
ar
X

iv
:1

70
4.

02
47

6v
3 

 [
m

at
h.

R
A

] 
 4

 F
eb

 2
01

8

Unions of admissible relations

Paolo Lipparini

Abstract. We show that a variety V is congruence distributive if and only if there
is some h such that the inclusion

Θ ∩ (σ ◦ σ) ⊆ (Θ ∩ σ) ◦ (Θ ∩ σ) ◦ . . . (h factors) (1)

holds in every algebra in V , for every tolerance Θ and every U-admissible relation
σ. By a U-admissible relation we mean a binary relation which is the set-theoretical
union of a set of reflexive and admissible relations. For any fixed h, a Maltsev-type
characterization is given for the inclusion (1). It is an open problem whether (1) is
still equivalent to congruence distributivity when Θ is assumed to be a U -admissible
relation, rather than a tolerance. In both cases many equivalent formulations for (1)
are presented. The results suggest that it might be interesting to study the structure
of the set of U-admissible relations on an algebra, as well as identities dealing with
such relations.

1. Introduction

Congruence identities have played an important role in universal algebra

right from the beginning. The study of congruence permutable, distributive

and modular varieties has led to a plethora of significant techniques and results.

Jónsson [6] is a good introduction to the classical results. Research in the

field is still very active; recent, advanced and sophisticated results appear,

for example, in Kearnes and Kiss [9], where the reader can also find further

references.

Already from the earlier arguments it appeared evident that tolerances and,

more generally, admissible relations are fundamental tools even when the main

focus are congruences. See, e.g., Gumm [4], Jónsson [6, p. 370] or Tschantz

[15]. In a form or another and more or less explicitly, this aspect appears also

in [2, 5, 9, 10, 11, 12, 16], just to limit ourselves to a few references. Recall

that a tolerance is a reflexive, symmetric and admissible relation.

In [12] we have found a particularly simple characterization of congruence

modularity. A variety V is congruence modular if and only if there is some k

such that the inclusion

Θ(R ◦R) ⊆ (ΘR)◦k (2)

holds in every algebra in V , for every reflexive and admissible relation R and

every congruence (equivalently, every tolerance) Θ.
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Here and below juxtaposition denotes intersection and, for a binary relation

R, R◦h denotes the relational composition R ◦R ◦ . . . with h factors, that is,

with h − 1 occurrences of ◦. The displayed formula in the abstract is then

written as Θ(σ ◦ σ) ⊆ (Θσ)◦h. We shall also use the shorthand S ◦m T to

denote S ◦ T ◦ S . . . with m factors. Thus R◦h is the same as R ◦h R.

We say that an inclusion like (2) holds in some variety V if the inclusion

holds when interpreted in the standard way in the set of binary relations on

every algebra in V . Similar expressions like “V satisfies an inclusion” shall

be used with the same meaning. Notice that, since an inclusion A ⊆ B is

equivalent to the identity A = AB, we can equivalently—and usually shall—

speak of identities. As a standard convention, we assume that juxtaposition

ties more than any other binary operation symbol, namely, an expression like

(αβ) ◦ (αγ) will be simply written as αβ ◦ αγ. However, exponents bind

more than anything else, e.g., ΘR◦h means Θ(R◦h). If not explicitly stated

otherwise, α, β and γ are variables for congruences, Θ can be equivalently taken

to be a variable for congruences or tolerances and R, S and T are variables

for reflexive and admissible relations. All the binary relations considered in

this note are assumed to be reflexive, hence sometimes we shall simply say

admissible in place of reflexive and admissible .

Identity (2) above is related to various similar identities. For example,

Werner [16] showed, among other, that a variety V is congruence permutable

if and only if V satisfies R◦R ⊆ R. This corresponds to the special case Θ = 1

in (2). Here 1 or 1A denotes the largest congruence on the algebra A under

consideration. As another example, and an almost immediate consequence

of results from Kazda, Kozik, McKenzie and Moore [8], we observed in [11,

Proposition 3.1 and p.10] that a variety V is congruence distributive if and

only if there is some k such that V satisfies Θ(R ◦ S) ⊆ ΘR ◦k ΘS. Taking

R = S in this identity, we get (2) again. In this sense, identity (2) seems still

another way to see that congruence modularity is some kind of a combination

of congruence permutability with distributivity [4].

