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Abstract: We construct families of ground state representations of the U(1)-current net and of
the Virasoro nets Virc with central charge c ≥ 1. We show that these representations are not
covariant with respect to the original dilations, and those on the U(1)-current net are not solitonic.
Furthermore, by going to the dual net with respect to the ground state representations of Virc,
one obtains possibly new family of Möbius covariant nets on S1.
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1. Introduction

A model of quantum field theory may be in various states: in quantum theory, a system is
defined by the algebra of observables and a physical state is realized as a normalized positive
linear functional on it [1]. Among them, the most important state on a quantum field theory is
the vacuum state, and indeed, notable axiomatizations of quantum field theory are formulated in
terms of the vacuum state or the vacuum correlation functions. Yet, some other states are of
particular interest. For example, DHR (Doplicher-Haag-Roberts [2]) representations correspond to
charged states. KMS (Kubo-Martin-Schwinger [3] (Section 5.3)) states represent thermally equilibrium
states. Limiting cases of KMS states, where the temperature is zero, are called ground states and they
enjoy particular properties. In this paper, we construct ground states on chiral components of certain
two-dimensional conformal field theories.

Ground states can be characterized in various ways, see e.g., [3]. In one of them, ground
states are invariant under the dynamics and the generator of the dynamics has positive generator.
In the operator-algebraic setting, this is particularly interesting, because if one has a ground state on
a one-dimensional Haag-Kastler net, one can take the dual net in the GNS (Gelfand-Naimark-Segal [4]
(Section 2.3.3)) representation, The dual net should be considered not as an extension but as a possibly
new, different model from the original net, because it has a different Möbius symmetry. Let us
recall that there is a certain relation between the failure of Haag duality and symmetry breaking
(see [5] (Section 1) for this and some implications on Goldstone bosons), but this does not necessarily
hold in (1 + 1)-dimensions, because a Haag-Kastler net is not always the fixed point net of a larger net
with respect to a Lie group.

In this work, we focus on the simplest class of quantum field theory: chiral components of
two-dimensional conformal field theory. Previously we studied KMS states on them [6,7] (let us stress
that we study here KMS states and ground states with respect to the spacetime translations. We studied
the KMS states with respect to rotations in a previous work [8] and discussed possible applications
to 3d black holes.).Differently from KMS states, it appears to be difficult to classify ground states for
a given net: the techniques to classify KMS states do not directly apply to ground states, because we do
not have a direct connection between ground states and modular automorphisms, which was crucial
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in [6] (Section 4.2.1, Appendix B) (the arguments for the case of maximal nets [6] (Theorem 4.7) might
still work for ground states), nor extension results of KMS states to larger net (cf. [7] (Appendix A), [9])
are available for ground states. On the other hand, we classified ground states on loop algebras [10],
yet it is still unclear whether the results passes to ground states on the corresponding Haag-Kastler
nets. Therefore, rather than classifying them, we try to construct various examples.

Contrary to the case of loop algebras where ground state is unique [10], we find that the
U(1)-current net and the Virasoro nets with c ≥ 1 admit continuously many ground states. It turns
out that the U(1)-current net admits a one-parameter family of automorphisms commuting with
translations, and by composing them with the vacuum state, we obtain a family of ground states.
As the Virasoro nets with c ≥ 1 restricted to R can be embedded in the U(1)-current net [11], they also
admit a family of ground states. In this way, we construct a family of pure ground states on the
U(1)-current net parametrized by q ∈ R, and those on the Virasoro nets with c ≥ 1 parametrized by
q2

2 ≥ 0. In the GNS representations of these ground states, one can take the dual net. While the
dual nets in the case of the ground states on the U(1)-current net are unitarily equivalent to the
U(1)-current net itself, for the case of the Virasoro nets with c > 1 the dual nets must be different from
the original net, since the latter are not strongly additive.

We also obtain explicit expressions of the current and the stress-energy tensor in the
GNS representation. These expressions in turn serve to show that the GNS representations of the
U(1)-current net are not normal on half-lines. This shows that the implication “positivity of energy
=⇒ solitonic representation”, conjectured in [12] (Conjecture 34) for loop groups, does not hold for the
U(1)-current net.

