form
necessary to capture the bifurcations associated to the synchronous resonance; in Section 3
we illustrate the geometric reduction provided by mapping the phase space to the space of
the invariants of the isotropic oscillator; in Section 4 we further reduce the symmetries of
the normal form and analyse the bifurcation scenario; in Section 5 we discuss the results and
hints for future investigations; in Section 6 we give our conclusions.
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2 The normal form around the collinear equilibria

The model usually adopted to describe the dynamics around the collinear equilibria of the
circular restricted three-body problem is given by the following Hamiltonian:

H(px, py, pz,x,y,z) =
1
2
(

p2
x + p2

y + p2
z
)
+ ypx− xpy−∑

n≥2
cn(µ)Tn(x,y,z) . (1)

We adopt the general conventions used e.g. in Celletti et al. (2015) to which we refer for
the details. Here we recall that the coefficients cn(µ), different for each equilibrium, are
uniquely expressed in terms of the mass parameter 0 < µ ≤ 1/2 as

cn(µ) =
(±1)n

γ3

(
µ +(∓1)n (1−µ)γn+1

(1∓ γ)n+1

)
(2)

where γ , the distance of the collinear equilibrium to the closest primary, is the solution of
the fifth-order Euler’s equations:

γ
5∓ (3−µ)γ4 +(3−2µ)γ3−µγ

2±2µγ−µ = 0. (3)

In eqs.(2,3) the upper sign refers to L1, the lower one to L2. The polynomials Tn, related to
the Legendre polynomials by

Tn(x,y,z)≡ rnPn

(x
r

)
, r =

√
x2 + y2 + z2,

are recursively defined by means of

T0 = 1 , T1 = x , ... , Tn =
2n−1

n
xTn−1−

n−1
n

(
x2 + y2 + z2)Tn−2 .

Hamiltonian (1) is endowed with the symmetry given by its invariance under the reflection

z→−z, (4)

the mirror symmetry with respect to the synodic plane which plays an important role in the
following.

2.1 Diagonalisation of the quadratic part

Linearising (1) around each equilibrium point, the quadratic part of the Hamiltonian can be
written as:

H0(px, py, pz,x,y,z) =
1
2
(

p2
x + p2

y
)
+ ypx− xpy +

c2

2
(
y2−2x2)+ 1

2
(

p2
z + c2z2) , (5)

where the explicit dependence on µ has been dropped from the coefficient. It appears that
√

c2
.
= ωz (6)

can be interpreted as the ‘vertical’ linear frequency. The other two eigenvalues of the diag-
onalising matrix (Jorba & Masdemont 1999) are

λx =

√
c2−2+

√
9c2

2−8c2
√

2
, ωy =

√
2− c2 +

√
9c2

2−8c2
√

2
. (7)
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For further reference we plot in Fig. 1 the three eigenvalues as functions of µ . The quadratic
part of the Hamiltonian can be put into the diagonal form

H0(p,q) = λxq1 p1 + iωyq2 p2 + iωzq3 p3 , (8)

where (p,q) = (p1, p2, p3,q1,q2,q3) denote the new diagonalising variables. It appears clear
the ‘saddle× center× center’ nature of the linearised motion, with λx giving the hyperbolic
rate along the directions tangent to the stable and unstable hyper-tubes (Guzzo & Lega 2018)
and with ωy playing the role of ‘horizontal’ linear elliptic frequency.
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Fig. 1 The eigenvalues λx (purple), ωy (blue) and ωz (red) in terms of the mass ratio, for L1 (upper panel)
and L2 (lower panel). Grey lines correspond to the three ‘reference’ cases: Earth-Sun (µ = 3.04× 10−6),
Earth-Moon (µ = 0.012) and equal masses (µ = 1/2).
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2.2 Resonant normalisation

In the diagonalising variables the Hamiltonian is the series

H(p,q) = ∑
n≥0

Hn(p,q) , (9)

where H0 is given by (8) and Hn are homogeneous polynomial in (p,q) of degree n+2. The
construction of the normal form is performed with a twofold objective:
1. to get an expression in which is easy to ‘kill’ the evolution along the stable-unstable
manifolds;
2. to include the passage through the synchronous resonance.

In fact, from Fig. 1, for any 0 < µ ≤ 1/2, we see that the two elliptic frequencies are
very close to each other and, introducing the ‘detuning’

δ
.
= ωy−ωz , (10)

the following series expansions

δ = δ0±δ1µ
1/3±δ2µ

2/3 +δ
(±)
3 µ +O(µ4/3) (11)

have been obtained by Ceccaroni et al. (2016)1 with

δ0 =−2+
√
−1+2

√
7' 0.0716 .