By the way, notice that congruence distributivity is equivalent also to α(β ◦

γ) ⊆ αβ ◦h αγ, for some h and for congruences α, β, γ, by a classical paper by

Jónsson [5]. On the other hand, both identity (2) andWerner’s identity R◦R =

R become trivially true in every algebra, if we let R be a congruence rather

than a reflexive and admissible relation. This shows that many (but not all)

relation identities become trivial when relations are replaced by congruences.

In particular, considering relation identities for their own sake seems to give a

new perspective to the subject.

Motivated by the above considerations and, in particular, by the charac-

terization (2) of congruence modularity, we looked for a characterization of

congruence distributivity by means of some expression of the form X(Y ◦Y ) ⊆

something, where in the factor on the left-hand side we are taking the com-

position of some Y with itself. At the beginning this looked only like an odd
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curiosity; however, after a while, a rather clear and, at least in the author’s

opinion, interesting picture emerged.

We found that congruence distributivity is equivalent to equation (2), for

some h, provided that R there is taken to be the set-theoretical union of some

family of admissible relations, rather than an admissible relation. Equiva-

lently, we can take R there to be the set-theoretical union of two congruences.

Similar ideas are not completely new. Unions of congruences have been used in

a proof of Jónsson’s characterization of congruence distributivity, as presented

in McKenzie, McNulty and Taylor [14, Theorem 1.144]. Unions of congru-

ences have been used also in Kaarli and Pixley [7, Lemma 1.1.12], giving a

proof that every algebra with a compatible near unanimity term is congruence

distributive. The proof is credited to E. Fried.

More characterizations of congruence distributivity are possible in terms of

unions of admissible relations, U-admissible relations, for short. For example,

a variety V is congruence distributive if and only if V satisfies (Θ(σ ◦ σ))⊛ =

(Θσ)⊛. Here ⊛ denotes transitive closure; σ, τ and υ shall be used as variables

for U -admissible relations. Further characterizations shall be presented in

Corollary 2.7. In most cases, σ, τ and υ can be equivalently interpreted in

other ways, for example, as unions of two congruences. In each result we

shall explicitly specify the possibilities for σ, τ and υ. In any case, both in

the present discussion and in the rest of the paper, the reader might always

assume that σ, τ and υ are U -admissible relations.

The question naturally arises whether in the above formulae the tolerance

Θ, too, can be equivalently taken to be a U -admissible relation, still getting a

condition equivalent to congruence distributivity. This seems to be the main

problem left open by the present note. On the positive side, we show that

Θ can be taken to be a U -admissible relation in some special cases, i.e., in

varieties with a majority term and in a 4-distributive variety introduced by

Baker [1]. This leads to some new characterizations of arithmetical varieties

and of varieties with a majority term.

Dealing with general results, we show, among other, that a variety V satisfies

σ(τ ◦υ) ⊆ στ ◦hσυ, for some h, if and only if V satisfies σ⊛τ⊛ = (στ)⊛. When

expressed in terms of tolerances, the latter identity is equivalent to congruence

modularity and has found many applications. See, e.g., Czédli, Horváth and

Lipparini [3]. We also show that we get equivalent conditions if we consider

the identity σ(τ ◦ υ) ⊆ στ ◦h συ for U -admissible relations and for admissible

relations. Here the value of h remains the same in both cases. This is quite

surprising; in this paper we shall find many equivalences of this kind, starting

from Theorem 2.1 below, but usually the parameters are not constant.