This paper is organized as follows. In Section 2 we recall Möbius covariant nets, operator-algebraic
setting of chiral components of conformal field theory and collect general facts on ground states.
In Section 3 we introduce examples of Möbius covariant nets, the U(1)-current net and the Virasoro nets.
In Section 4 we construct ground states on these nets and study their property. We conclude with some
open problems in Section 5.

2. Preliminaries

2.1. Möbius Covariant Net on Circle

The following is a mathematical setting for chiral components of two-dimensional conformal
field theory. These chiral components are essentially quantum field theories on the real line R, and by
conformal covariance they extend to S1. In the operator-algebraic setting, they are realized as nets
(precosheaves) of von Neumann algebras on S1. More precisely, let I be the set of open, non-dense,
non empty intervals in S1. A Möbius covariant net (A, U, Ω) is a triple of the map A : I 3 I 7→
A(I) ⊂ B(H), where A(I) is a von Neumann algebra on a Hilbert spaceH and B(H) is the set of all
bounded operators on H, U a strongly continuous representation of the group PSL(2,R) on H and
a unit vector Ω ∈ H satisfying the following conditions:

(MN1) Isotony: If I1 ⊂ I2, then A(I1) ⊂ A(I2).
(MN2) Locality: If I1 ∩ I2 = ∅, then A(I1) and A(I2) commute.
(MN3) Möbius covariance: for γ ∈ PSL(2,R), Ad U(γ)(A(I)) = A(γI).
(MN4) Positive energy: the generator L0 of rotations U(ρ(t)) = eitL0 is positive.
(MN5) Vacuum: Ω is the unique (up to a phase) invariant vector for U(γ), γ ∈ PSL(2,R) and

A(I)Ω = H (the Reeh-Schlieder property).

From (MN1)–(MN5), one can prove the following [13,14]:

(MN6) Haag duality: A(I′) = A(I)′, where I′ is the interior of the complement of I.
(MN7) Additivity: If I =

⋃
Ij, then A(I) =

∨
jA(Ij).

We consider also the following additional properties:
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• Strong additivity: If I1 and I2 are the intervals obtained from I by removing one point,
then A(I1) ∨A(I2) = A(I).

• Conformal covariance: U extends to a projective unitary representation of the group Diff+(S1) of
orientation preserving diffeomorphisms and Ad U(γ)A(I) = A(γI), and Ad U(γ)(x) = x if
I ∩ supp γ = ∅.

Strong additivity does not follow from (MN1)–(MN5), and indeed the Virasoro nets with c > 1
fail to have strong additivity [11] (Section 4). If conformal covariance holds, (A, U, Ω) is called
a conformal net.

Concrete examples relevant to this work will be presented in Section 3.

2.2. Ground State Representations

Let us identify R with a dense interval in S1 by the stereographic projection. By convention,
the point of infinity ∞ corresponds to −1 ∈ S1 ⊂ C. We denote by A|R the net of algebras
{A(I) : I b R} restricted to finite open intervals in the real line R. Translations τ(t) and dilations δ(s)
acts on A|R, and they are elements of PSL(2,R).

Ad U(τ(t)) acts on
⋃

IbRA(I)
‖·‖

as an automorphism. A state ϕ on A|R is by definition a state on

the C∗-algebra
⋃

IbRA(I)
‖·‖

. Let ϕ be a state on A|R and let πϕ be the GNS representation with
respect to ϕ. If πϕ extends toA(R±) in the σ-weak topology, then we say that πϕ is solitonic. If there is
a representation Uϕ of the translation group R such that Ad Uϕ(τ(t))(πϕ(x)) = πϕ(Ad U(τ(t))(x)),
then we say that πϕ is translation-covariant. Furthermore, if the generator of Uϕ can be taken positive,
then we say πϕ is a positive-energy representation.

If a state ϕ on A|R is invariant under Ad U(τ(t)), then πϕ is automatically translation-covariant,
because one can define Uϕ(τ(t))πϕ(x)Ωϕ = πϕ(Ad U(τ(t))(x))Ωϕ, where Ωϕ is the GNS vector for ϕ.
If furthermore Uϕ has positive energy, then we say that it is a ground state representation, and the
state ϕ is called the ground state. By the Reeh-Schlieder argument (see e.g., [15] (Theorem 1.3.2),
[16] (Theorem 3.2.1)), the GNS vector Ωϕ is cyclic for πϕ(A(I)) for any I b R.

If πϕ is a ground state representation with the ground state vector Ωϕ, then one can consider the
translation-covariant net {πϕ(A(I))} on intervals in R on the GNS representation spaceHϕ. Its dual
net is defined by Âϕ(R+ + a) :=

(∨
IbR++a πϕ(A(I))

)′′ and Âϕ((a, b)) = Âϕ(R+ + b)∩ Âϕ(R+ + a)′.
By ([17] (Corollary 1.9)), Â extends uniquely to a strongly additive Möbius covariant net on S1:

Theorem 1 (Guido-Longo-Wiesbrock). There is a one-to-one correspondence between

• Isomorphism classes of strongly additive Möbius covariant nets
• Isomorphism classes of Borchers triples (M, U, Ω), (M is a von Neumann algebra, U is a representation of

R with positive generator, Ω is cyclic and separating forM and U(t)Ω = Ω such that Ad U(t)(M) ⊂
M for t ≥ 0) with the property that Ω is cyclic for Ad U(t)(M)′ ∩M

Even if the given net A is conformally covariant, it is not known whether the net Âϕ is
conformally covariant. Although Âϕ is Diffc(R)-covariant in the natural sense, where Diffc(R) is
the group of diffeomorphisms of R with compact support, we do not have the uniqueness results
of Diffc(R)-action (cf. [18] (Theorem 5.5)) for a uniqueness theorem for Diff+(S1)-action). See [19]
(Chapter 4) for some attempts to construct Diff+(S1)-covariance), and [20] (Section 4.2) for some
examples in (1 + 1)-dimensions where Möbius covariance gets lost by passing to the dual net.

The purpose of this paper is to construct ground state representations of certain nets. One of the
ideas to construct ground state representations is the following: an automorphism α of the net A|R is
a family {αI}IbR of automorphisms of {A(I)} such that α Ĩ |A(I) = αI for I ⊂ Ĩ. α extends naturally to⋃

IbRA(I)
‖·‖

.
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Lemma 1. If α commutes with Ad U(τ(t)), then ω ◦ α is a ground state, where ω = 〈Ω, ·Ω〉 is the
vacuum state.

Proof. The GNS representation of ω ◦ α is given by πω ◦ α = α, where πω is the vacuum representation,
the identity map. As α commutes with Ad U(τ(t)), the same representation U(τ(t)) with positive
energy implements translations.

Furthermore, combining [6] (Lemmas 4.4 and 4.5), we obtain the following dichotomy: if A|R
admits one nontrivial ground state, then there must be continuously many ground states.

Proposition 1. If there is an automorphism α of A|R commuting with translations and if ω ◦ α 6= α,
then {ω ◦ α ◦Ad U(δ(s))}s∈R are mutually different and their GNS representations {Ad U(δ(−s)) ◦ α ◦
Ad U(δ(s))}s∈R are mutually unitarily inequivalent.

Note that α as in Proposition 1 cannot be implemented by a unitary operator, because Ω is unique
up to a phase. Hence, the second statement implies that the dilation automorphisms {Ad U(δ(s))} are
not unitarily implemented in the GNS representations (namely, there are no Uα(s) such that Ad Uα(s) ◦
α = α ◦Ad U(δ(s))): if they were implemented, then it would imply that α and Ad U(δ(−s)) ◦ α ◦
Ad U(δ(s)) are unitarily equivalent, which is a contradiction.

3. Main Examples

Here we introduce examples of conformal nets. Although our emphasis is on their restriction to R,
they are most conveniently defined on S1. Our treatment of these models follows that of [7] (Section 4.1).

3.1. The U(1)-Current Net

Buchholz, Mack and Todorov obtained some fundamental results in the operator-algebraic
treatment of the U(1)-current algebra [21]. The current J( f ) can be defined by the
Fourier modes {Jn}n∈Z, where Jn satisfy the following commutation relations [Jm, Jn] = mδm+n,0

and hence the current J as a quantum field on S1 satisfies the following relation:
[J( f ), J(g)] = i

∫
S1 f (θ)g′(θ)dθ, for f , g ∈ C∞(S1,R). It admits a vacuum state 〈Ω, ·Ω〉 such that

JnΩ = 0 for n ≥ 0, and the representation is uniquely determined by this property, unitarity
J∗n = J−n and the commutation relation. The smeared current J( f ) = ∑n f̂n Jn, where f ∈ C∞(S1,R) and
f̂n = 1

2π

∫
f (θ)e−inθ is the Fourier-coefficient, is essentially self-adjoint on the subspaceHfin spanned

by vectors J−n1 · · · J−nk Ω, nj ∈ N.
The vacuum state is invariant under PSL(2,R)-transformations J( f ) 7→ J( f ◦ γ−1), γ ∈ PSL(2,R),

hence this can be implemented by a unitary operator U(γ), and in this way we obtain a unitary
representation U of PSL(2,R) with positive energy.

