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Abstract. We present a characterization of congruence modular-
ity by means of an identity involving a tolerance Θ and a reflexive
and admissible relation R.

More than forty years ago Nation [N] proved a result which is still
intriguing today: there are non-equivalent lattice identities which nev-
ertheless are equivalent as congruence identities in varieties. Many re-
sults of this kind followed, for example, Freese and Jónsson [FJ] proved
that modularity is equivalent to the Arguesian identity for congruence
lattices in varieties. As another example of a slightly different nature,
it is an almost immediate consequence of the arguments in the proof
of Lampe’s Lemma [FLT] and of the construction of an affine-modulo-
abelian term in Taylor [Ta] that every m-permutable variety satisfies
a non-trivial congruence lattice identity. See [L1] for a short history of
the result and for another proof. See also Kearnes and Nation [KN].
More results about congruence identities and further references can be
found in Day and Freese [DF], Freese and McKenzie [FM], Gumm [G],
Hobby and McKenzie [HM], Jónsson [J] and Kearnes and Kiss [KK].

It turns out that frequently tolerances, and sometimes just reflexive
and admissible relations, are at work behind the scene even when re-
sults about congruences are considered. This is particularly evident,
for example, in Czédli, Horváth and Lipparini [CHL], Jónsson [J, p.
370] or Tschantz [Ts]. Here we present a proof that a variety V is
congruence modular if and only if there is some natural number h such
that Θ(R◦R) ⊆ (ΘR)h holds in every algebra in V , for every tolerance
Θ and every reflexive and admissible relation R. The proof given here
is slightly simpler (but less general) than the proof presented in [L2].

Our notation is as follows. Juxtaposition denotes intersection. If
T is a binary relation, we let T h denote the relational composition
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T ◦ T ◦ T ◦ · · · ◦ T with h factors, that is, with h− 1 occurrences of ◦.
Moreover, T ∗ denotes the transitive closure of T .

Theorem 1. For every variety V, the following conditions are equiva-
lent.

(1) V is congruence modular.
(2) There is some natural number h such that Θ(R ◦ R) ⊆ (ΘR)h

holds in every algebra in V, for every tolerance Θ and every
reflexive and admissible relation R.

(3) The inclusion ΘR∗ ⊆ (ΘR)∗ holds in every algebra in V, for
every tolerance Θ and every reflexive and admissible relation
R.

(4) The identity αΦ∗ = (αΦ)∗ holds in every algebra in V, for every
congruence α and every tolerance Φ.

Proof. The proof that (1) implies (2) relies heavily on a recent result
by Kazda, Kozik, McKenzie and Moore [KKMM]. There the authors
showed that a variety V is congruence modular if and only if, for some k,
V has k+ 1 directed Gumm terms, that is, terms p, j1, . . . , jk satisfying
the following set of equations.

x = p(x, z, z)(DG1)

p(x, x, z) = j1(x, x, z)(DG2)

x = ji(x, y, x), for 1 ≤ i ≤ k,(DG3)

ji(x, z, z) = ji+1(x, x, z) for 1 ≤ i < k(DG4)

jk(x, y, z) = z(DG5)

Notice that we have given the definition of directed Gumm terms in
the reversed order, in comparison with [KKMM]. Now suppose that
A is an algebra in V , Θ is a tolerance of A and R is a reflexive and
admissible relation on A. If a, c ∈ A and (a, c) ∈ Θ(R ◦R), then a Θ c
and a R b R c, for some b ∈ A. By [KKMM] and (1) we have terms
satisfying (DG1)-(DG5) above. Let us compute

a = p(a, p(aab), p(aab)) R p(a, p(abb), p(aac)) = p(a, a, p(aac)),

a = p(a, a, a) = p(a, a, p(aaa)) Θ p(a, a, p(aac)),

where elements in bold are those moved by R or Θ and we have used
(DG1). Moreover, p(a, a, p(aac)) = j1(a, a, j1(aac)), by (DG2), hence

(5) a ΘR j1(a, a, j1(aac)).



CONGRUENCE MODULARITY, Θ(R ◦R) ⊆ (ΘR)h 3

Next, for ` = 1, . . . , k − 1, we have

j`(a,a, c) R j`(a, b, c) R j`(a, c, c) =(DG4) j`+1(a, a, c),

j`(a, a, c) = j`(j`(aac), b, j`(aac)) Θ j`(j`(aaa), b, j`(cac)) = j`(a, b, c)

j`(a, b, c) = j`(j`(abc), c, j`(abc)) Θ j`(j`(aba), c, j`(cbc)) = j`(a, c, c),

where in the last two equations we have repeatedly used (DG3). Com-
pare Czédli and Horváth [CH]. Hence

j`(a, a, c) ΘR j`(a, b, c) ΘR j`(a, c, c) = j`+1(a, a, c).