Finally, for any fixed h, we shall find a characterization of the identity

Θ(σ ◦ σ) ⊆ (Θσ)◦h. A variety satisfies such an identity for U -admissible

relations if and only if there is some function f : {0, 1, . . . , h − 1} → {1, 2}

such that V satisfies the identity α(R1 ◦R2) ⊆ αRf(0) ◦αRf(1) ◦ · · · ◦αRf(h−1)
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for admissible relations. This shows that the identity Θ(σ ◦ σ) ⊆ (Θσ)◦h is

equivalent to a finite union of strong Maltsev classes. It suggests that the

study of relation identities satisfied in congruence distributive varieties might

provide a finer classification of such varieties, in comparison with the study of

congruence identities alone.

In conclusion, the equivalences we have found and the connections with

other kinds of identities suggest that the study of U -admissible relations has

an intrinsic interest and can be pursued further in the case of congruence

distributive varieties and probably even in more general contexts.

2. Congruence distributivity is equivalent to the identity Θ(σ ◦ σ) ⊆

(Θσ)◦h, for some h

Recall that a binary relation σ on some algebra A is U-admissible if σ can

be expressed as the set-theoretical union of some nonempty set of reflexive and

admissible relations on A (we are not assuming σ itself to be admissible!). A

relation is U2-admissible if it can be expressed as the union of two reflexive

and admissible relations. Let FV(3) denote the free algebra in V generated by

3 elements.

Theorem 2.1. For every variety V, the following conditions are equivalent.

Each condition holds for V if and only if it holds for FV(3).

(1) V is congruence distributive;

(2) for some h, V satisfies the identity Θ(σ ◦σ) ⊆ (Θσ)◦h, for every tolerance

Θ and every U-admissible relation σ.

(3) for some k, V satisfies the identity α(σ◦σ) ⊆ (ασ)◦k , for every congruence

α and every binary relation σ expressible as the set-theoretical union of two

congruences.

Proof. For n = 1, 2, 3, let (n)V denote the respective condition supposed to

hold for V . Let (n)FV
denote the condition supposed to hold just for FV(3).

(1)V ⇒ (2)V will follow from Proposition 2.4 below.

(2) ⇒ (3) is trivial for both indices.

(3)FV
⇒ (1)V will follow from Lemma 2.2 below.

Since (n)V ⇒ (n)FV
trivially, for n = 1, 2, 3, and (1)FV

⇒ (1)V by Jónsson

[5], we get that all the conditions are equivalent. �

To prove the implication (3) ⇒ (1) in Theorem 2.1 we shall use a classical

result by Jónsson [5]. Recall that Jónsson terms are terms j0, . . . , jk, for k ≥ 1,

satisfying

x = j0(x, y, z), jk(x, y, z) = z (J1)

x = ji(x, y, x), for 0 ≤ i ≤ k, (J2)

ji(x, x, z) = ji+1(x, x, z), for even i, 0 ≤ i < k,

ji(x, z, z) = ji+1(x, z, z), for odd i, 0 ≤ i < k,
(J3)
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Jónsson proved that a variety V is congruence distributive if and only if

there is some k such that V has Jónsson terms j0, j1, . . . jk. If this is the case,

V is said to be k-distributive or to be ∆k.

Lemma 2.2. If a variety V (equivalently, FV(3)) satisfies condition (3) in

Theorem 2.1 for some specified k, then V is (k + 1)-distributive.

Proof. Let α, β, γ be congruences and σ = β ∪ γ. From condition (3) we get

α(β ◦ γ) ⊆ α(σ ◦ σ) ⊆ (ασ)◦k = (αβ ∪ αγ)◦k ⊆

(αβ ◦ αγ) ◦k (αγ ◦ αβ) = αβ ◦k+1 αγ, (C)

since αγ and αβ are congruences, hence transitive. It is a standard and

well-known fact already implicit in [5] that, within a variety (equivalently, in

FV(3)), the identity α(β◦γ) ⊆ αβ◦k+1αγ is equivalent to (k+1)-distributivity.

See, e.g., [11] for full details. Thus the lemma is proved. �

In fact, slightly more can be proved.

Lemma 2.3. If a variety V satisfies condition (3) in Theorem 2.1 for some

k, then V satisfies either α(β ◦ γ) ⊆ αβ ◦k αγ or α(β ◦ γ) ⊆ αγ ◦k αβ for

congruences.