In (11), the upper sign refers to L2, the lower one to L1. These give a quite accurate ap-
proximation for mass parameters up to 10−2 and, in the most extreme case of µ = 1/2, give
δL1 = 0.0536 and δL2 = 0.0760, while the exact values are δL1 = 0.05492 and δL2 = 0.07596
(see Fig. 2, from which we also see that δ is monotonically decreasing for L1 ∀µ ∈ (0,1/2],
while for L2 first increases, until µ = 0.21728 where it reaches the value 0.08128, and then
decreases).

It is then natural to assume the linear system to be close to the 1:1 resonance and con-
struct a normal form which incorporates the corresponding resonant terms. Therefore, we
look for a canonical transformation, (p,q)−→ (P,Q), which formally conjugates (9) to the
Hamiltonian function

K(P,Q) = λxQ1P1 + iωz(Q2P2 +Q3P3)+ iδQ2P2 +
N

∑
n=1

K2n(Q1P1,P2,P3,Q2,Q3)+RN+1 ,

(12)

where the homogeneous polynomials K2n, n = 1, ...,N, of degree 2(n+ 1), are in normal
form with respect to the resonant quadratic part

H(r)
0

.
= λxQ1P1 + iωz(Q2P2 +Q3P3) . (13)

The terms in the normal form are of even degree in view of the combined effect of the re-
flection symmetry (4) and of the commutation condition with (13). This produces a function
endowed with extra symmetries: invariance under time reversion (equivalent to the exchange
P1↔ Q1) and with respect to the Z2×Z2×Z2 group generated by

Sk : (Pk,Qk)→ (−Pk,−Qk), ∀ k = 1,2,3. (14)

1 The coefficients are listed in two Boxes at the end of Ceccaroni et al. (2016).
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Fig. 2 The detuning parameter (10): L1 (blue) and L2 (red).

In producing these symmetries, information is not lost but is encoded in the generating
functions of the normalising transformation: for a general discussion of this and other related
phenomena we refer to Tuwankotta & Verhulst (2000) and Sanders et al. (2007). In (12), the
detuning term is effectively considered to be of higher order and RN+1(P,Q) is a remainder
function of degree N + 3. Explicitly, the construction is implemented with the Lie method
(Giorgilli & Galgani 1978; Cicogna & Gaeta 1999) and, for the purposes of the present
work, is performed up to the first order at which resonant terms appear in the normal form,
simply N = 1.

We remark that this method allows us to simultaneously perform the central manifold
reduction and the analytic treatment of the synchronous bifurcations: as a matter of fact,
the truncated normal form is an integrable 3-DOF system, in view of the presence of two
additional formal integrals of motion, namely

Jx
.
= Q1P1 (15)

and

E
.
= i(Q2P2 +Q3P3) . (16)

For this integrable system all information about periodic and quasi-periodic motion can be
retrieved. Previous works focused primarily on using Lie series only to compute the center
manifold (Jorba & Masdemont 1999). In fact, Lara (2017), in his approach to study the
center manifold of the Hill problem, has been forced to perform a further averaging with
respect to the mean anomaly to get his final normal form. On the other hand, the Hamiltonian
introduced by Celletti et al. (2015),

K(P,Q) = H(r)
0 + iδQ2P2 +K2(Q1P1,P2,P3,Q2,Q3) , (17)

is the tool which incorporates both features stated in points 1. and 2. above.
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2.3 Center manifold reduction

Introducing action-angle variables according to

Q1 =
√

Jxeθx

Q2 =
√

Jy(sinθy− icosθy) =−i
√

Jyeiθy

Q3 =
√

Jz(sinθz− icosθz) =−i
√

Jzeiθz

P1 =
√

Jxe−θx

P2 =
√

Jy(cosθy− isinθy) =
√

Jye−iθy

P3 =
√

Jz(cosθz− isinθz) =
√

Jze−iθz ,

looking only at the terms in the truncated series (17), it appears that, as said above, Jx =Q1P1
is a constant of motion of the normal form. Choosing initial conditions such that Jx(0) = 0
freezes the dynamics to the center manifold up to order N = 2. Motion on the center manifold
is then described by the 2-DOF Hamiltonian:

K(CM)(Jy,Jz,θy,θz) = ωyJy +ωzJz +K2(Jy,Jz,θy−θz) . (18)

The linear part is just H0 with Jx = 0. The nonlinear part K2 depends not only on the actions
but contains resonant terms depending on the angles in the combination

ψ
.
= θy−θz (19)

corresponding to the 1:1 resonance. Therefore, we have

d
dt

(Jy + Jz) = 0

along solutions and we check that the third integral of motion

Jy + Jz = i(Q2P2 +Q3P3)

coincides with the one introduced in (16) whose value is denoted by E . The explicit expres-
sion of K2 for the problem at hand is

K2 = αJ2
y +βJ2

z + JyIz(σ +2τ cos(2ψ)) (20)

where the coefficients α , β , σ , τ , depending only on µ , are explicitly given as series expan-
sions in the boxes of Ceccaroni et al. (2016).