Concatenating, we get j1(a, a, c) (ΘR)2(k−1) jk(a, a, c) =(DG5) c. Then

j1(a, a, j1(aac)) (ΘR)2(k−1) j1(a, a, c) (ΘR)2(k−1) c.

Finally, using (5), we have a (ΘR)1+4(k−1) c, hence (2) holds with
h = 1 + 4(k − 1) = 4k − 3. Let us remark that a slightly better value
for h is provided in [L2].

(2) ⇒ (3) First we shall show that if

(6) Θ(R ◦R) ⊆ (ΘR)h

holds in some algebra A, for every reflexive and admissible relation R,
then, for every n ≥ 1, also

(7) ΘR2n ⊆ (ΘR)h
n

holds in A, for every reflexive and admissible relation R. This is proved
by induction on n. The basis n = 1 is the assumption (6). If (7) holds
for some n, then

ΘR2n+1

= Θ(R2n ◦R2n) ⊆(6) (ΘR2n)h ⊆(7) ((ΘR)h
n

)h = (ΘR)h
n+1

,

where we have used the fact that if R is reflexive and admissible, then
Ri is reflexive and admissible, for every i ≥ 1.

Now we can prove (3). If (a, c) ∈ ΘR∗, then (a, c) ∈ ΘRi, for some i,
hence (a, c) ∈ ΘR2n , for some sufficiently large n, since R is reflexive.
Then by (7), (a, c) ∈ (ΘR)h

n ⊆ (ΘR)∗. Again, notice that, given k+ 1
directed Gumm terms, [L2] provides a much better bound for ΘR2n , in
comparison with the bound (ΘR)(4k−3)n given by the present proof.

(3) ⇒ (4) The inclusion αR∗ ⊇ (αR)∗ is trivial, since α is a con-
gruence, hence transitive. The reverse inclusion follows trivially from
(3).

(4) ⇒ (1) Let α, β, γ be congruences and let Φ be the tolerance
αγ ◦ β ◦ αγ. Then Φ∗ = β + αγ, where + denotes join in the lattice
of congruences. Moreover, αΦ = αγ ◦ αβ ◦ αγ. Indeed, if a α d and
a Φ d, then there are elements b and c such that a αγ b β c αγ d.
Since b α a α d α c, we get b α c, hence (a, d) ∈ αγ ◦ αβ ◦ αγ. From
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αΦ = αγ ◦ αβ ◦ αγ we obtain (αΦ)∗ = αβ + αγ, hence from (4) and
Φ∗ = β + αγ we get α(β + αγ) = αβ + αγ. �

We do not know whether we still get a condition equivalent to con-
gruence modularity if in Condition (2) in Theorem 1 we consider a
reflexive and admissible relation S in place of a tolerance Θ. In any
case, the varieties for which Condition (2) in Theorem 1 holds with S
in place of Θ satisfy a much cleaner identity.

Proposition 2. For every variety V, the following conditions are equiv-
alent.

(1) S(R ◦R) ⊆ (SR)h, for some h;
(2) S(R ◦R) ⊆ (SR)∗;
(3) S∗R∗ = (SR)∗,

where each condition is intended to hold in every algebra in V for all
reflexive and admissible relations S and R.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (1) is standard, though not completely usual. Suppose that

(2) holds in the free algebra generated by 3 elements x, y and z and
let S, R, respectively, be the smallest reflexive and admissible relations
containing (x, z), respectively, (x, y) and (y, z). Then (x, z) ∈ S(R◦R),
hence, by (2), (x, z) ∈ (SR)∗, thus (x, z) ∈ (SR)h, for some h. This is
witnessed by appropriate terms, which also witness that S(R ◦ R) ⊆
(SR)h holds throughout V . See, e. g., [L3] for many similar arguments.

(3) ⇒ (2) is trivial.
If (2) holds, then an argument similar to the proof of (2) ⇒ (3) in

Theorem 1 shows

(8) SR∗ ⊆ (SR)∗,

for all R and S. Applying (8) twice, we have

S∗R∗ ⊆(8) (S∗R)∗ = (RS∗)∗ ⊆(8) (RS)∗∗ = (SR)∗.

The inclusion S∗R∗ ⊇ (SR)∗ is trivial. �
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