Proof. Let us work in FV(3) with generators x, y and z. Let α = Cg(x, z),

β = Cg(x, y) and γ = Cg(y, z), hence (x, z) ∈ α(β ◦ γ). Since

(αβ ∪ αγ)◦k ⊆ (αβ ◦k αγ) ∪ (αγ ◦k αβ),

then from the first line in equation (C) in the proof of 2.2 above, we get that

either (x, z) ∈ αβ ◦k αγ or (x, z) ∈ αγ ◦k αβ. By the standard homomorphism

argument, we have that, correspondingly, either α(β ◦ γ) ⊆ αβ ◦k αγ or α(β ◦

γ) ⊆ αγ ◦k αβ hold for arbitrary congruences of algebras in V . �

Compare Lemma 2.3 with Theorem 4.1 and Remark 4.2.

In order to prove (1) ⇒ (2) in Theorem 2.1 we shall rely heavily on a recent

result by Kazda, Kozik, McKenzie and Moore [8]. Directed Jónsson terms, or

Zádori terms [8, 17] are obtained from Jónsson conditions (J1)-(J3) above by

replacing condition (J3) with

ji(x, z, z) = ji+1(x, x, z), for 0 ≤ i < k. (D)

To the best of our knowledge, directed Jónsson terms first appeared un-

named in Zádori [17, Theorem 4.1]. Kazda, Kozik, McKenzie and Moore [8]

proved that a variety V has directed Jónsson terms for some k if and only if V

has Jónsson terms for some k′. In particular, they obtained that a variety V

is congruence distributive if and only if V has directed Jónsson terms for some

k. Notice that here we are using a slightly different indexing of the terms, in

comparison with [8]. The argument below showing that we can switch from

congruences to tolerances is due to Czédli and Horváth [2].
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Proposition 2.4. If V is congruence distributive with directed Jónsson terms

d0, d1, . . . , dn, then V satisfies condition (2) in Theorem 2.1 with h = 2n− 2.

Proof. Fix some algebra A in V and suppose that Θ is a tolerance on A and σ

is a union of reflexive and admissible relations on A. If (a, c) ∈ Θ(σ ◦ σ), then

a Θ c and there is b such that a σ b σ c. By using directed Jónsson terms, we

get

a = d0(a, c, c) = d1(a, a, c) σ d1(a, b, c) σ d1(a, c, c) =

d2(a, a, c) σ d2(a, b, c) σ . . . σ dn−1(a, b, c) σ dn−1(a, c, c) = dn(a, a, c) = c.

Indeed, by assumption, σ =
⋃

g∈G σg, for some family {σg | g ∈ G} of reflexive

and admissible relations. Since a σ b, then a σg b, for some g ∈ G, hence

di(a, a, c) σg di(a, b, c), for every i, since σg is reflexive and admissible. Thus we

get di(a, a, c) σ di(a, b, c) from σ =
⋃

g∈G σg. Similarly, di(a, b, c) σ di(a, c, c).

The point is that when we go, say, from di(a, a, c) to di(a, b, c), only one

element is moved. In this case, the a in the second position is changed to b

and all the other arguments are left unchanged. Moreover,

di(a, a, c) = di(di(a, b, a), a, di(c, b, c)) Θ di(di(a, b, c), a, di(a, b, c)) = di(a, b, c)

and similarly di(a, b, c) Θ di(a, c, c). This is essentially an argument from

[2]. �

By iterating the formula Θ(σ ◦ σ) ⊆ (Θσ)◦h, we get, say,

Θ(σ ◦ σ ◦ σ ◦ σ) ⊆ (Θ(σ ◦ σ))◦h ⊆ (Θσ)h
2

,

where we have used the fact that if σ and τ are U-admissible, then σ ◦ τ is

U-admissible, in particular, σ ◦ σ is U-admissible. Indeed, if σ =
⋃

g∈G σg and

τ =
⋃

f∈F τf , then σ ◦ τ =
⋃

g∈G,f∈F (σg ◦ τf ). However, we get better bounds

by adapting the proof of Proposition 2.4, as we are going to show.

Proposition 2.5. Suppose that V is a congruence distributive variety with

directed Jónsson terms d0, d1, . . . , dn.

(1) For every m, V satisfies the identity Θσ◦m ⊆ (Θσ)◦(mn−m).

(2) More generally, for m even, V satisfies Θ(σ ◦m τ) ⊆ Θσ ◦mn−m Θτ .

In the above identities, Θ is a tolerance and σ is a U-admissible relation.

Proof. The proof is similar to the proof of Proposition 2.4. We shall prove

(2). When m is even, (1) is the special case σ = τ of (2). When m is odd, (1)

allows a similar proof.

Suppose that (a, c) ∈ Θ(σ ◦m τ). Then a Θ c and a = b0 σ b1 τ b2 σ b3 τ

. . . σ bm−1 τ bm = c, for certain b0, b1, . . . We have bm−1 τ bm since m is even.

For ℓ = 1, . . . , n− 1, arguing as in the proof of Proposition 2.4, we get

dℓ(a, a, c) = dℓ(a, b0, c) σ dℓ(a, b1, c) τ dℓ(a, b2, c) σ . . .

τ dℓ(a, bm, c) = dℓ(a, c, c) = dℓ+1(a, a, c).
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All the elements in the above chain are Θ-related, since

dℓ(a, bh, c) = dℓ(dℓ(a, bk, a), bh, dℓ(c, bk, c)) Θ

dℓ(dℓ(a, bk, c), bh, dℓ(a, bk, c)) = dℓ(a, bk, c),

for all indices h, k. This shows that (dℓ(a, a, c), dℓ+1(a, a, c)) ∈ Θσ ◦m Θτ , for

ℓ = 1, . . . , n − 1. Since a = d0(a, c, c) = d1(a, a, c) and dn(a, a, c) = c, then,

by putting everything together, we get a chain of length m(n − 1) from a to

c. Notice that the factors of the form Θσ and Θτ do always alternate, since

m is assumed to be even. Indeed, dℓ(a, bm−1, c) τ dℓ(a, c, c) = dℓ+1(a, a, c) σ

dℓ+1(a, b1, c). �

If we restrict ourselves to relations σ which are unions of tolerances, the

above arguments can be carried over just using Jónsson terms. Let S m◦ T

denote . . . T ◦ S ◦ T with m factors. Formally, S m◦ T = S ◦m T if m is even

and S m◦ T = T ◦m S if m is odd. Let ` denotes converse.

Proposition 2.6. If V is a k-distributive variety, then the following state-

ments hold.

(1) For every m, V satisfies the identity Θσ◦m ⊆ (Θσ)◦(mk−m), for every

tolerance Θ and every relation σ which is a union of tolerances.

(2) For every m, V satisfies

Θ(σ ◦m τ) ⊆ (Θσ ◦m Θτ) ◦k−1 (Θτ` m◦ Θσ`),

for every tolerance Θ and all U-admissible relations σ and τ .

In turn, if a variety satisfies (2) above in the particular case m = 2, then V

is k-distributive.

Proof. (1) is the particular case of (2) when σ = τ , since if σ is a union of

tolerances, then σ = σ`. Hence it is enough to prove (2).

Let j0, . . . , jk be Jónsson terms. Under the same assumptions as in the proof

of 2.5, we get (jℓ(a, a, c), jℓ(a, c, c)) ∈ Θσ◦mΘτ , for ℓ = 1, . . . , k−1 and, taking

converses, (jℓ(a, c, c), jℓ(a, a, c)) ∈ Θτ` m◦ Θσ`. In the present situation we

have jℓ(a, a, c) = jℓ+1(a, a, c), for ℓ even, and jℓ(a, c, c) = jℓ+1(a, c, c), for ℓ

odd. Hence, in order to join the partial chains, we have to consider Θσ ◦m Θτ

and Θτ` m◦ Θσ`, alternatively.

In order to prove the last sentence, take α = Θ, β = σ and γ = τ con-

gruences. In the displayed formula in (2) we then get adjacent occurrences of

αγ and αβ which pairwise absorb. We end up with α(β ◦ γ) ⊆ αβ ◦k αγ, an

identity equivalent to k-distributivity. �

Recall that ⊛ denote transitive closure.

Corollary 2.7. Within a variety V, each of the following identities is equiv-

alent to congruence distributivity. Each identity holds in V if and only if it

holds in FV(3).

(1) Θ(σ ◦ σ) ⊆ (Θσ)⊛, equivalently, (Θ(σ ◦ σ))⊛ = (Θσ)⊛;
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(1′) Θ(σ ◦ σ) ⊆ (Θσ ◦Θσ`)⊛;

(1′′) Θ(σ ◦σ`) ⊆ (Θσ ◦Θσ`)⊛, equivalently, (Θ(σ ◦σ`))⊛ = (Θσ ◦Θσ`)⊛;

(2) Θσ⊛ ⊆ (Θσ)⊛, equivalently, (Θσ⊛)⊛ = (Θσ)⊛;

(3) Θ(σ ◦ τ) ⊆ (Θσ ◦Θτ)⊛, equivalently, (Θ(σ ◦ τ))⊛ = (Θσ ◦Θτ)⊛;

(4) Θ(σ ◦ τ)⊛ ⊆ (Θσ ◦Θτ)⊛, equivalently, (Θ(σ ◦ τ)⊛)⊛ = (Θσ ◦Θτ)⊛;

(4′) Θ(σ ◦ τ)⊛ ⊆ (Θσ ◦Θτ ◦Θσ` ◦Θτ`)⊛, equivalently,

(Θ(σ ◦ τ ◦ σ` ◦ τ`)⊛)⊛ = (Θσ ◦Θτ ◦Θσ` ◦Θτ`)⊛.

In the above identities, Θ is a tolerance, equivalently, a congruence, and σ and

τ are U-admissible relations, equivalently, relations which are expressible as

the union of two congruences.

Proof. For each of the above conditions, let the strong form be the one in

which Θ is supposed to be a tolerance and σ, τ are U-admissible relations. Let

the weak form be the one in which Θ is supposed to be a congruence and σ

and τ are relations which are the union of two congruences. Clearly, in each

case, the strong form implies the weak form.

Inside each item, in each case the conditions are equivalent, since σ and τ are

reflexive and since transitive closure is a monotone and idempotent operator.

A further comment is necessary for (4′). To get the last condition, first apply

the first condition with σ ◦ τ in place of σ and with σ` ◦ τ` in place of τ , then

apply again the first condition.

Congruence distributivity implies the strong form of (4), as a consequence

of Proposition 2.5(2). Trivially, (4) ⇒ (4′), (4) ⇒ (1′′), (4) ⇒ (3) ⇒ (1) ⇒ (1′)

and (4) ⇒ (2) ⇒ (1), either in the strong or in the weak case. Moreover, the

weak forms of (4) and (4′) are equivalent, since if σ is a union of congruences,

then σ = σ` and the same for τ . Similarly, the weak forms of (1), (1′) and

(1′′) are equivalent.

Hence, in order to close the cycles of implications, it is enough to prove

that the weak form of (1) implies congruence distributivity. As in the proof

of Lemma 2.2, take Θ = α and σ = β ∪ γ, with α, β and γ congruences. Then

the weak form of (1) implies

α(β ◦ γ) ⊆ α(σ ◦ σ) ⊆ (ασ)⊛ = (αβ ∪ αγ)⊛ = αβ + αγ.

This condition (even only in FV(3)) implies congruence distributivity by

Jónsson [5]. �

By [8], Proposition 2.5 and the above proof we have that a variety V is

congruence distributive if and only if, for some (equivalently every) m ≥ 2, V

satisfies the identity Θ(σ ◦m σ) ⊆ (Θσ)⊛. A similar remark applies to all the

conditions in Corollary 2.7, except for (2).

3. Working with U-admissible relations only and a major problem

Notice that we do need to consider the possibility for σ to be a U-admissible

(not just admissible) relation in Theorem 2.1 and in Corollary 2.7 (1)-(2), in
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order to obtain conditions equivalent to congruence distributivity. Of course,

if an identity holds for U-admissible relations, then it holds for admissible re-

lations, too, hence both versions of the identities we have introduced hold in

congruence distributive varieties. However, when expressed in terms of ad-

missible relations only, the identities might turn out to be too weak to imply

back congruence distributivity. Indeed, as we mentioned in the introduction,

R ◦ R = R holds in congruence permutable varieties, for every reflexive and

admissible relation R. A fortiori, Θ(R ◦ R) = ΘR ⊆ (ΘR)⊛ hold, but there

are congruence permutable varieties which are not congruence distributive.

Hence the identities in 2.1(2)(3) and 2.7 (1)(1′)(2) do not imply congruence

distributivity, if σ is taken to be an admissible relation. In congruence per-

mutable varieties R` = R holds, too, again by Werner [16]. This shows that

the identity in 2.7(1′′) considered only for admissible relations fails to imply

congruence distributivity, as well.

On the other hand, we do not know the exact possibilities for Θ in the

identities we have discussed.

Problem 3.1. (a) Do we get conditions equivalent to congruence distribu-

tivity if we take a reflexive and admissible relation T (or even a U-admissible

relation υ) in place of Θ in Theorem 2.1 and Corollary 2.7?

(b) Similarly, do we get a condition equivalent to congruence modularity

if we take a reflexive and admissible relation T in place of Θ in equation (2)

from the introduction?

The results of the present section show that in many cases the answer to

Question (a) above is the same when asked for admissible relations or for U-

admissible relations. In any case, the next three propositions provide examples

of varieties in which corresponding identities hold true. In passing, we also

get some further characterizations of varieties with a majority term and of

arithmetical varieties.

Proposition 3.2. For every variety V, the following conditions are equivalent.

(1) V has a majority term.

(2) V satisfies α(β ◦ γ) ⊆ αβ ◦ αγ for congruences.

(3) V satisfies σ(τ ◦ υ) ⊆ στ ◦ συ for U-admissible relations, equivalently, for

reflexive and admissible relations, equivalently, for tolerances.

Proof. The equivalence of (1) and (2) is standard and well-known. If V satisfies

(3) for U -admissible relations, then V obviously satisfies (3) for admissible

relations and for tolerances. In all cases this implies (2). In order to prove

that (1) implies the strongest form of (3), let m be a majority term. If (a, c) ∈

σ(τ ◦ υ) with a σ c and a τ b υ c, then a = m(a, a, c) τ m(a, b, c) and

a = m(a, b, a) σ m(a, b, c). Hence a στ m(a, b, c). Here, as in the proof of

Proposition 2.4, we are using the fact that only one element is moved at a

time. Symmetrically, m(a, b, c) συ c. Hence the element m(a, b, c) witnesses

(a, c) ∈ στ ◦ συ. �
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We are now going to prove the result analogous to 3.2 for arithmetical

varieties, but first a remark is in order.

Remark 3.3. Clearly, we can have equality in place of inclusion in 3.2(2);

actually, as far as σ is transitive, we always have σ(τ ◦ υ) ⊇ στ ◦ συ. On the

other hand, for U-admissible relations, the identity σ(τ ◦ υ) = στ ◦ συ holds

only in the trivial variety, as we are going to show. First observe that, by

taking τ = υ = 1, we get σ = σ ◦ σ.

We now show that, for U-admissible relations, σ = σ ◦ σ holds only in

the trivial variety. Let A have at least two elements, consider the algebra

B = A×A and let σ be the union of the kernels of the two projections. Then

σ 6= 1B = σ ◦σ. Actually, we have shown that σ = σ ◦σ fails in any non-trivial

variety already for σ a union of two congruences.

Turning to admissible relations, we are going to show that we can actually

have T (R ◦ S) = TR ◦ TS. Curiously, this identity is stronger than having

a majority term; indeed it is equivalent to arithmeticity. On the other hand,

the inclusion T (R ◦ S) ⊆ TR ◦ TS is equivalent to having a majority term, by

3.2(3).

Proposition 3.4. For every variety V, the following conditions are equivalent.

(1) V is arithmetical, that is, V has a Pixley term.

(2) V satisfies α(β ◦ γ) ⊆ αγ ◦ αβ for congruences.

(3) V satisfies σ(τ ◦ υ) ⊆ συ ◦ στ for U-admissible relations, equivalently, for

reflexive and admissible relations, equivalently, for tolerances.

(4) V satisfies T (R ◦ S) = TR ◦ TS, for reflexive and admissible relations,

equivalently, for tolerances (notice that in the present identity we use equal-

ity and R and S are not shifted).

Proof. Again, (1) ⇔ (2) is well-known and standard. In each case, (3) ⇒ (2).

In order to show that (1) implies (3) an additional argument is needed,

in comparison with 3.2. Since (1) implies congruence permutability, we have

R = R`, for admissible relations, by [16]. This implies σ = σ`, for U -

admissible relations. Then we can proceed as usual employing the Pixley term

p. If a σ c and a τ b υ c, then, for example a = p(a, c, c) υ` p(a, b, c). Since we

have just proved that υ` = υ, then a υ p(a, b, c). With similar computations

we show that a συ p(a, b, c) στ c.

Finally, we show that arithmeticity is equivalent to (4). We shall use the

fact that arithmeticity is equivalent to the existence of a majority term to-

gether with congruence permutabilty. In congruence permutable varieties any

reflexive and admissible relation is a congruence, hence (4) follows from arith-

meticity by 3.2(2) and the first sentence in Remark 3.3. Conversely, if (4)

holds, then taking R = S = 1 we get T = T ◦ T and this identity implies

congruence permutability by [16]. Trivially (4) implies 3.2(2), hence we get a

majority term. �
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Proposition 3.5. The identity σ(τ ◦ υ) ⊆ στ ◦ συ ◦ στ ◦ συ holds for U-

admissible relations in the variety introduced by Baker [1], the variety generated

by polynomial reducts of lattices in which the ternary operation f(a, b, c) =

a ∧ (b ∨ c) is the only fundamental operation.

Proof. If, as usual, (a, c) ∈ σ(τ ◦ υ) with a τ b υ c, then the elements f(a, b, c),

a∧ c = f(a, c, c) and f(c, b, a) witness (a, c) ∈ στ ◦ συ ◦ στ ◦ συ. For example,

f(a, b, c) = f(f(a, b, c), f(a, b, c), a) σ f(f(c, b, c), f(a, b, c), a) = a ∧ c. �

Of course, Proposition 3.5 applies also to any expansion of Baker’s variety.

We now show that equivalences similar to those in Propositions 3.2 and

3.4 hold in a more general context. In particular, we shall prove the quite

surprising fact that the identity σ(τ ◦ υ) ⊆ στ ◦h συ, holds for U-admissible

relations if and only if it holds for admissible relations, where h is the same in

both cases.

Theorem 3.6. Within a variety, the following identities are equivalent. Each

identity holds in V if and only if it holds in FV(3).

(1) σ(τ ◦ υ) ⊆ (στ ◦ συ)⊛, equivalently, (σ(τ ◦ υ))⊛ = (στ ◦ συ)⊛;

(2) σ(τ ◦ τ) ⊆ (στ)⊛, equivalently, (σ(τ ◦ τ))⊛ = (στ)⊛;

(3) σ⊛τ⊛ = (στ)⊛, equivalently, (σ⊛τ⊛)⊛ = (στ)⊛.

In the above identities, σ, τ and υ are U-admissible relations, equivalently,

U2-admissible relations. Limited to item (1), we can equivalently take them to

be reflexive and admissible relations.

In order to prove Theorem 3.6 we first need a Maltsev characterization of

condition (1). In the formulae below we sometimes use a semicolon in place of

a comma in order to improve readability.

Proposition 3.7. Let σ, τ , υ denote U-admissible relations, equivalently,

reflexive and admissible relations. A variety V satisfies σ(τ ