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We present numerical and theoretical results concerning the properties of turbulent flows
under strong multi-scale helical injection. We perform direct numerical simulations of
the Navier-Stokes equations under a random helical stirring with power-law spectrum
and with different intensities of energy and helicity injections. We show that there exists
three different regimes where the forward energy and helicity inertial transfers are: (i)
both leading with respect to the external injections, (ii) energy transfer is leading and
helicity transfer is sub-leading, and (iii) both are sub-leading and helicity is maximal at
all scales. As a result, the cases (ii-iii) give flows with Kolmogorov-like inertial energy
cascade and tunable helicity transfers/contents. We further explore regime (iii) in a
Lagrangian domain, by studying the kinetics of point-like isotropic helicoids, particles
whose dynamics is isotropic but breaks parity invariance. We investigate small-scale
fractal clustering and preferential sampling of intense helical flow structures. Depending
on its structural parameters, the isotropic helicoids either preferentially sample co-chiral
or anti-chiral flow structures. We explain these findings in limiting cases in terms of what
is known for spherical particles of different densities and inertia. Furthermore, we present
theoretical and numerical results for a stochastic model where Lagrangian properties can
be calculated using analytical perturbation theory. Our study shows that a suitable
tuning of the stirring mechanism can strongly modify the small-scale turbulent helical
properties and demonstrates that isotropic helicoids are the simplest particles able to
preferentially sense helical properties in turbulence.

1. Introduction

Helicity is an invariant of the Navier-Stokes equations in three spatial dimensions when
neglecting the effects of viscous dissipation and external forcing (Frisch 1995; Moffatt
& Tsinober 1992; Chen et al. 2003a; Alexakos & Biferale 2018). It is connected to the
topological structure of vortex lines, characterized in terms of twist, writhe and linking
numbers (Scheeler et al. 2014; Kedia et al. 2016; Laing et al. 2015; Kerr 2015). Helicity
can be introduced in a flow by a stirring mechanism that breaks mirror symmetry
and its effects on the turbulent energy cascade in three spatial dimensions have been
widely studied since the pioneering work of Brissaud et al. (1973) (see Borue & Orszag
(1997); Pelz et al. (1985); Kerr (1987); Kholmyansky et al. (1991); Kit et al. (1987) for
other major contributions). In geophysical flows, helicity plays an important role in the
atmospheric Ekman layer, where there exist arguments supporting a turbulent helicity
cascade in the logarithmic range of the boundary layer (Deusebio & Lindborg 2014;
Koprov et al. 2005; Kurgansky 2017). Recent experimental advancements allowed to

† Email address for correspondence: kristian.gustafsson@physics.gu.se

ar
X

iv
:1

81
2.

01
96

2v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  5

 D
ec

 2
01

8



2

produce vortex bundles with different prescribed topology (Kleckner & Irvine 2013) and
the combination of shear and helicity has been studied experimentally and numerically
(Herbert et al. 2012; Qu et al. 2018). Concerning the dual energy-helicity cascade, it is
widely believed that for the case of Navier-Stokes equations in three spatial dimensions
forced on a limited scale-range, both energy and helicity cascade forward (Chen et al.
2003a,b; Sahoo et al. 2015). This is a dual co-directional cascade according to the
classification given in Alexakos & Biferale (2018). As a result, the mirror-symmetry
breaking induced by the helical stirring mechanism tends to become weaker and weaker
by going to smaller and smaller scales: the energy transfer is the leading mechanism and
small-scale turbulence recovers a neutral statistics with zero helicity signature in average.
On the contrary, if only one homochiral sector is dynamically active, one can prove that
Navier-Stokes equations admit a dual counter-directional cascade (with energy flowing
backward and helicity forward) the flow has global solutions (Waleffe 1992; Biferale et al.
2012; Biferale & Titi 2013) and small-scale turbulence is strongly (maximally) helical.
Similarly, there are analytical and numerical hints (Linkmann 2018) that helicity induces
a non-trivial decrease in the drag coefficient of turbulent flows.
In this paper we further investigate the statistical properties of the dual energy-helicity
transfers by adopting a power-law multi-scale stirring mechanism, which allows us to
explore three different regimes concerning the relative intensity of energy and helicity
injections. In particular, we show that there exists a suitable range of forcing spectral
exponents, where the energy transfer is not affected by the stirring term while helicity
can be controlled, leading to a turbulent realization with tunable small-scale helicity
contents. Furthermore, in a regime where both small-scale energy and helicity contents
are controlled by the forcing, leading to maximal-helicity flow configurations, we study
the preferential concentration of isotropic helicoids (Kelvin 1871; Gustavsson & Biferale
2016), i.e. point-like particles whose dynamics is isotropic but breaks mirror-symmetry.
By using both Direct Numerical Simulations (DNS) and a stochastic model for the
Eulerian advecting velocity field (Gustavsson & Mehlig 2016), we show that isotropic
helicoids show highly non-trivial preferential sampling of the underlying helical flow
properties depending on the particle parameters. The paper is organized as follows. In
Sec. 2 we describe the Eulerian part, discussing the different regimes for different helical
injection power spectra and we present numerical simulations of the different regimes. In
Sec. 3 we introduce the isotropic helicoids and their Lagrangian equations. We discuss
the existence of two new scales of the Stokes number, St±, which depend on the coupling
between translational and rotational degrees of freedom. Furthermore, we present results
on the preferential sampling of the flow helicity for different particle parameters, including
two asymptotic limits where the Stokes number St is either much smaller than St+ or
much larger than St−. We conclude the paper in Sec. 4.

2. Helical turbulent flows: Eulerian properties

2.1. Theoretical background

We start by considering the forced Navier-Stokes equations for the fluid velocity u and
the pressure p in three spatial dimensions:

∂tu+ u · ∇u = −∇p+ ν∆u+ f , ∇ · u = 0 , (2.1)

where ν the kinematic viscosity and f is a parity-breaking external forcing with energy
injection rate ε = 〈u · f〉 and helicity injection rate h = 〈u · (∇ × f) + 2Ω · f〉, where
2Ω = ∇ × u denotes the flow vorticity. It is useful to adopt an exact decomposition
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of the velocity field in positive and negative Fourier helical waves (Constantin & Majda
1988; Waleffe 1992):

u(x, t) =
∑
k

[u+
kh

+
k + u−kh

−
k ] , (2.2)

where h±k are the eigenvectors of the curl operator. In term of such decomposition the
total energy, E =

∫
d3xu2, and the total helicity, H = 2

∫
d3xu ·Ω, take the forms:

E =
∑
k

|u+
k |

2 + |u−k |
2 , H =

∑
k

k(|u+
k |

2 − |u−k |
2) . (2.3)

We can further consider the energy content of positive and negative helical modes,
E±(k) =

∑
k6|k|<k+∆k |u

±
k |2, where ∆k = 2π/L, such that the energy and helicity

spectra become

E(k) = E+(k) + E−(k) , H(k) = k[E+(k)− E−(k)] . (2.4)

Supposing that there exists a dual co-directional forward cascade of energy and helicity
and that the typical time at scale r ∼ k−1 is dominated by the energy eddy turn-over
time τE(r) ∼ ε−1/3r2/3, we have for the semi-sum and semi-difference of the spectral
components (Chen et al. 2003a):

E+(k) + E−(k) ∼ CEε2/3k−5/3 , E+(k)− E−(k) ∼ CHhε−1/3k−8/3 , (2.5)

where CE and CH are two constants of dimension inverse length. Hence the two energy
components can be written as:

E±(k) ∼ CEε2/3k−5/3 ± CHhε−1/3k−8/3 . (2.6)

2.2. Multiscale energy and helicity injections

Let us suppose a Gaussian white-in-time helical forcing, f(x, t) =
∑
k f

+
k h

+
k , whose two-

point correlation is isotropic, and with a power-law spectrum (Sain et al. 1998; Biferale
et al. 2004; Kessar et al. 2015):

〈f+
k f

+
k′〉 = f2

0 k
1−d−yδ(t− t′)δ(k + k′) . (2.7)

For the sake of numerical implementation we cut off the power-law at a maximum
wavenumber of the order of the Kolmogorov scale, kmax ∼ kη. Using this forcing, the
energy and helicity injection rates up to the scale k < kmax can be estimated as:

ε(k) ∼ |f0|2
∫ k

k0

dq q−y , h(k) ∼ |f0|2k0

∫ k

k0

dq q1−y , (2.8)

where k0 = 2π/L is the smallest wavenumber in the box. From Eq. (2.8) we distinguish
three different regimes depending on the forcing spectrum: (I) when y > 2 both energy
and helicity injections are dominated by the infrared range, ε(k) → const. when k →
∞, and the system behaves as if it was forced at large scales only. We obtain a dual
energy-helicity cascade because both quantities are transferred by the non-linear inertial
terms of the Navier-Stokes equations (2.1); (II) when 1 < y < 2 the energy injection
is still dominated by the infrared range, while the helicity injection depends on the
wave-number, h(k) ∼ k2−y. In this regime we obtain an energy cascade and helicity
multi-scale injection; (III) when y < 1 both energy and helicity transfer are dominated
by the multiscale injection, ε(k) ∼ k1−y and h(k) ∼ k2−y. We obtain an energy-helicity
multiscale injection. The three regimes are summarized in Table 1.
As a result, the spectral properties (2.6) are valid only for regime (I), and we can
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(I) (II) (III)

y > 2 1 < y < 2 y < 1
ε(k) = const. ε(k) = const. ε(k) ∼ k1−y

h(k) = const. h(k) ∼ k2−y h(k) ∼ k2−y

Table 1. Energy and helicity injection regimes depending on the forcing spectrum in
Eq. (2.7).

summarise the scaling for all three different regimes as follows:
E±(k) ∼ CIEε2/3k−5/3 ± CIHhε−1/3k−8/3 , y > 2

E±(k) ∼ CIIE ε2/3k−5/3 ± CIIH k2−yε−1/3k−8/3 , 1 < y < 2

E±(k) ∼ CIIIE k2(1−y)/3k−5/3 ± CIIIH k2−yk−(1−y)/3k−8/3 , y < 1 ,

(2.9)

where the prefactors depend on the forcing as CXE ∝ |f0|2 and CXH ∝ k0|f0|2. From the
expressions (2.9) we can evaluate the mirror-symmetry recovery ratio, R(k) = |E+(k)−
E−(k)|/(E+(k) + E−(k)) in the three regimes as:

RI(k) ∼ k−1 , y > 2

RII(k) ∼ k1−y , 1 < y < 2

RIII(k) ∼ const. , y < 1 ,

(2.10)

from which it follows that regime (III) is a flow with a maximal helical content at all
scales where the injection is acting. Before concluding this section it is important to
stress again that the prediction leading to regime III is correct under the assumption
that the typical time scale guiding the transfer is the scale-dependent generalization
of the eddy-turn-over time: τE(k) ∝ k−2/3ε(k)−1/3, which is not necessarily the only
possibility. In the following section we will present a first numerical investigation of the
previous arguments.

2.3. Numerical simulation

In this section we show the results of a series of DNS with resolution of 5123 grid points
to explore properties of the energy and helicity of the three fluid regimes identified in the
previous section. We implement a hyper-viscosity method to extend the inertial range
(Borue & Orszag 1995). In particular we set να∆

αu as the viscous term, with α = 2. The
external forcing f in Navier-Stokes equations (2.1) has been implemented as a Langevin
process with correlation time proportional to a fraction of the Kolmogorov time. As
detailed in the previous section, to obtain a fully helical flow, we project the forcing only
on velocity modes with positive helicity with energy injection on all wavenumber shells,
up to dissipative scales k ∈ [0.5 : 60]. Three representative values for the three regimes
have been selected: y = 4, 1.5,−1. Details about the 5123 DNS set-ups are summarized in
Table 2. In Fig. 1, we present four panels with the results for (a) the energy spectrum, (b)
the helicity spectrum, (c) the energy flux and (d) the helicity flux as functions of k and
for the three representatives values of y. The predictions for the scalings of the spectra
(2.9) and for the energy fluxes (2.8) are verified with good accuracy, except for ultraviolet
effects induced by the cut-off wavenumber where we stop to act with the external forcing
to avoid stability issues in the code. Overall, we conclude that by changing the spectral
properties of the helically-forced Navier-Stokes equations we can achieve a flow evolution
with tunable energy/helicity ratios as theorized by (2.10). In particular, in the left panel
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Regime N3 η ∆x ∆t ν τS y α Nh

(I) 5123 0.008 0.012 0.0003 1.9 ×10−7 1 4 2 -
(II) 5123 0.008 0.012 0.0003 1.9 ×10−7 1 3/2 2 -
(III) 5123 0.008 0.012 0.0003 1.9 ×10−7 1 −1 2 -
(III) 2563 0.016 0.024 0.0006 0.0052 500 −2/3 1 2.4× 106

Table 2. Parameters of the numerical simulations: grid resolution N3, Kolmogorov length scale
η in simulation units (SU), grid spacing ∆x = 2π/N (SU), time step ∆t (SU), kinematic viscosity
ν (SU), forcing correlation time τS (in units of ∆t), forcing power law exponent y, hyper-viscosity
parameter α, number of helicoids per each family Nh.
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Figure 1. Direct numerical simulations for the energy and helicity spectra (a,b) and fluxes
(c,d) for the three regimes y = 4 (I), y = 1.5 (II), and y = −1 (III). Parameters are given in
Table 2. In panel a, the curve for y = 1.5 (#) has been shifted with respect to the curve for
y = 4 (�) for the sake of presentation. We also superpose the scalings predicted by the relations
in Eqs. (2.9) and (2.8).

of Fig. 2 we show both the positive and negative helical spectral components E±(k) for
y = −2/3 (case III). The major contribution to the energy spectrum is given by the
velocity modes with positive helicity E+(k) for all wavenumbers. As a result the Navier-
Stokes flow develops a dominant positive helical dynamics at all scales. The right panel
of Fig. 2 shows that |E(k) + −E−(k)| ∼ (E+(k) + E−(k)) which implies that mirror-
symmetry recovery is broken at all scales. We remark that in this regime, the scaling
behaviour of |E+ − E−| and E+ + E− are less steep than the Kolmogorov prediction
being both dominated by the external injection as predicted by (2.9).
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Figure 2. Left: Positive and negative helical spectral components for the direct numerical
simulations with parameters of the fourth parameter set in Table 2. Right: Total energy
E+(k)+E−(k) and rescaled total helicity E+(k)−E−(k) = H(k)/k. The scaling −5/9 predicted
by relation (2.9) and the Kolmogorov −5/3 power laws are also shown for comparison.

2.4. Stochastic helical flows

The fully helical flow described by the regime (III) can be considered a sort of multi-scale
flow dominated by the external forcing, where the Navier-Stokes non-linear evolution
is sub-leading with respect to the forcing effects at all scales. As a result, it might be
important to study also surrogate dynamics given by simpler stochastic evolution without
any underlying structure coming from Navier-Stokes equations. This approximation is
also necessary to perform analytical estimates for the dynamics of particles in the flow as
discussed later. To follow this idea, we consider a random incompressible, homogeneous,
and isotropic single-scale velocity field, u = ∇ ×A. Here the components of the vector
potential A(x, t) are independent Gaussian random functions with zero mean, a spatial
correlation function decaying on a scale of order η0 and an exponential time-correlation
function with decay rate, τ0 (see Appendix A for more details). The velocity field is
normalized such that 〈u2〉 = u2

0. The flow is characterized by a dimensionless Kubo
number Ku = u0τ0/η0, the ratio between the Eulerian flow decorrelation time τ0 and
the advecting time, η0/u0. The Kubo number can be seen as a dimensionless correlation
time of the flow. If Ku tends to zero a white-noise flow is approached and if Ku is large
a persistent flow is obtained. The latter case is important because the particle dynamics
often agrees qualitatively or even quantitatively with the dynamics in a real turbulent
flow (Gustavsson et al. 2015; Gustavsson & Mehlig 2016; Gustavsson et al. 2017). The
former case is important because it allows for an analytical perturbative analysis in the
Kubo number (Gustavsson & Mehlig 2011, 2016), that allows to understand the particle
dynamics quantitatively at small values of Ku and qualitatively at large values of Ku or
in DNS. In order to control the probability distribution function of the parity-breaking
structures in the flow, we adopt the exact helical decomposition of each Fourier mode
given by (2.2), weighting the positive modes h+

k with a factor µ allows for construction
of flows where positive (µ > 1, 〈H〉flow > 0) or negative (µ < 1, 〈H〉flow < 0) helical
structures are dominant. The resulting flow has the following exponential-like distribution
of helicity (see Appendix A for details):

P0(H) =
9

π

η2

u4
0

|H| exp
[

3H0

5−H2
0

Hη0
u2
0

]
K1

[
3
√

5
5−H2

0

|H|η0
u2
0

]
√

5 [5−H2
0 ]

, (2.11)
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Figure 3. Distribution of helicity of the flow P0(H) for DNS with parameters given by the
fourth case in Table 2 (black crosses) and for the stochastic model Eq. (2.11) with H0 = 0.85
(red line). The helicity is made dimensionless using the Kolmogorov scales η and τη.

where Kν(x) is the modified Bessel function of the second kind and H0 is the average
dimensionless helicity

H0 ≡
η0

u2
0

〈H〉flow =
8

3

√
2

π

µ2 − 1

µ2 + 1
. (2.12)

Fig. 3 shows a comparison to 2563 DNS (fourth case in Table 2) using H0 = 0.85 (µ ≈ 1.5)
to make the shape of the distribution (2.11) similar to that of the DNS described above.
In order to compare to DNS, it is necessary to take into account that the smooth length
scale of the dissipation range in DNS is larger than the Kolmogorov length by a factor
proportional to

√
Reλ for not too large Reλ (Calzavarini et al. 2009). In our DNS we

have Reλ ∼ 100 and we therefore use η0 ∼ 10ηK for the comparison. We observe that
the distributions in Fig. 3 agree well for small values of H, but slightly disagrees in the
right tail. This is not surprising, we cannot expect to reproduce the exact shape of the
helicity distribution in Navier-Stokes equations with a single-scale stochastic flow.

3. Helical turbulent flows: Lagrangian Helicoids

The helical flow described in Sec. 2 breaks chirality: in configurations dominated by pos-
itive helicity, as the flow in Fig. 3, structures where the flow velocity and vorticity aligns
are dominant. Heavy, inertial spherical particles are not able to distinguish the chirality
of the underlying flow, they centrifuge out of vortex structures independent of their sign
of helicity. We therefore study the dynamics of so called isotropic helicoids (Kelvin 1871;
Happel & Brenner 2012). These are the simplest generalisation of spherical particles,
their dynamics breaks parity, but remains isotropic. One example of isotropic helicoids
suggested by Kelvin (Kelvin 1871) is illustrated in Fig. 4. Twelve planar wanes are
attached perpendicular to the surface of a sphere at equal distances on three great circles.
All vanes either form the angle +45◦ (anti-chiral helicoid) or −45◦ (co-chiral helicoid)
with the great circle traversed clockwise, see Fig. 4. The wanes cause a coupling between
translational and rotational motion. The dynamics of isotropic helicoids was studied in
stationary ABC flows in Gustavsson & Biferale (2016). It was shown that the spatial
distribution of isotropic helicoids depends on the relative chirality between the particle
and the underlying flow. In this section we use DNS, the stochastic model and theoretical
approaches to analyse the motion of isotropic helicoids in helical turbulence.
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Figure 4. Illustration of two isotropic helicoids with opposite helicoidality as suggested by
Kelvin (Kelvin 1871), anti-chiral (C0 < 0, left panel) and co-chiral (C0 > 0, right panel). The
initial response to two simple flow configurations are illustrated with arrows. In response to
an applied vertical difference in velocity, both helicoids accelerate in the direction of relative
velocity, while their angular accelerations depend upon the sign of C0. Similarly, in response
to an applied vertical difference in vorticity, the helicoids obtain the same angular acceleration,
but they are accelerated in opposite directions.

3.1. Isotropic helicoids

The dynamics of an isotropic helicoid with position x, velocity v and angular velocity
ω suspended in a fluid with velocity u and vorticity 2Ω = ∇ × u is governed by the
following equations (Kelvin 1871; Happel & Brenner 2012; Gustavsson & Biferale 2016)

v̇ =
1

τp

[
u(x(t), t)− v +

2ã

9
C0(Ω(x(t), t)− ω)

]
ω̇ =

1

τp

[
10

3
S(Ω(x(t), t)− ω) +

5

9ã
C0(u(x(t), t)− v)

]
.

(3.1)

Here dots denote time derivatives and u andΩ are evaluated at the particle position x(t).
The dynamics of isotropic helicoids couples individual vector components of translational
and rotational motion, but does not mix different components. The dynamics is governed
by four parameters. First, τp is a relaxation time quantifying particle inertia. In the limit
of τp → 0 the particle approaches the dynamics of a tracer, v = u and ω = Ω. Second,

ã =
√

5I0/2m is a measure of the particle size defined by its mass m and moment of
inertia I0. Third, C0 is the helicoidality. It quantifies the strength of the coupling between
translational and rotational degrees of freedoms. Finally, S is the structural number that
quantifies how much the rotational inertia of the isotropic helicoid differs from that of a
spherical particle. When C0 = 0, the particle dynamics is that of an isotropic particle,
and if further S = 1, the dynamics is that of a spherical particle with Stokes relaxation
time τp. When C0 6= 0, invariance of the particle dynamics under mirror reflections of
the particle is broken. Depending on the relative sign between C0 and components of
Ω, the particle accelerates either along the vorticity component, or opposite to it, see
Fig. 4. The only constraint on the parameters is |C0| <

√
27S, required for the kinetic

energy of the particle to remain finite. The actual size of the particle, ∼ ã, should also
be less than the smooth scale of the flow (a multiple of the Kolmogorov length η) for
the point-particle approximation to be valid. The governing equations (3.1) exemplify
why isotropic helicoids are simpler extensions to spherical particles than spheroids: the
dynamics of spheroids depends on their instantaneous direction in addition to v and ω
and it couples different components of the velocity and angular velocity. Moreover, in
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Condition St− St+ ξ− ξ+

S > 3/10 1 10S/3 (1, 0) (0, 1)
0 < S < 3/10 10S/3 1 (0,−1) (1, 0)

Table 3. Rescaled eigenvalues St± = d± St and corresponding eigenvectors ξ± in Eqs. (3.3)
and (3.4) for isotropic particles, C0 = 0.

the limit of inertialess spheroids, the particle angular velocity does not simply follow Ω,
but is also affected by the strain rate of the flow (Jeffery 1922).
Rescaling to dimensionless units t′ = t/τη, x′ = x/η, u′ = uτη/η, v′ = vτη/η, ω′ = ωτη,
and Ω′ = Ωτη, and dropping the primes in what follows, we can write the equations of
motion for each pair of components vi and ωi in dimensionless form:(

v̇i
ω̇i

)
= D

(
ui − vi
Ωi − ωi

)
, D =

1

St

(
1 2C0a

9
5C0

9a
10
3 S

)
. (3.2)

Here we have introduced the dimensionless size a = ã/η and the Stokes number St =
τp/τη. Interpreting the two-tensor D as a matrix, it has two eigenvalues d± and corre-
sponding eigenvectors ξ± given by

d± =
1

18 St

(
9 + 30S ±

√
40C2

0 + 9(3− 10S)2

)
≡ St±

St
(3.3)

ξ± =
1√

(2C0a)2 + 81(St±−1)2

(
2C0a

9(St±−1)

)
. (3.4)

These equations are well defined for all parameter values, but the limit of isotropic
particles, C0 → 0, has a complication. Taking the limit C0 → 0 in Eqs. (3.3) and (3.4) we
need to distinguish the two cases of S < 3/10 and S > 3/10, resulting in the eigenvalues
and eigenvectors given in Table 3. The reason is that when C0 = 0, the eigenvalues cross
at S = 3/10, meaning that the translational eigenvalue switches from being the largest
(d+) when S < 3/10 to the smallest (d−) when S > 3/10. Moreover, the translational
and rotational degrees of freedom decouples when C0 = 0 and the eigenvector (1, 0)
corresponding to the translational dynamics must be ξ+ for S < 3/10 and ξ− for
S > 3/10 with a discontinuous jump at S = 3/10. In the same way, the eigensystem
corresponding to the rotational dynamics has a discontinuity at S = 3/10. When C0 = 0
the translational dynamics has a single scale of inertia. When S ∼ 1 this scale is St ∼ 1,
see Table 3. This has been observed in simulations of inertial particles, where the most
interesting dynamics occurs around values of St of order unity, see for example Fessler
et al. (1994); Bec et al. (2007); Falkovich & Pumir (2007). The translational dynamics of
isotropic helicoids on the other hand has two characteristic inertial scales St− and St+

that depend on the helicoid parameters C0 and S. These scales may be well separated
in the meaning that St+ / St− can take arbitrarily large values. We therefore expect that
isotropic helicoids may show significantly different behaviour depending on whether the
Stokes number St is of the order of St− or St+. Below we illustrate this by numerical
simulations and analysis of two different limiting cases.

3.2. Preferential sampling of vorticity and helicity

Inertial spherical particles are subjected to preferential sampling of particular flow
structures as well as small-scale fractal clustering (Maxey 1987; Fessler et al. 1994; Bec
2003; Gustavsson & Mehlig 2016). In the limit of small Stokes numbers the mechanism
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Helicoids type C0 S a St− St+ βeff

Anti-chiral −5 1 10 0.058 4.3 −0.1
−1.6 0.1 30 0.013 1.3 −0.2

Neutral 0 1 − 1 3.3 1
Co-chiral 1.6 0.1 30 0.013 1.3 1.7

5 1 10 0.058 4.3 0.5

Table 4. Overview of the four parameter families in the simulations in Fig. 5. For each family,
St varies over a few decades. The dynamics of the helicoids is driven by the helicoidality C0,
shape factor S, and particle size a = ã/η which define the characteristic scales St−, St+ and βeff

as introduced in Eqs. (3.3) and (3.14) respectively; for details see Sec. 3.1. The notion of being
co-chiral or anti-chiral is made in terms of the flow helicity which is always taken in average
positive in this paper.

for clustering can be explicitly related to preferential sampling. In Gustavsson & Biferale
(2016) the divergence of the velocity field along the trajectory of an isotropic helicoid
was derived for small values of St (St� St−)

∇ · v ∼ − St

27S − C2
0

(
27STr[A2]− 9aC0

5
Tr[AV ]

)
+ o(St) , (3.5)

where Aij = ∂iuj , Vij = ∂iΩj , and the term Tr[AV ] is connected to the helical properties
of the flow. Depending on the sign of ∇ · v trajectories of close-by particles may either
converge (∇·v < 0) or diverge (∇·v > 0). It is expected that particles cluster in regions
where ∇ · v < 0, i.e. where 27STr[A2] > 9aC0Tr[AV ]/5. For heavy spherical particles
C0 is zero and particles cluster in straining regions of the flow where Tr[A2] > 0 (Maxey
1987). For helicoids the structures in which particles with small values of St converge
are more intricate and depend on the particle parameters, a,C0, S, combined with the
local flow helicity as expressed by the last term on the right-hand side of Eq. (3.5).
As observed by Gustavsson & Biferale (2016), for a flow region with strong helical
coherence, V ∼ cA, particles cluster where (27S − 9acC0/5)Tr[A2] is positive. As a
consequence, particles of opposite helicoidality (different signs of C0) may accumulate
in flow regions of opposite sign of helicity c. As a result, even if the helicoids is heavier
than the surrounding flow, they may cluster in vortical regions where Tr[A2] < 0, similar
to light spherical particles. In order to quantify the preferential sampling of helical flow
structures, we simulate the dynamics (3.2) for a number of parameters summarized in
Table 4 using the flows described in Sec. 2.3. For each set of parameters, once the fluid
reaches its statistically stationary state it is seeded with 2.4 × 106 particles. The initial
velocity and angular velocity of each particle are given by the fluid velocity and half the
fluid vorticity evaluated at the particle position. Fig. 5a shows the fraction of particles
in rotational regions of the flow. In rotational regions of a flow, the fluid gradient matrix
A has complex eigenvalues, or equivalently, the sign of the discriminant

∆ =

(
detA

2

)2

−
(

tr[A2]

6

)3

, (3.6)

is positive (Chong et al. 1990). We observe that isotropic helicoids with the same positive
chirality of the underlying flow, C0 = 1.6 (solid blue markers), depend intricately on
the Stokes number: for small values of St they behave similar to light particles that
oversample rotational regions where ∆ > 0, while for larger values of St they instead
behave as heavy inertial particles that oversample strain regions where∆ < 0. In contrast,
for the other considered values of C0, the helicoids always behave as heavy particles and
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Figure 5. a Fraction of particles in rotational flow regions (∆ > 0) as a function of St for
the DNS given by the fourth case in Table 2. b Mean fluid helicity 〈H〉 = 2〈u · Ω〉 along
particle trajectories as a function of St for the DNS. The data is normalized by the helicity of
the flow, 〈H〉flow which is always chosen to be positive in our simulations. The parameters of
the simulations are given in Table 4 and the simulation results are displayed as interconnected
markers. Results for neutral particles, C0 = 0, are shown as black asterisks. Results for S = 1,
a = 10 helicoids are shown as hollow orange circles (anti-chiral, C0 = −5) and filled red circles
(co-chiral, C0 = 5). Results for S = 0.1, a = 30 helicoids are shown as hollow lightblue boxes
(anti-chiral, C0 = −1.6) and filled blue boxes (co-chiral, C0 = 1.6). Black dashed lines show
P (∆ > 0) and 〈H〉 for tracer particles. c, d Same as a, b, but for the stochastic model flow with
Ku = 10, H0 = 0.85, and ratio between the smooth length scale η0 and the Kolmogorov scale
η, η0/η = 10.

oversample strain regions to different degrees depending on the particle parameters.
Fig. 5b shows the mean value of fluid helicity evaluated along particle trajectories,
〈H(x(t))〉 = 2〈u · Ω〉, as a function of St. Comparing Fig. 5a and b shows that the
behaviour is quite similar: helicoids with C0 = 1.6 oversample rotational regions and
have larger helicity than the underlying flow if the Stokes number is small enough. This
is consistent with these particles spending long time in rotational regions of the flow where
helicity is high and mainly of a given sign due to the helical nature of the underlying flow.
Particles with the other investigated parameter values on the other hand, experience a
fluid helicity that is lower than that of tracer particles. This is consistent with these
particles aggregating in fluid strain regions where helicity is small. We also observe a
transition at intermediate Stokes numbers: for small values of St, isotropic helicoids with
negative values of C0 are more likely to sample flow regions of negative helicity, while for
large values of St helicoids with positive values of C0 on average sample more negative
values of helicity.
In Fig. 5c and d we show the same plots of panels (a) and (b) but for the stochastic model
described in Sec. 2.4. We choose parameters that are expected to correspond well with
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the DNS parameters. The Kubo number Ku is taken to be large, corresponding to the
persistent-flow limit where the dynamics most resembles the small scales in turbulence. As
described in Sec. 2.4 we take H0 = 0.85 to match the distribution of flow helicity to that
of the DNS and we take η0/η = 10 to compensate for the difference between the smooth
length scale of the dissipation range and the Kolmogorov length in DNS. Finally, similarly
to the DNS we base the Stokes number in the stochastic model on the Lagrangian time

scale of tracer particles, τη ≡ 〈Tr(AAT)〉−1/2
flow = η0/(

√
5u0). In previous studies similar

schemes have resulted in qualitative agreement between stochastic model simulations
and DNS for the dynamics of spherical particles, elongated particles, and gyrotactic
microswimmers (Gustavsson et al. 2015; Gustavsson & Mehlig 2016; Gustavsson et al.
2017). As shown in Fig. 5c and d we obtain a qualitative agreement with the DNS also
for the isotropic helicoids. The general trends as functions of St for the different values of
C0 agree, but the detailed values disagree in some ranges. One example is the probability
to find helicoids with C0 = 1.6 in rotational regions with ∆ > 0. Although being larger
than the other parameter values, it is not larger than that of the underlying flow as for
the DNS case. One possible explanation for this is that the life time of vortex regions is
longer in DNS than in the stochastic model.

3.2.1. Limiting cases

We now explain the data shown in Fig. 5 by analysing the two limiting cases of St� St+

and St � St−. We use Eqs. (3.3) and (3.4) to write the dynamics (3.2) in its diagonal
basis as

ζ̇−,i =
St−
St

(u−,i − ζ−,i) (3.7)

ζ̇+,i =
St+

St
(u+,i − ζ+,i) . (3.8)

Here we have changed basis for each component i using(
vi
ωi

)
= X

(
ζ−,i
ζ+,i

)
and

(
ui
Ωi

)
= X

(
u−,i
u+,i

)
, (3.9)

where the columns of the 2× 2 matrix X consist of the eigenvectors ξ− and ξ+.
Eqs. (3.7) and (3.8) are only implicitly coupled through the trajectory dependence in u−
and u+. We therefore expect that the two limits St� St+ and St� St− discussed above
can be taken, to a lowest-order approximation, in one of Eqs. (3.7) and (3.8) independent
from the second equation. Consider first St � St+ with general values of St−. For the
acceleration to remain finite in Eq. (3.8) in this limit, we must have 0 ∼ u+,i − ζ+,i. In
terms of the original coordinates, this condition gives the following constraint:

ω −Ω =
9

2C0a
(1− St−)(u− v) . (3.10)

Using Eq.(3.10) and its time derivative to replace ω and ω̇ in Eq. (3.7), and reverting to
the original coordinates, we obtain:

v̇ =
St−
St

(u− v) +
1

3(St−−St+)

[
3(St−−1)u̇− 2C0a

3
Ω̇

]
. (3.11)

Thus, a single equation determines the velocity of the isotropic helicoid in the limit
St � St+ and the angular velocity is given by Eq. (3.10). It can be noted that for
the case of C0 = 0, the constraint (3.10) becomes singular because velocity and angular
velocity are uncoupled. However, Eq. (3.11) still shows the same results as those obtained
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by letting C0 = 0 and St � St+ in the original equation (3.2). When C0 = 0 and
S > 3/10, Eq. (3.11) simplifies to v̇ = (u − v)/ St while the rotational dynamics is
overdamped, ω −Ω = 0. When C0 = 0 and S < 3/10 on the other hand, the condition
St � St+ = 1 implies that the translational dynamics is overdamped and Eq. (3.11)
simplifies to v̇ = (u − v)/ St +u̇. This equation relaxes to the overdamped limit v = u
after a short initial transient on the time scale of order St� 1.
The dynamics (3.11) can be further simplified using one or both of the following two
assumptions. First, for small enough values of St /St−, we approximate u̇ ∼ Du/Dt and
Ω̇ ∼ DΩ/Dt, where D/Dt ≡ ∂t + (u ·∇) = d/dt+ (u− v) ·∇ are advective derivatives.
Second, in a helical flow Ω and u tend to be aligned and we may approximate Ω ∼ cu
with some proportionality constant c. Using these approximations, Eq.(3.11) simplifies
to:

v̇ =
St−
St

(u− v) +
9(St− − 1)− 2cC0a

9(St− − St+)

Du

Dt
. (3.12)

If we define an effective Stokes number Steff and an effective density parameter βeff :

Steff =
St

St−
(3.13)

βeff =
9(St−−1)− 2cC0a

9(St−−St+)
, (3.14)

then Eq. (3.12) becomes identical to that for small spherical particles (Maxey & Riley
1983) with sub-dominant terms neglected:

v̇ =
1

St
(u− v) + β

Du

Dt
. (3.15)

For spherical particles the density is characterised by β: 0 < β < 1 corresponds to heavy
particles more dense than the fluid, β = 1 corresponds to neutrally buoyant particles
and 1 < β 6 3 corresponds to particles lighter than the fluid. We remark that βeff in
Eq. (3.14) is not constrained to the interval 0 6 β 6 3 as the case of spherical particles,
βeff may also take negative values as well as values larger than 3.
Fig. 6a,b compares stochastic model simulations of the approximation (3.11) to the
simulation data in Fig. 5c and d. We observe a quantitative agreement of the ap-
proximation in the expected limit St � St+. Fig. 6c,d show numerical simulations of
(3.11) with u̇ and Ω̇ replaced by Du/Dt and DΩ/Dt, which approaches the results of
Eq. (3.11) when St / St− � 1 as expected. Finally, Fig. 6c,d also shows the approximation
(3.12) using Ω = cu with c = (〈Ω2〉/〈u2〉)1/2 =

√
5/2 for the stochastic model. This

approximation only gives qualitative agreement, which is expected because the fluid
velocity and vorticity are not perfectly aligned in the helical flow with H0 = 0.85.
However, the qualitative agreement allows us to explain the behaviour observed for
small St � St+ in Fig. 5 in terms of what is known from spherical particles. The
values of the effective density parameter βeff in Eq. (3.14) are quoted in Table 4 for our
simulation parameters. Only the case C0 = 1.6 has βeff larger than one, corresponding
to spherical particles lighter than the fluid. Such particles are expected to preferentially
sample rotational flow regions when the effective Stokes number Steff = St / St− is of
order unity, which is consistent with the data in Fig. 5a and c. The cases of helicoids
with C0 = −1.6 or C0 = −5 can be viewed as heavy particles because βeff is close to
zero. In these cases the helicoids preferentially sample strain regions of the fluid when
Steff ∼ O(1). Finally, the case C0 = 5 has βeff ≈ 0.5, making it heavy but not as heavy as
the cases with negative values of C0. As expected the preferential sampling of straining
regions when Steff ∼ O(1) is therefore somewhat lower, see Fig. 6a.
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Figure 6. Comparison of stochastic model simulations for (a) the probability to be in a
rotational region, P (∆ > 0), and (b) the average helicity, 〈H〉, to results in the limiting case
St � St+ discussed in Sec. 3.2.1. Markers show results from simulations of the full dynamics
(3.1) (same data as in Fig. 5c and d) and solid lines show the approximation (3.11) evaluated
using stochastic model simulations. The upper bound St /St− ∼ 20 corresponds to St ∼ 0.2 St+.
c, d Comparison to the refined approximations for St� St− � St+. Solid lines and markers as
in panels a and b. Dashed lines show the approximation (3.11) with u̇ and Ω̇ replaced by Du/Dt
and DΩ/Dt. Dash-dotted lines show the approximation (3.12) for flows where fluid vorticity and

velocity aligns, Ω = cu, with c = (〈Ω2〉/〈u2〉)1/2 =
√

5/2.

We now consider the second limiting case, St � St− with general values of St+. In this
limit ζ−,i in Eq. (3.7) respond slowly to changes in the flow compared to ζ+,i. Due to the
symmetries of the underlying flow, we expect the averages of u−,i and consequently of
ζ−,i to vanish. We therefore replace ζ−,i by its vanishing average, ζ−,i = 0, which gives
the following constraint on ω

ω =
9(St+−1)

2aC0
v .

Inserting this constraint and its time derivative into Eq. (3.8), gives the following equation
for the velocity

v̇ =
St+

St

[
3(3 St+−10S)u+ 2aC0Ω

9(St+−St−)
− v

]
. (3.16)

As for the first limiting case we can consider a helical flow with Ω ∼ cu to obtain

v̇ =
St+

St
[βeffu− v] , (3.17)

where βeff is the parameter in Eq. (3.14) occurring in the limit of St� St−. Thus, in the
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Figure 7. Comparison of stochastic model simulations for (a) the probability to be in a
rotational region, P (∆ > 0), and (b) the average helicity, 〈H〉, to results in the limiting case
St � St− discussed in Sec. 3.2.1. Markers show results from simulations of the full dynamics
(3.1) (same data as in Fig. 5c and d) and solid lines show the approximation (3.16). The lower
bound St /St+ ∼ 0.05 corresponds to St ∼ 5 St−. c, d Comparison to the refined approximations
for flows where fluid vorticity and velocity aligns. Solid lines and markers as in panels a and b.
Dash-dotted lines show simulation results for the approximation (3.17).

limit St� St− the equation of motion for helicoids in a helical flow is like a Stokes drag
with effective Stokes number St / St+ and with a rescaled amplitude of the fluid velocity.

We compare stochastic model simulations of the approximation (3.16) to simulations of
Eq. (3.1) in Fig. 7a,b. When St � St− we observe a quantitative agreement. Fig. 7c,d
shows that we only obtain qualitative agreement for the approximation (3.17) based on
the approximation Ω = cu. This is similar to the first limiting case above and we use
this limit to explain the observed data. For helicoids with negative values of C0, the
coupling to the flow, βeffu in Eq. (3.17), is small, see Table 4. The particle motion is
thus expected to be only weakly correlated to the underlying flow structures, which is
consistent with the data: the particles with negative values of C0 have approximately the
same statistical properties as the flow (black dashed lines in Fig. 7). The helicoids with
positive values of C0 on the other hand have βeff ∼ 1 and are therefore expected to have
preferential sampling similar to spherical particles with effective Stokes number St+ / St.
This is the case for simulations of Eq. (3.17), but the magnitude of the preferential
sampling in Fig. 7c,d differ somewhat from the full numerical data and from Eq. (3.16)
because Eq. (3.17) in only a qualitative approximation.
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3.2.2. Small values of Ku

For the stochastic model we can solve the dynamics analytically in the limit of small
Ku in terms of the full set of model parameters St, C0, S, a, and H0 using the method
in Gustavsson & Mehlig (2011, 2016). The calculation is outlined in Appendix B. The
resulting mean helicity becomes to second order in Ku:

〈H〉 = H0 +
3 Ku2 St

4(5C2
0 − 27(1 + 2 St)(5S + 3 St))(10C2

0 − 27(1 + St)(10S + 3 St))2

{
− (25 + 6H2

0 )C0 a
[
50C4

0 + 135C2
0 (10S(St−2) + 3 St(5 St−1))

− 729(50S2(St−1) + 18 St3 +15S St(5 St−1))
]

+ 30H0

[
a2(90C4

0 St−486C2
0 (5S St−3 St3)) + 50C4

0 (10S + 9 St)

− 675C2
0 (40S2 + 42S St +9 St2) + 729(5S + 3 St)(10S + 3 St)2

]}
. (3.18)

Fig. 8a shows the analytical solution for the mean helicity together with the data for
Ku = 10. In order to compensate for the different magnitudes of relevant time scales in
flows with Ku = 10 and flows with small values of Ku, the parameters Ku and St which
depend on the correlation time of the flow have been rescaled in Eq. (3.18). We found
that multiplying the Stokes number by 4 and the Kubo number by 1/9 gives qualitative
agreement. Fig. 8a shows that the small Kubo results have the same trends as those of
the DNS and the stochastic model in Fig. 5b and d. This shows that the trends shown
in Fig. 5 are robust, they do not depend on the particular nature of the underlying flow.
Using this observation, we can use the theoretical solution of the stochastic model to get
an estimate of the parameter dependence of preferential sampling of helicity for general
values of the five model parameters. Two examples of this dependence are illustrated in
Fig. 8b and c. Fig. 8b shows how the observed Stokes-dependent preferential sampling
of helicity depend on C0. For not too small values of |C0| the preferential sampling is
similar to that observed in Fig. 5b and d: co-chiral helicoids oversample helicity for
small Stokes numbers, while anti-chiral helicoids oversample helicity for large Stokes
numbers. Helicoids with small |C0| behave similar to neutral particles and undersample
helicity. Similar trends are observed in a neutral flow (see Fig. 8c). In a neutral flow
helical structures of opposite signs are equally likely, which imposes a symmetry under
the simultaneous change of H and C0 to −H and −C0. This symmetry is clearly seen in
Fig. 8c: upon changing C0 to −C0 the average helicity changes sign. As a consequence
of the symmetry neutral particles (C0 = 0) in neutral flows may not show preferential
sampling of helicity, there is a thin line of no preferential sampling at C0 = 0 in Fig. 8c.

3.3. Clustering

The previous section shows that helicoids of different chirality may go to very different
regions in the flow. This is exemplified in Fig. 9 which shows a snapshot of the positions of
isotropic helicoids of different chirality in a strongly helical stochastic flow. Fig. 9 clearly
shows that the helicoids of opposite chirality distribute in different flow regions. It is also
visible that the spatial clustering is different in nature, the helicoids with C0 = −1.6
seems to distribute on a set which fills a larger portion of space compared to helicoids
with C0 = 1.6. It is known that spherical particles show small-scale fractal clustering
due to preferential sampling and due to the dissipative nature of the dynamics. We
start investigating the degree of spatial clustering of helicoids by computing the spatial
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Figure 8. Evaluation of theory (3.18) for mean helicity 〈H〉 for small values of Ku with rescaled
parameters Ku and St, see text. a Comparison of the theory (3.18) to the simulation data for
Ku = 10 in Fig. 5d. b Heat map of the theory (3.18) for the deviation of average helicity,
〈H〉, from that of the flow, 〈H〉flow = H0, plotted against St and C0 for S = 0.1, a = 30 and
H0 = 0.85. Dashed lines correspond to the curves with C0 = −1.6 (lightblue), C0 = 0 (black),
and C0 = 1.6 (blue) shown in panel a. c Same as b but for a neutral flow, H0 = 0.

Figure 9. Snapshot of positions of isotropic helicoids in stochastic model simulations for a flow
with Ku = 10 and maximal helicity H0 ≈ 2.1 (µ → ∞), and particle parameters St = 0.9 St−,
a = 30, S = 0.1, and C0 = −1.6 (left) and C0 = 1.6 (right). The history of the underlying flow
is identical for the two simulations. Coordinate axes are dedimensionalized using η0.

correlation dimension, D2. The probability distribution P (r) to find two helicoids within
a spatial distance r scales as P (r) ∼ rD2 for small r. Here the exponent D2 is the spatial
correlation dimension and it quantifies the degree of spatial clustering. Fig. 10a shows
the behavior of D2 as functions of St / St− for the DNS with parameters given by the
fourth case in Table 2. Starting at small St / St−, the correlation dimension is close to the
spatial dimension and clustering is weak. As St /St− is increased, the clustering increases
until it reaches a maximum around St / St− ∼ 1. Finally, as St / St− is further increased,
the clustering becomes weaker and saturates at the spatial dimension for large values
of St / St−. The helicoids with C0 = 1.6 show stronger clustering around St / St− ∼ 1
compared to the other cases. This can be explained by the observation in Sec. 3.2.1: the
dynamics of helicoids with C0 = 1.6 is similar to that of light spherical particles and
the other types of helicoids have dynamics similar to that of heavy spherical particles
with effective Stokes numbers St / St−. Light spherical particles cluster in rotational
regions of the flow and show more clustering than heavy spherical particles (Bec 2003;
Toschi & Bodenschatz 2009). This explains why the helicoids with C0 = 1.6 have a
smaller fractal dimension, close to D2 = 1.6, than the other, effectively heavy spherical
particles. It also explains why the correlation dimension for the helicoids with C0 = −1.6
and C0 = ±5 approximately collapse on the correlation dimension of spherical particles
when plotted against St / St−. The numerical data for C0 = 1.6 shows a second peak of
clustering (minimum of D2) at St /St− � 1 where St ∼ St+. This is consistent with the
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Figure 10. a Spatial correlation dimension D2 as a function of St / St− for the DNS with
parameters given by the fourth case in Table 2. The parameters of the simulations are given
in Table 4 and the simulation results are displayed as interconnected black asterisks (C0 = 0),
hollow orange circles (C0 = −5, S = 1, a = 10), filled red circles (C0 = 5, S = 1, a = 10),
lightblue boxes (C0 = −1.6, S = 0.1, a = 30), and filled blue boxes (C0 = 1.6, S = 0.1, a = 30).
b Phase-space Lyapunov dimension DL for the stochastic model with Ku = 10 and H0 = 0.85.
Parameters correspond to panel a.

approximation (3.17) where for βeff ∼ O(1) we have a sort of heavy-particle behaviour.
However, we remark that the result for D2 is measured at finite separation which might
not reflect the true asymptotic scaling for r → 0. Indeed, in the stochastic model the
correlation dimension around St ∼ St+ show a similar scaling P (r) ∼ rD2(r) with local
exponent D2(r) < 3 for a range of r � 1, while for small enough values of r, the uniform
D2 = 3 scaling is approached (not shown). This can be explained by the fact that the
deviation from the approximation (3.17) is different for the two particles, which results
in a uniform distribution of particles for small enough scales.
Using D2 to quantify fractal dimension of clustering may be problematic because it
often converges slowly and consequently very small scales must be resolved in the
distribution P (r). An alternative quantification of fractal clustering which is easier to
evaluate accurately is provided by the Lyapunov dimension (Kaplan-Yorke dimension)
DL (Frederickson et al. 1983). Denoting by λ1 > λ2 > · · · > λ9 the nine Lyapunov
exponents of the equation system (3.1) together with ẋ = v, the Lyapunov dimension is

DL = K +

K∑
i=1

λi/|λK+1| , (3.19)

where K is the largest integer such that
∑K
i=1 λi > 0. Fig. 10b shows numerical evaluation

of the Lyapunov dimension for the stochastic model. For DL < 3 it shows similar trends
as the correlation dimension D2 in DNS. The values of DL are somewhat higher than D2,
consistent with the fractal attractor in turbulence being a multifractal withDL > D2 (Bec
2005). Finally, we remark that the Lyapunov dimension defined in Eq. (3.19) describes
the dimension of the fractal in phase-space, and it is therefore not bounded by the spatial
dimension 3 as is the case for the spatial correlation dimension. For large values of St,
the Lyapunov dimension is expected to approach the dimensionality D of phase-space.
This is consistent with the data in Fig. 10b (D = 9 for helicoids and D = 6 for spherical
particles).
The long-term average of the compressibility along particle trajectories is identical to the
sum over the first three Lyapunov exponents, ∇ · v = λ1 + λ2 + λ3. Using this relation,
we verify in Fig. 11 the small St approximation given by Eq. (3.5). We find that the
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Figure 11. Stochastic model simulations of the relative amplitude of average compressibility
along particle trajectories, 〈∇ · v〉 = λ1 + λ2 + λ3, and the approximation (3.5), 〈∇ · v(1)〉.
Parameters as in Fig. 10.

approximation (3.5) tends to approach ∇ · v as St /St− is reduced and that the two
expressions agrees approximately for St / St− ∼ 0.1.
We end the discussion on particle clustering by remarking that we have applied the
perturbation theory developed in Appendix B to calculate the Lyapunov exponents and
Lyapunov dimension for small values of Ku, similar to the expansions for the Lyapunov
exponents of spherical particles (Gustavsson & Mehlig 2011, 2016). The theory relies
on the additional constraint St � St− in order for caustic singularities to be rare. In
this limit we observe good agreement between theory and numerical simulations of the
stochastic model (not shown).

4. Discussion and conclusions

We have presented a series of numerical and theoretical results concerning the properties
of turbulent flows under strong multi-scale helical injection. We performed direct numer-
ical simulations of the Navier-Stokes equations up to resolution 5123 and at changing
the exponent of the power-law helical injection, in the limit of white-in-time noise. We
first showed that there exists three different regimes for the forward energy and helicity
non-linear transfers: (i) when both transfers are directed toward small-scales and the
external multi-scale injection is negligible, leading to a −5/3 spectrum for both energy
and helicity; (ii) when the energy cascade is fully non-linear and helicity is dominated by
the forcing; and (iii) when both cascades are dominated by the forcing at all scales. For
the case of turbulence under condition (iii) and for a surrogate stochastic flow we studied
the evolution of isotropic helicoids, presenting a systematic assessment of preferential
sampling and fractal clustering for helicoids with different properties. In particular, we
showed that a suitable tuning of the chirality of the helicoids may lead to particles that
behave either as being lighter or heavier than the surrounding flow. The phenomenon is
enhanced for helicoids sizes larger then the Kolmogorov scale, where the approximation
of point-particle might not be fully correct anymore. This apparent problem can be
resolved by constructing particles with large effective ã while the size of the particle
interacting with the fluid is smaller (Gustavsson & Biferale 2016). The research leading
to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement No. 339032. K.G. acknowledges
funding from the Knut and Alice Wallenberg Foundation, Dnar. KAW 2014.0048. The
numerical computations used resources provided by C3SE and SNIC.
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Appendix A. Stochastic model for helical turbulence

To construct the incompressible, homogeneous, and isotropic stochastic velocity field,
u = ∇ ×A, used in the article, we generate the components of the vector potential A
as a Fourier sum

Ai(r, t) =
(2π)3/4√
3(1 + µ)

η
5/2
0 u0

L3/2

∑
k

3∑
j=1

[(h−j,k)∗aj,k(t)h−i,k + µ(h+
j,k)∗aj,k(t)h+

i,k]eik·r− k
2η20
4 .

(A 1)

Here L = 10 is the system size (we use L = 10η0 in our simulations), the wave vector k is
summed over the components kj = 2πnj/L with nj = −20,−19, . . . ,+20 and j = 1, 2, 3.
For each k, the vector of Fourier coefficients, ak(t), has been expanded in terms of the
eigenmodes h±k of the curl operator, weighted by a factor µ to give a bias to positive
helical modes if µ > 1, and to negative helical modes if 0 6 µ < 1. The coefficients ai,k(t)
are complex random Gaussian numbers fulfilling the condition a∗i,k = ai,−k and having
the statistics

〈ai,k(t)〉 = 0 and 〈ai,k1
(t1)a∗j,k2

(t2)〉 = δijδk1k2
e−|t1−t2|/τ . (A 2)

The exponential time correlation in (A 2) is generated from an underlying Ornstein-
Uhlenbeck processes

ai,k(t+ δt) = e−δt/τai,k(t) + bi,k(t) , (A 3)

where δt is the time step of the simulation and bi,k(t) are independent random Gaussian
numbers that are white-noise in time with statistics

〈bi,k(t)〉 = 0 and 〈bi,k1(t)b∗j,k2
(t)〉 = δijδk1k2(1− e−2δt/τ ) . (A 4)

The Gaussian cut-off for large k in Eq. (A 1) ensures a Gaussian spatial correlation
function with correlation length η0. When L � η0, Eq. (A 1) implies the correlation
function

〈Ai(r1, t1)Aj(r2, t1)〉 =
η2

0u
2
0

6
e−|r1−r2|2/(2η2)−|t1−t2|/τ . (A 5)

From this correlation function the statistics of u and its spatial derivatives follows. To
obtain the distribution P0(H) of helicity H = 2u ·Ω for the stochastic flow in Eq. (A 1),
we start from the joint distribution of u and Ω

P =
1

8π3
√

det C
e−X

TC−1X , (A 6)

where X = (u1, u2, u3, Ω1, Ω2, Ω3)T and C is the corresponding covariance matrix
(velocity is made dimensionless in terms of u0 and position in terms of η0)

Cij = 〈XiXj〉 =
1

12


4 0 0 2H0 0 0
0 4 0 0 2H0 0
0 0 4 0 0 2H0

2H0 0 0 5 0 0
0 2H0 0 0 5 0
0 0 2H0 0 0 5

 (A 7)

obtained from Eq. (A 5) with H0 ≡
√

2/π8(µ2 − 1)/(3(µ2 + 1)). After a change of
coordinates Ωz = (H/2 − Ωxux − Ωyuy)/uz and integration over Ωx and Ωy the
remaining joint distribution of H, ux, uy, and uz depends only on H and the combination
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u2
x + u2

y + u2
z. Changing to spherical coordinates in u-space and integrating them away

gives the final distribution of helicity, Eq. (2.11):

P0(H) =
9

π

|H| exp
[

3H0H
5−H2

0

]
K1

[
3
√

5|H|
5−H2

0

]
√

5 [5−H2
0 ]

, (A 8)

where Kν(x) is the modified Bessel function of the second kind. The average helicity of
the flow is determined from the helicity bias µ as follows:

〈H〉flow =

∫ ∞
−∞

dHHP0(H) = H0 =
8

3

√
2

π

µ2 − 1

µ2 + 1
. (A 9)

Appendix B. Expansion around deterministic trajectories

Here we outline the series expansion used to calculate the mean helicity (3.18) of isotropic
helicoids for small values of Ku in the statistical model. The expansion follows the method
introduced in Gustavsson & Mehlig (2011) and reviewed in Gustavsson & Mehlig (2016).
We want to expand the dynamics in the dimensionless equations of motion (Eq. (3.2)
together with ṙ = Kuv) around the deterministic solution r(d) obtained without flow,
i.e. when u = Ω = 0. Since we in this work only consider homogeneous steady-state
statistics, we can put all initial conditions to zero for simplicity. We therefore expand
around the simple deterministic solution r(d) = 0. An implicit solution to the dynamics
in Eq. (3.2) together with ṙ = Kuv can be found by first solving the diagonal equations
for ζ in Eqs. (3.7) and (3.8), then transform back to v and finally integrate to obtain r.
We find that the following is an exact implicit solution to the dynamics:

rt = −Ku

∫ t

0

dt1

∫ t1

0

dt2

[
eSt+(t2−t1)/ StU+(rt2 , t2) + eSt−(t2−t1)/ StU−(rt2 , t2)

]
(B 1)

where

U± =
St±

St±−St∓

1

St

[
(St∓−1)u− 2C0a

9
Ω

]
. (B 2)

A series expansion of the flow velocity (and spatial derivatives thereof) around the
deterministic trajectory r(d) = 0 gives

ui(rt, t) = ui(0, t) +
∂ui
∂rj

(0, t)rj,t +
1

2

∂2ui
∂rj∂rk

(0, t)rj,trk,t + . . . . (B 3)

Eq. (B 3) is an expansion of the flow velocity in terms of the displacement from r = 0.
Recursively substituting u(rt, t) (and derivatives thereof) from Eq. (B 3), and rt from
Eq. (B 1) into Eq. (B 3), we obtain increasingly refined approximation of the flow
evaluated along the true trajectory rt. Since rt is of order Ku in Eq. (B 1), we can use
Ku to keep track of the order of rt in the expansion. Truncating the recursive expansion
of Eq. (B 3) at some order in Ku, one obtains the approximate expression for u along a
trajectory rt to this order in Ku. To evaluate an approximation for the helicity along a
particle trajectory, we do a similar expansion for Ω(rt, t) to form H = 2u(rt, t)·Ω(rt, t).
Finally, we evaluate the steady-state average 〈H〉 = 2〈u(rt, t) · Ω(rt, t)〉, where the
average is taken over an ensemble of trajectories and can be explicitly evaluated for
the stochastic model in terms of the known Eulerian correlation function in Eq. (A 5),
see Gustavsson & Mehlig (2011, 2016) for more details. As a result, we obtain the
expression in Eq. (3.18).
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