The exponential W( f ) = eiJ( f ) is called the Weyl operator. They satisfy W( f )W(g) = e−
i
2 σ( f ,g)W( f + g),

where σ( f , g) =
∫

S1 f (θ)g′(θ)dθ. If we define von Neumann algebras byAU(1)(I) = {W( f ) : supp f ⊂ I}′′,
then (AU(1), U, Ω) is a Möbius covariant net. This is called the U(1)-current net. It is known that it satisfies
strong additivity [11] (Equation (4.21) and below), and conformal covariance [22] (Section 5.3).

We can also define J in the real line picture. To do this, note that the above commutation
relation is invariant under diffeomorphisms. Therefore, if we introduce J( f ) for f ∈ C∞

c (R,R) by
J( f ◦ C−1) where C(t) = − t−i

t+i is the Cayley transform mapping R → S1 (with a slight abuse of
notation: the definition of J( f ) depends on whether f ∈ C∞

c (R) or f ∈ C∞(S1)), we obtain the same
commutation relation

[J( f ), J(g)] = i
∫
R

f (t)g′(t)dt, f , g ∈ C∞(R,R). (1)

We call it J in the real line picture. Again by the diffeomorphism covariance, translations and
dilations acts on J in the natural way: if γ is such a transformation, then Ad U(γ)(J( f )) = J( f ◦ γ−1).
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Lemma 2. For a function f on S1 such that ∑k≥0 k| f̂k|2 < ∞, J( f ) and W( f ) can be defined by continuity.

Proof. Note first that if J( fn)Ω → J( f )Ω, then W( fn) → W( f ) in the strong operator topology.
Indeed, recall that 〈Ω, W(g)Ω〉 = e−

1
2 ‖J(g)Ω‖2

[16] (Section 6.5) and σ( f , g) = 2Im 〈J( f )Ω, J(g)Ω〉.
Therefore, it is straightforward to see that, if J( fn)Ω → J( f )Ω, then W( fn)Ω → W( f )Ω and
σ( fn, g)→ σ( f , g). It then follows that for a fixed g

‖(W( fn)−W( f ))W(g)Ω‖ → 0,

and since W(g)Ω is total and {W( fn)} are unitary, this implies the claimed strong convergence.
For a smooth function f on S1, ‖J( f )Ω‖2 = ∑k≥0 k| f̂k|2, and hence J can be extended by

continuity to any L2-function f on S1 such that ∑k≥0 k| f̂k|2 < ∞.

If f is piecewise smooth and continuous, then ∑k≥0 k| f̂k|2 < ∞. Indeed, as an operator on L2(S1),
i d

dθ is self-adjoint on the following domain [23] (X.1 Example 1)

{ f ∈ C(S1) : f is absolutely continuous, f ′ is in L2(S1)}

and ∑k | f̂ ′k|
2 = ∑k k2| f̂k|2 < ∞, therefore, ∑k≥0 k| f̂k|2 < ∞. These facts can be seen as an easier version

of [18] (Proposition 4.5), [24] (Lemma 2.2).

3.2. The Virasoro Nets

On the Hilbert space of the U(1)-current net, one can construct another quantum field.
Let Ln = 1

2 ∑m : J−m Jn+m : where the normal ordering means Jk with negative k comes to the

left [25] (2.9). Then they satisfy the Virasoro algebra [Lm, Ln] = (m − n)Lm+n + c m(m2−1)
12 with

the central charge c = 1. The stress-energy tensor T( f ) = ∑ f̂nLn is essentially self-adjoint
on Hfin and satisfies the commutation relations [T( f ), J(g)] = i J( f g′). In particular, if f and
g have disjoint support, they commute. By the linear energy bound [18] (Proposition 4.5), [26]
(Lemma 3.2) and the Driessler-Fröhlich theorem [27] [Theorem 3.1) (or its adaptation to the case
of operators [26] (Theorem 3.4)), they actually strongly commute. For γ ∈ Diff(S1), it holds that
Ad U(γ)(T( f )) = T(γ∗ f ) + β(γ, f ) with a certain β(γ, f ) ∈ R, where γ∗ f is the pullback of f as
a vector field by γ [28] (Proposition 3.1). Moreover, T( f ) integrates to the representation U in the
sense that U(Exp(t f )) = eitT( f ) up to a phase [29] (Section 4), see also [28] (Proposition 5.1).