3 Geometric reduction

In general terms, to compute a 1:1 resonant normal form around an equilibrium is equivalent
to construct a polynomial series invariant under the Hamiltonian flow of the planar isotropic
oscillator. This dynamical symmetry is usually referred to as the S1-action:

Φ : S1×R4 −→ R4 (21)

(φ ;P2,P3,Q2,Q3) 7→ (P2eiφ ,P3eiφ ,Q2e−iφ ,Q3e−iφ ) . (22)

The angle φ is an arbitrary phase along the closed orbits of the linear oscillator. The normal
form (18), when expressed in the coordinates (P2,P3,Q2,Q3), is an example of this class
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of Hamiltonians. A general result concerning polynomials invariant under the action of a
compact group is the Hilbert-Schwartz theorem (Hanßmann & Hoveijn 2018): it states that
a finite number of polynomials, generating the Hilbert basis, exist such that any invariant
polynomial can be expressed in terms of them.

Cushman & Bates (1997) prove that the Hilbert basis of the polynomials in R4 invariant
under the S1-action (21) is given by

I0 = i(Q2P2 +Q3P3) = Jy + Jz = E , (23)

I1 = i(Q2P3 +Q3P2) = 2
√

JyJz cosψ, (24)

I2 = Q2P3−Q3P2 = 2
√

JyJz sinψ, (25)

I3 = i(Q2P2−Q3P3) = Jy− Jz . (26)

In each line of the above equations, the invariants are written both as quadratic polynomials
(the so called Hopf variables) and in action-angles variables, the Lissajous-Deprit form (De-
prit 1991; Deprit & Elipe 1991; Lara 2017). The members of the Hilbert basis {I0, I1, I2, I3}
form a Poisson algebra under the Poisson brackets given by

{I j, Ik} = 2ε jk`I`, j,k, `= 1,2,3, (27)

{Ik, I0} = 0, ∀ k . (28)

The integral I0, coinciding with (16), is a Casimir of the algebra.
There is a difficulty with a Hilbert basis: not every generator is independent and this

implies that the expression of a given invariant polynomial is not unique. In our case, it is
easy to check that the members of the Hilbert basis (23–26) are subject to the relation

I2
1 + I2

2 + I2
3 = I2

0 . (29)

However, a splitting of the possible expressions in which the Casimir I0 is factored out seems
to be a natural choice and this usually removes the non-uniqueness of the expression. On the
other hand, the invariant relation (29) determines, for each fixed I0 = E , a 2-sphere in R3

S =
{
(I1, I2, I3) ∈ R3 : I2

1 + I2
2 + I2

3 = E 2} (30)

to which we refer as the reduced phase space. Dynamics in terms of the Poisson variables
{I1, I2, I3} are called reduced dynamics. In the reduced dynamics, points on the sphere cor-
respond to S1-orbits in R4 and, since the flow of the normal form preserves I0, the reduced
flow is simply given by the intersection of the level sets of the Hamiltonian K(CM) with the
2-sphere determined by (29). In practice, the orbits of the reduced flow are given by the
curves provided by the two equations

KI(I1, I2, I3;E ) = KI , (31)

I2
1 + I2

2 + I2
3 = E 2 , (32)

where we have introduced the rescaled Hamiltonian

KI(I1, I2, I3;E )
.
=

1
ωz

Π ◦K(CM) = (1+∆)E +A1E
2+(BE +∆)I3+AI2

3 +C(I2
1−I2

2 ) , (33)

in which the projection map defined in (23–26)

Π : R4 −→ R4 (34)

(P2,P3,Q2,Q3) 7→ (I0, I1, I2, I3) (35)
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and the shorthand notation

A .
=

α +β −σ

4ωz
, A1

.
=

α +β +σ

4ωz
, B .

=
α−β

2ωz
, C .

=
τ

2ωz
, ∆

.
=

δ

2ωz
(36)

have been used. The geometry of the level sets KI = KI of the function KI(I1, I2, I3;E ) on
the 2-sphere I0 = E provides all informations on the global structure of the center manifold.

4 Further reduction and analysis

We perform a further reduction introduced by Hanßmann & Sommer (2001) to explicitly
divide out the additional symmetry of our system. In fact, we see that the two reflections S2
and S3 of (14) now turn into the discrete symmetry (I1, I2, I3)→ (−I1,−I2, I3) of (33). The
reduction is then provided by the transformation

T : R3 −→ R3 (37)

(I1, I2, I3) 7→ (X ,Y,Z) , (38)

with X = I2
1 − I2

2 ,
Y = 2I1I2 ,
Z = I3 .

(39)

This turns the sphere (32) into the ‘lemon’ space

L =
{
(X ,Y,Z) ∈ R3 : X2 +Y 2 = (E +Z)2 (E −Z)2 ; |Z| ≤ E

}
(40)

and the Hamiltonian (33) into

KR(Z,X) = T ◦KI = (1+∆)E +A1E
2 +CX +(BE +∆)Z +AZ2 . (41)

We observe that KR does not depend on Y : the level sets KR(Z,X) = KI are parabolic cylin-
ders in the (Z,X ,Y )-space. The study of the reduced dynamics is therefore further simplified:
rather than investigating the intersection of two surfaces, in view of the translation invariance
of KR, we can just study the intersection of the parabola

X(Z) =
1
C

(
h− (BE +∆)Z−AZ2) , (42)

where, omitting constant terms, we have redefined the ‘energy’ as

h .
= KI− (1+∆)E −A1E

2 (43)

and the contour C = C− ∪C+
.
= L ∩ {Y = 0} in the (Z,X)-plane composed of the two

parabolic segments

C± ≡
{
(Z,X) ∈ R2 : |Z| ≤ E , X =±

(
E 2−Z2)} . (44)

The price we pay for this second reduction is that pairs of critical points associated to peri-
odic orbits in ‘generic position’, respectively

Halo (ψ =±π/2) : I1 = 0, I2 =±
√

E 2−Z2
−, I3 = Z− ; (45)

Anti−halo (ψ = 0,π) : I2 = 0, I1 =±
√

E 2−Z2
+, I3 = Z+ ; (46)
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which are distinct on the sphere S , are instead represented by the unique tangency of the
parabola (42) with either C+ (in Z = Z+,X(Z+)) or with C− (in Z = Z−,X(Z−)). However,
this indeterminacy does not hinder the correct description of the bifurcation scenario. In fact,
by investigating when the tangencies {

X = X(Z)
X ∈ C±

(47)

exist for |Z| ≤ E , namely when the discriminant of the quadric

X(Z) =±
(
E 2−Z2) (48)

vanish (see below the values in equations (59)), we get the thresholds for the bifurcations of
periodic orbits in generic position from/to the normal modes Z =±E . It is possible to check
(Marchesiello & Pucacco 2016) that, at

E −p,v
.
=

∆

±2(A+C)−B
(49)

the halo family bifurcate and at

E +
p,v

.
=

∆

±2(A−C)−B
(50)

the bridge family2 bifurcate from the planar and annihilate on the vertical Lyapunov: here
−,+ denote the two families and p,v denote the ‘planar’ and ‘vertical’ normal modes. We
observe that the annihilation predicted by (49) at E −v is actually impossible because its value
is always negative in these systems.

An additional important advantage of the second reduction concerns generic properties
of our family of models. When in (42) the ratio |C/A| is equal to one, the curvature of the
parabola X(Z) is the same as that of the parabolic segments C± and, instead of having criti-
cal points, we have critical circles. Therefore, we get an easy way to identify the non-generic
case (typical of what happens with the Hènon-Heiles system (Hanßmann & Sommer 2001))
which requires to go to a higher order in the normalisation to disentangle the role of pertur-
bations. However, (42) is characterised by four independent parameters, A,B,C,∆ which is
still too much for a clear global representation. In Marchesiello & Pucacco (2016) a repre-
sentation in terms of only two independent parameters have been introduced which allows
us an easy interpretation of the general setting. The two parameters are just the curvature (or
‘coupling’) parameter C/A and the ‘asymmetry’ parameter

ZV (E )

E
=−BE +∆

2AE
. (51)

In the (Z,X)-plane, ZV denotes the abscissa of the vertex of the parabola. Substituting the
threshold values (49,50) into (51) we get the four lines

ZV (E −p,v)

E −p,v
=±

(
1+

C
A

)
,

ZV (E +
p,v)

E +
p,v

=±
(

1− C
A

)
. (52)

In the parameter plane, a given system (characterised by fixed values of the parameters)
‘moves’ along a vertical straight line as E varies. When this line crosses one of the lines in

2 This family is also dubbed ‘sideway’ family (Farrés et al. 2017)
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the set (52), a bifurcation occurs. This structure is generic in every point of the plane with the
exception of the degenerate cases |C/A| = 0,1 (see the left panel in Fig. 3). In any point in
the plane with |C/A| 6= 0,1 (and not on a bifurcation line), any sufficiently small change of
the parameters does not modify the phase space structure. Among possible changes we may
include ‘perturbations’ consisting of higher-order terms of the normal form. Higher-order
normalisation is therefore needed only in order to get more accurate quantitative predictions.

-2 -1 0 1 2
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2
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Bℰ+Δ

2 Aℰ

0.8 0.9 1.0 1.1 1.2

0.0

0.5

1.0

1.5

2.0

C

A

-
Bℰ+Δ

2 Aℰ

Fig. 3 Left: the bifurcation lines associated with E −p,v (eq.(49), green and red lines), E +
p,v (eq.(50), blue and

purple lines) and vertical dashed lines denoting the degenerate cases |C/A| = 0,1. Right: enlargement with
the continuous vertical line followed by the system with µ = 1/2 around L2.

Let us see how all this applies to the case at hand. The parameters A,B,C,∆ for the center
manifolds of the collinear points can be computed starting from the values found in (Celletti
et al. 2015) and (Ceccaroni et al. 2016). In this last paper, explicit series expansions for the
coefficients of the normal form are given. It happens that, for every µ in the range (0,1/2],
the coupling parameter C/A is always slightly less than +1: this is shown in the upper panel
of Fig. 4 and, with more detail, in Fig. 5. Choosing the case with µ = 1/2 around L2 which
has the minimum value C/A = 0.978, we plot its ‘evolution line’ (continuous) aside the
degenerate line (dashed) in the right panel in Fig. 3. Note that, with the present values of
A,B and ∆ , energy increases along the evolution line going from top to bottom, so that the
halo bifurcation (crossing the green line) first occurs and then the bridge of subsequent anti-
halo bifurcations (crossing purple-blue lines) appears. All other cases with mass parameter
in the range (0,1/2] share the same picture.

The overall phase-space structure can be assessed by plotting the ‘energy-momentum’
map (Arnol’d 1989; Cushman & Bates 1997). In the present case, let us again split the
rescaled normal form in the center manifold as

K̃(CM)(P2,P3,Q2,Q3) = K̃0 + K̃2 , (53)
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Fig. 4 Coefficients of the reduced normal form (41) as functions of the mass ratio. Upper panel: for L1, the
curves for A(µ) (blue) and C(µ) (purple) are almost overlying; for L2, A(µ) (red) and C(µ) (orange) are
more distinguishable. Lower panel: B(µ), (blue for L1) and (red for L2). Grey lines again correspond to the
three ‘reference’ cases: Earth-Sun, Earth-Moon and equal masses.

where K̃0 = E is the isotropic quadratic part and K̃2 can be taken as the second integral. The
energy-momentum map is then defined as the map

E M : R4 −→ R2 (54)

w 7−→
(

K̃0(w), K̃(w)
)
, (55)

(P2,P3,Q2,Q3) 7−→
(

K̃0(P2,P3,Q2,Q3), K̃(P2,P3,Q2,Q3)
)

(56)
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Fig. 5 Coefficient ratios C/A as functions of the mass ratio for L1 (blue curve) and L2 (red curve).

where we use, as second component, K̃ = K̃2−∆E −A1E
2 = h, in agreement with (43).

Points w ∈ R4 are called regular if the rank of the matrix of the differential of the map

dE M =

(
∂wK̃0

∂wK̃

)
(57)

is maximal: two, in the present case. Otherwise, if rank[dE M (wc)]< 2, wc are called criti-
cal points and E M (wc) are the singular level sets.

The information provided by the singular sets in the image of the E M -map comple-
ment those offered from the Liouville-Arnol’d theorem. In the present context this theorem
proves that, chosen a regular value of the map, there is a neighbourhood W (w) ⊂ R2 such
that E M−1(W ) is foliated by invariant tori. However, there is no such general statement
concerning the topology of the inverse image of the singular level sets: they determine a bi-
furcation diagram that, in general, depends on the system at hand and gives the ‘skeleton’ of
the phase-space by organising the domains where different families of ordinary 2-tori exist.

The singular sets are in the form of ‘branches’ whose inverse image, in the present
2DOF case, are either stable periodic orbits or unstable periodic orbits together with their
stable/unstable manifolds. These branches separate connected components of the domains
of the map containing regular values corresponding to 2-tori. To plot the branches we need
to find the critical values (

K̃0(Zc,Xc), K̃(Zc,Xc)
)
,

where (Zc(P,Q),Xc(P,Q)) collectively denote critical points. They are given by the singular
equilibria associated to the normal modes Z =±E ,X = 0,

K̃0 = E , K̃ = E ((A±B)E −∆) (58)

and by the tangency conditions (47) of the energy surface with the reduced phase space
given by

K̃0 = E , K̃ =±CE 2− (BE +∆)2

4(A∓C)
. (59)
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These curves are parabolic arcs respectively representing the values of the two components
of the E M -map on the normal modes (the two curves (58)) and the values on the regular
equilibria Z±,X(Z±) (the two curves (59)).
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Fig. 6 Energy-momentum map for the system with µ = 1/2 around L1: the bifurcation of halo orbits.

In Fig. 6 we plot the domains in the (E ,h)-plane around the first bifurcation occurring
in the system with µ = 1/2 at L1. The blue branches are the arcs (58) and represent the
Lyapunov orbits: the lower one is the vertical family and the upper one is the planar family.
At E −p = 0.054, obtained using (49) with the data of Figg. 4,5, the halo family (in red, the
curve in eq.(59) with the lower sign) bifurcates from the planar Lyapunov3 which passes
from stable to unstable (dashed line). The yellow domain represents invariant tori around
the stable vertical, the red one invariant tori around the stable halo. The corresponding plot
for L2 is topologically the same but for the bifurcation value E −p = 0.334.

Fig. 6 is an enlargement around the origin of Fig. 7. In Fig. 7 we plot the (E ,h)-plane
including the bifurcation and collision of the bridge sequence: at E +

p = 2.22 the (unsta-
ble, dashed) anti-halo family bifurcates from the planar Lyapunov which regains stability;
at E +

v = 4.76 the anti-halo family disappears colliding with the vertical Lyapunov which
loses stability. Yellow domains still represent tori around stable normal modes, the red one
tori around the stable halo and the white domain the intermediate family bounded by the
separatrix composed of the stable/unstable manifolds of the unstable bridge orbits.

Clearly, the bifurcation energies predicted by the first-order theory are poor predictors
of the true values obtained with numerical integrations (Hénon 1973; Gómez & Mondelo
2001), for more accurate predictions higher-order terms are necessary. However, for the sake
of the present analysis the overall picture is correctly reconstructed. The Poincaré surfaces
of sections shown in the lower panels of Fig. 7 are computed by plotting, in the plane

x2 =
√

2ℜ{P2}=−
√

2ℑ{Q2}, x3 =
√

2ℜ{P3}=−
√

2ℑ{Q3} , (60)

3 We observe that Ep = ωzE −p = 0.153 is therefore the analytic first-order prediction of the bifurcation
energy of the halo orbits around L1 in the equal-masses case. The numerical value obtained by Hénon (1973)
was E = 0.153860.
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the level curves of the function

F(x2,x3;E ) = K(CM)(P2,P3,Q2,Q3)

∣∣∣∣
ℑ{P3}=0,ℜ{Q3}=0

(61)

with the energy constraint

ℜ{Q2}=−ℑ{P2}=
√

E −ℜ{P2}2−ℜ{P3}2 . (62)

The choice of the variables x2,x3 complies with that usually made in computing numerical
surfaces of section (Jorba & Masdemont 1999; Farrés et al. 2017). In our case, still referring
to the value µ = 1/2 around L1, they are plotted at values of E below and above the halo
bifurcation level E −p (upper panels), just above the bifurcation of the bridge (E +

p , lower left
panel) and just above its annihilation (E +

v , lower right panel). Note that, by using the unre-
duced normal form, namely not implementing the second reduction (37–39), we correctly
retrieve the pairs of fixed points corresponding to the two northern and southern haloes (red
dots) and the double bridge of the anti-haloes (purple dots). The planar Lyapunov is given
by the boundary of the section and the vertical Lyapunov by the central blue dot.

By inverting the normalising transformation we can express motion solutions in terms
of the original variables (p,q) and, after that, (px, py, pz,x,y,z). In particular, we can obtain
approximate expressions for the periodic and quasi-periodic motion and other invariant ob-
jects and remove one of the mirror symmetries enforced by the normalisation. However, the
explicit expression of the normal form Hamiltonian in the original coordinates forbids the
simple geometric analysis developed here.

5 Implications for the original system

In view of the involved form of the diagonalising transformation, the investigation of the dy-
namics around the collinear points is usually performed by computing solutions for specific
values of the mass parameter. In the literature is now available a good deal of results rang-
ing from the Hill limit up to primaries with comparable size. We have presented a general
approach to unify this body of knowledge in a comprehensive framework valid for arbi-
trary values of the mass parameter. The geometric picture describes all possible bifurcations
related to the approximate isochronous resonance and provides accurate predictions for the
halo orbits and a less accurate, but qualitatively correct, description of the bridge of anti-halo
orbits.

To come back from the reduced one-degree-of-freedom system to the flow in two de-
grees of freedom (the ‘original system’), we first exploit the normal form symmetry em-
bodied in (22): we have to attach an S1-circle to every point of the reduced phase space S .
This is most simply done in the Lissajous-Deprit variables of Section 3, where the action-
angle pair E ,θy + θz parametrising the circles has a (fast) frequency of order 1 and then
equilibria on S give rise to periodic orbits, while periodic orbits on S yield invariant 2-tori
of the flow of K(CM). Second, given the normalisation procedure, we may consider H as
a perturbed form of K with the remainder R playing the role of perturbation. Iso-energetic
KAM-theory (Arnol’d 1989) allows to conclude that most invariant 2-tori survive the per-
turbation if is sufficiently small; on each energy surface the complement of persisting 2-tori
has a small measure. The iso-energetic non-degeneracy condition associated to the quadratic
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Fig. 7 Upper panel: energy-momentum map showing the bifurcation set for the system with µ = 1/2 around
L1. Lower panels: analytic Poincaré sections with the possible inequivalent phase flows.

part of K(CM) depends on A,B,∆ and can be easily checked to be always (∀µ ∈ (0,1/2]) sat-
isfied. Existence and stability (with related bifurcations) of periodic orbits in the original
system are deduced by means of the implicit function theorem.

It is evident that if we desire better predictions for the occurrence, in the original system,
of these bifurcation and other dynamical features like Lissajous quasi-periodic orbits, invari-



Title Suppressed Due to Excessive Length 17

ant tori around the halos, etc., a high-order normalisation is mandatory. However, in view of
the asymptotic nature of the series so obtained, an optimal order is usually reached which
prevent to get arbitrary accuracy. Rather, as a rule, the domain of validity of the asymptotic
series may shrink with increasing order. A common feature of such divergent series is to
belong to some Gevrey class (Gelfreich & Simó 2008): for example, the higher-order series
expansions of the bifurcation thresholds found in (Ceccaroni et al. 2016) appear, from nu-
merical evidence, to belong to the Gevrey-1 class. Standard partial sums of terms obtained
at each step of the normal form construction may therefore provide not very good results.
We conjecture that re-summation techniques of non-convergent series may be profitable in
this setting (Scuflaire 1995; Pucacco et al. 2008).

Anyway, the normal form itself seems to have good semi-convergence properties: the
sequence of partial sums shows a mild logarithmic divergence (Jorba & Masdemont 1999)
and this allows to make estimates on the domain of validity of the approximation. Its extent
amply accommodates for the bifurcations investigated here. More delicate is the behaviour
of the normal form in the case of L3, where, at low mass ratios, the optimal order seems
to be so low to render very uncertain the estimate of the domain. However, we remark that
the first-order prediction for the bifurcation of the halo made in Ceccaroni et al. (2016) is in
good agreement with recent accurate numerical estimates (Walawska & Wilczak 2019) also
for µ → 0.

In the light of the geometric picture described here, we may wonder why all systems
are so close (but always bounded away) to the degenerate case in which the addition of a
small perturbation leads to unpredictable bifurcation sequences. Just looking at the values of
the coefficients it seems that this situation is more or less accidental. However, an interest-
ing remark we can provide concerns ‘artificial’ changes of the parameters. This is possible
when considering the third body to be a solar sail subject to the solar radiation pressure
(SRP, McInnes (2004)). In the simple case in which the sail is always perpendicular to the
light source, the problem is Hamiltonian and can be treated along the lines followed above
(Baoyin & McInnes 2006): it can then be shown that, for physically acceptable values of the
‘performance parameter’, the energy bifurcation thresholds are always lowered with respect
to those of the purely gravitational case (Bucciarelli et al. 2016; Farrés et al. 2017). We can
therefore state that the representative evolution line of systems with SRP are displaced to the
left in a plot on the parameter plane like the one in the right panel of Fig. 3: that is, halo and
bridge orbits appear at lower energies and the bridge family annihilate at higher energies.
The degenerate case C/A= 1 can be reached only in the unphysical case of a negative perfor-
mance parameter. However, we cannot exclude that other forms of perturbations may induce
a change of this sort in the bifurcation scenario. An interesting possibility is, for example,
offered by considering the elliptic restricted problem. In this case, the collinear points are
no more strictly equilibria. However, several bifurcation phenomena are still present (Hou
& Liu 2011) and can be investigated by a suitable generalisation of the present approach. To
take into account the non-autonomous character of the problem, the resonant normal form
has to be computed in the extended phase-space. However, it should still be an integrable
approximation with two parameters, µ and the eccentricity of the primaries.

6 Hints for further study and conclusions

There are several hints for additional studies: in addition to the already mentioned elliptic
extension, the analysis of bifurcations of families associated to other resonances can be
performed by constructing appropriate resonant normal forms. Analogously, we can think
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to the investigation of secondary resonances, like those appearing at high energy around the
halo in the computations of Gómez & Mondelo (2001). The geometric analysis of the 1:2
and 1:3 resonances proceed along lines quite similar to those followed above (Cushman et
al. 2007) and could offer a comprehensive view of orbit families departing from existing
periodic orbits. For these orbits, like for the Lissajous and halo families, remains to be
proven the complete equivalence between solutions computed with the Poincaré-Lindstedt
method (Richardson 1980; Simó 1998; Jorba & Masdemont 1999; Lei et al. 2018) and those
found by inverting the normalising transformations. This equivalence is quite easily obtained
in natural systems like the logarithmic potential (Scuflaire 1998; Pucacco et al. 2008) but is
still a hard task here in view of the cumbersome computations required by the coordinate
transformations.

Conflict of interest

The author declares that he has no conflict of interest.

Acknowledgements We acknowledge useful discussions with A. Celletti, C. Efthymiopoulos, H. Hanß-
mann, A. Giorgilli, M. Guzzo, A. Marchesiello and D. Wilkzak. The work is partially supported by INFN,
Sezione di Roma Tor Vergata and by GNFM-INdAM.

References

Arnol’d, V. I. Mathematical methods of classical mechanics, Springer-Verlag, Berlin (1989)
Baoyin, H. & McInnes, C. R. Solar Sail halo orbits at the Sun-Earth artificial L1 point, Celestial Mechanics

& Dynamical Astronomy 94, 155–171 (2006)
Bucciarelli, S. Ceccaroni, M. Celletti, A. & Pucacco, G. Qualitative and analytical results of the bifurcation

thresholds to halo orbits, Annali di Matematica Pura e Applicata, 195, 489–512 (2016)
Ceccaroni, M. Celletti, A. & Pucacco, G. Halo orbits around the collinear points of the restricted three-body

problem, Physica D, 317, 28–42 (2016)
Celletti, A. Pucacco, G. Stella, D. Lissajous and Halo orbits in the restricted three-body problem, J. Nonlinear

Science 25, Issue 2, 343–370 (2015)
Cicogna, G. & Gaeta, G. Symmetry and perturbation theory in nonlinear dynamics, Springer-Verlag, Berlin

(1999)
Cushman, R. H. & Bates, L. M. Global aspects of classical integrable systems, Birkhauser (1997)
Cushman, R.H. Dullin, H.R. Hanßmann, H. & Schmidt, S. The 1:±2 resonance, Regular and Chaotic Dy-

namics 12, 642–663 (2007)
Cushman, R. H. & Rod, D. L. Reduction of the semi-simple 1:1 resonance, Physica D, 6, 105–112 (1982)
Delshams, A. Gidea, M. & Roldan, P. Arnol’d mechanism of diffusion in the spatial circular restricted three-

body problem: A semi-analytical argument, Physica D, 334, 29–48 (2016)
Deprit, A. [1991] The Lissajous transformation I: Basics, Celestial Mechanics and Dynamical Astronomy

51, 201–225 (1991)
Deprit, A. & Elipe, A. The Lissajous transformation II: Normalization, Celestial Mechanics and Dynamical

Astronomy 51, 227–250 (1991)
Efstathiou, K. Metamorphoses of Hamiltonian Systems with Symmetries, Lecture Notes in Mathematics 1864,

Springer-Verlag, Berlin (2005)
Farquhar, R. W. & Kamel, A. A. Three-dimensional, periodic, ’halo’ orbits, Celestial Mechanics 7, 458–473

(1973)
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