Let us denote B1(I) = {eiT( f ) : supp f ⊂ I}′′ and call it the Virasoro subnet. By Haag duality,
it holds that B1(I) ⊂ AU(1)(I). Furthermore, by the Reeh-Schlieder argument,HVir1 := B1(I)Ω does
not depend on I. The restriction of B1(I) and U toHVir1 together with Ω ∈ HVir1 is called the Virasoro
net with c = 1 and we denote it by (Vir1, U1, Ω1).

We can also consider the real line picture for T. For a vector field f on R, or more precisely f (t) d
dt ,

we define T( f ) := T(C−1
∗ f ). Conversely, a vector field f on S1 corresponds to C∗ f (t) = t2+1

2 f (C−1(t)).
In [7] (Proof of Theorem 4.7), we also computed the exponentiation of the relation between J(g)

and T( f ):

Ad W(g)(T( f )) = T( f )− J( f g′) +
1
2

σ( f g′, g),

where this equality holds onHfin.
To obtain the Virasoro nets with c > 1, we need to perturb T as in [11] (4.6), We have computed

its real-line picture [7] (Section 5.3):

Tκ( f ) = T( f ) + κ J( f ′),
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then Tκ satisfies the commutation relation

[Tκ( f ), Tκ(g)] = iTκ( f g′ − f ′g) + i
1 + κ2

12

∫
R

f ′′′(t)g(t)dt,

hence the central charge is c = 1 + κ2. Define Bc(I) := {eiTκ( f ) : supp f ⊂ I}′′. We have seen
that Bc(I) ⊂ AU(1)(I), but Bc(I) is covariant only with respect to U restricted to translations and
dilations. Yet, HVirc := Bc(I)Ω does not depend on I again by the Reeh-Schlieder argument.
It was shown in [11] (Section 4, (4.8)) that by exploiting the Möbius invariance of n-points
functions of Tκ , the restriction of Bc toHVirc can be extended to a conformal net, the Virasoro net Virc

with central charge c = 1 + κ2. Virc, c > 1 does not satisfy strong additivity [11] (Section 4, (4.13)).
It is an open problem whether the dual net of Virc is conformal (Diff(S1)-covariant).

4. Ground States

4.1. On the U(1)-Current Net

Following Lemma 1, we construct automorphisms of AU(1)|R commuting with translations.
This has been done in [7] (Proposition 4.1). Let us recall it in our present notations.

Lemma 3. For q ∈ R, there is an automorphism αq of AU(1)|R commuting with translations such that

αq(W( f )) = eiq
∫
R f (t)dtW( f ).

Proof. Let I b R. There is a smooth function sI with compact support such that sI(t) = t.
By commutation relation (1), for f with supp f ⊂ I we have

Ad W(qsI)(W( f )) = eiq
∫
R s′I(t) f (t)dtW( f ) = eiq

∫
R f (t)dtW( f ).

We define αq,I = Ad W(qsI). This does not depend on the choice of sI within the restriction above,
because AU(1)(I) is generated by W( f ) with supp f ⊂ I. αq commutes with translations because∫
R f (t)dt is invariant under translations.

From here, it is immediate to construct ground states by Lemma 1. We collect some properties of
the resulting GNS representations.

Theorem 2. We have the following.

• The states {ω ◦ αq} are mutually different ground states of AU(1)|R, and they are connected with each
other by dilations. Dilations are not implemented unitarily.

• The GNS vector Ωq of ω ◦ αq is in the domain of Jq( f ), where αq(W( f )) = ei Jq( f ) and Jq( f ) = J( f ) +
q
∫
R f (t)dt. In particular, it holds that ω ◦ αq(J( f )) = q

∫
R f (t)dt

• The GNS representations {αq} do not extend to A(R±) in the weak operator topology,
hence are not solitonic.

• The dual nets {α̂q(AU(1)(I))} are equal to the original net AU(1).

Proof. As {αq} are automorphisms commuting with translations, the states {ω ◦ αq} are ground
states by Lemma 1, and their GNS representations are {αq}. They are different states because they give
the scalar eiq

∫
R f (t)dt to W( f ). It follows from Proposition 1 that they are connected by dilations and

dilations are not implemented unitarily.
Let us recall the action αq(W(s f )) = eiqs

∫
R f (t)dtW(s f ). From this it is immediate that

d
ds

αq(W(s f ))Ω|s=0 = i J( f )Ω + iq
∫
R

f (t)dt ·Ω.
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We also showed [7] (Lemma 4.6) thatH∞ =
⋂

n Dom(Ln
0 ) is invariant under Weyl operators W(g),

hence we have, the following equation of operators onH∞:

Ad W(qσI)(J( f )) = J( f ) + q
∫
R

f (t)dt.

H∞ is a core of L0, and hence of J( f ) by the commutator theorem [23] (Theorem X.37) and the
estimate ‖J( f )ξ‖ ≤ c f ‖(L0 + 1)

1
2 ξ‖, see the computations in [30] (Proposition 1) (this estimate is

known since [11] (below (2.23)). Since H∞ is invariant under J( f ), to apply the commutator
theorem with slightly different assumptions [23] (Theorem X.36), it is enough to have a linear bound
‖J( f )ξ‖ ≤ c f ‖(L0 + 1)ξ‖).

To show the non-normality on the half line R+ (R− is analogous), we take a sequence of smooth
functions gn(−eiθ) on S1 (see Figure 1):

gn(−eiθ) =



0 for 0 ≤ θ < π

θ − π for π ≤ θ < 3π
2

−θ + 2π for 3π
2 ≤ θ < 2π − 1

2n
−2(θ − 2π + 1

2n ) for 2π − 1
n ≤ θ < 2π − 1

2n
0 for 2π − 1

2n ≤ θ ≤ 2π

θ

g(−eiθ)

0 2ππ

π
2

Figure 1. The functions gn(−eiθ) (the thick line) and g(−eiθ) (the thin line above), restricted to
0 ≤ θ ≤ 2π.

It is clear that each gn is piecewise smooth (linear) and continuous, and both gn, g′n converges in
the L2-norm to

g(−eiθ) =


0 for 0 ≤ θ < π

θ − π for π ≤ θ < 3π
2

−θ + 2π for 3π
2 ≤ θ < 2π

.

Therefore, J(gn)Ω→ J(g) and hence W(gn)→ W(g) in the strong operator topology, and in the
weak operator topology, too. On the other hand, αq(W(gn)) = eiqn W(gn), where

qn = q
∫
R

gn(C(t))dt.

Note that, C(t) = − t−i
t+i , and g(C(t)) behaves as 1

t as t → ∞, hence qn → ∞. Accordingly,
αq(W(gn)) = eiqn W(gn) is not convergent.

The last claim follows immediately because αq are automorphisms, hence αq(AU(1)(I)) = AU(1)(I)
and by strong additivity of AU(1).

In this case it is trivial that the dual net coincides with the original net. In contrast, we have
a markedly different result for Virc.

The fact that ω ◦ αq(J( f )) = q
∫
R f (t)dt suggests that q is an analogue of the lowest

weight g of [21] (Section 1C), cf. [10] (Lemmas 5.3, 5.6) and the state Ωq has uniform charge density q.
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The U(1)-Current as a Multiplier Representation of the Loop Group SLS1

Let SLS1 be the group of smooth maps from S1 into S1 with winding number 0 with pointwise
multiplication [22] (Section 5.1). These elements can be identified with smooth functions on
S1 in R by logarithm, and the group operation becomes addition. Recall the Weyl relation
W( f )W(g) = e−

i
2 σ( f ,g)W( f + g): this can be seen as a multiplier representation of SLS1 with the

cocycle e−
i
2 σ( f ,g). From this perspective, one can also consider the subgroup SΩS1 of functions f on S1

such that f (n)(−1) = 0 for all n ∈ N [12] (Section 2.1.2).
Let us observe that f 7→ αq(W( f )) is a multiplier representation of functions f whose support

does not contain −1, because for such f , αq(W( f )) is defined and respects product. We claim that this
extends to f ∈ SΩS1. Indeed, for such f , f (C(t)) is a rapidly decreasing smooth function, hence we can
find compactly supported test functions fn → f in the topology of Schwartz-class functions, and then
αq(W( fn)) = eiq

∫
R fn(t)dtW( fn)→ eiq

∫
R f (t)dtW( f ). On the other hand, we have seen in Theorem 2 that

the representation αq is not normal (continuous in the σ-weak topology, which coincides with the weak
operator topology on norm-bounded sets) on any half-line.

Henriques conjectured that any positive-energy representation of ΩG should be normal on
half-lines [12] (Conjecture 34), where G is a simple and simply connected compact group. The above
observation shows that an analogous conjecture for SΩS1 does not hold. On the other hand, we have
also shown that for such G, the only ground state of the algebra S gC of Schwartz-class maps in
gC is the vacuum state [10] (Corollary 5.8). This supports to some extent the conjecture for ΩG.
Yet, there are many other positive-energy representations of ΩG without ground state, and the situation
is not conclusive.

4.2. On Virasoro Nets

We can simply restrict the states {ω ◦ αq} to the Virasoro nets Virc. Let us denoteHκ
q = αq(Virc(I))Ω,

where c = 1 + κ2 and this does not depend on I by the Reeh-Schlieder argument. Let us denote the
GNS representation PHκ

q αq by ρκ,q, where PHκ
q is the projection ontoHκ

q .

Theorem 3. We have the following.

• The states {ω ◦ αq} are mutually different ground states of Virc|R for different q2

2 , and they are connected
with each other by dilations. Dilations are not implemented unitarily in ρκ,q.

• The GNS vector Ωq of ω ◦ αq is in the domain of Tκ
q ( f ), where αq(eisTκ( f )) = eiTκ

q ( f ) and Tκ
q ( f ) =

T( f ) + qJ( f ) + κ J( f ′) + q2

2

∫
R f (t)dt onH∞.

• If c > 1, the dual nets {ρ̂q(Virc(I))} are not unitarily equivalent to any of Virc′ , c′ > 1.

Proof. Let us first prove the second statement. We have seen in [7] (Lemma 4.6) that W(g) preserves
H∞ and for I ⊃ supp f it holds onH∞ that

Ad W(qsI)(T( f )) = T( f ) + qJ( f ) +
q2

2

∫
R

f (t)dt.

Furthermore, we have Ad W(qsI)(J( f )) = J( f ) + q
∫
R f (t)dt, and Tκ( f ) = T( f ) + κ J( f ′).

Applying Ad W(qsI) term by term, we obtain onH∞

Ad W(qsI)(Tκ( f )) = T( f ) + qJ( f ) + κ J( f ′) +
q2

2

∫
R

f (t)dt,

since
∫
R f ′(t)dt = 0, and this operator has Ω in its domain.
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To show that they are different states for different q2

2 , it is enough to observe that

d
ds

ω ◦ αq(eisTκ( f )) = 〈Ω, Ad W(qsI)(Tκ( f ))Ω〉 = q2

2

∫
R

f (t)dt,

giving different values.
Let us also check that these states depend only on c = 1 + κ2 and not on κ. To see this,

note that J( f ) 7→ J(− f ) is a vacuum-preserving automorphism of A|R commuting with translations.
This automorphism α−clearly intertwines αq and α−q. Under α−, T( f ) is mapped to T( f ) itself because
it is quadratic in J, therefore, Tκ( f ) is mapped to T−κ( f ). Since ω ◦ αq and ω ◦ αq ◦ α− = ω ◦ α− ◦ α−q =

ω ◦ α−q give the same state on Virc, they depend only on c = 1 + κ2.
They are connected by dilation δ(s) on the larger algebra AU(1)|R and from the action (formally,

J has scaling dimension 1: Ad (U(δ(s))(J(t)) = es J(est). By integrating this equation again f , we obtain
Ad U(δ(s))(J( f )) = J( f ◦ δ(−s)), where f ◦ δ(−s)(t) = f (e−st). Similarly, the stress-energy tensor T
has scaling dimension 2: Ad (U(δ(s))(T(t)) = e2sT(est) and Ad U(δ(s))(T( f )) = esT( f ◦ δ(−s))) of
dilations Ad U(δ(s))(J( f )) = J( f ◦ δ(−s)) it follows that

Ad [W(qsI)U(δ(s))](J( f )) = J( f ◦ δ(−s)) + q
∫
R

f ◦ δ(−s)(t)dt

= J( f ◦ δ(−s)) + esq
∫
R

f (t)dt

= Ad U(δ(s))(Jesq( f ))

Hence ω ◦ αq ◦Ad U(δ(s)) = ω ◦ αesq,
Since Ωq is the unique translation-invariant vector, it follows that ρκ,q are irreducible (see the

arguments of [15] (Corollary 1.2.3)). If dilations were implemented by unitary operators, they would
bring a vector state to another vector state which are again translation-invariant, which contradicts the
uniqueness of invariant vector.

As Virc, c > 1 are not strongly additive while dual nets are strong additive, they cannot be
unitarily equivalent.

We expect that the GNS representations {ρκ,q} are not normal on
⋃

IbR± Virc(I). A candidate for
a convergent sequence which is not convergent in {ρk,q} is eT( fn), where fn are smooth functions
on R, supported in R+ and converging to a function f which decays as 1

t . We expect that
T( f ) + κ J( f ′) + qJ( f ) is self-adjoint, while q2

∫
R f (t)dt is divergent. To do this, the commutator

theorem would not suffice (because formally [L0, J( f )] = J( f ′) would not be defined for this f ) but
one would need an analysis similar to [18] (Theorem 4.4).

Here the value q2

2 can be viewed as the energy density of the state Ωq, hence the representation as
a whole has infinite energy with respect the original vacuum, cf. [31] where it was shown that,
under certain conditions, translation-invariant states cannot be created by finite energy. This also
supports that ρκ,q are not normal even on half-lines.

Even for the case c = 1, the dual nets {ρ̂q(Vir1(I))} cannot be easily identified with any known
conformal net. We remark that strong additivity of the original net Vir1 does not appear to imply that
{ρq(Virc(I))} is already dual, cf. [6] (Lemma 3.2).

5. Outlook

Classification. As we have seen, the ground states we constructed in this paper are characterized

by a number q (for the U(1)-current net) or q2

2 (for the Virasoro nets). This is a structure very similar to
the invariant ψ of [10] (Lemma 5.3). If one studies corresponding Lie algebras, it should be possible to
classify ground state representations as in [10] (Theorem 5.6).
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More precisely, to the net AU(1)|R there corresponds the central extension of the Lie algebra of
compactly supported smooth functions on R with the relation [ f , g] = σ( f , g). To the Virasoro nets
Virc|R one considers the central extension of smooth vector fields on R with [ f , g] = f g′ − f ′g +

c
12

∫
f (t)g′′′( f )dt. By positivity of energy, one should be able to determine the representation in

terms of q and q2

2 , respectively.
Actually, for the U(1)-current net, the direct classification of ground states might be possible.

Some techniques from [7] (Section 4.2) used to classify KMS states should be useful, although the
boundary condition (t→ t + iβ for β-KMS states) is missing for ground states. As for the Virasoro nets,
it is still not clear whether such classification results pass to the Virasoro nets. For that implication,
one needs that the ground state vector is infinitely differentiable. We are currently not able to do this,
because the corresponding Lie group Diffc(R) of compactly supported diffeomorphisms of R do
not possess any compact subgroup (in contrast to Diff(S1) which contains finite covers of PSL(2,R),
which is the key to differentiate representations [32] (Appendix), cf. [33]).

Dual Nets. The most fundamental properties of the dual nets {ρ̂κ,q(Virc(I))} remain open.
Among them is conformal covariance. Conformal covariance implies the split property [34], and even
the split property is unknown to hold in these dual nets. The split property may fail in the dual
net in two-dimensional Haag-Kastler net [20] (Section 4.2), therefore, it may be worthwhile to try to
(dis)prove the split property in these nets.

More Positive-Energy Representations. Ground states consist only a particular class of
positive-energy representations. It was shown in [35,36] that there is a huge class of locally normal
positive-energy representations of the free massless fermion field in (3 + 1)-dimensions. A similar
construction should be possible in one dimension. Furthermore, important conformal nets, including
some loop group nets, can be realized as subnets of (the tensor product of ) the free fermion field nets
(see [37] (Examples 4.13–16)). Among them, there might be counterexamples to [12] (Conjecture 34).
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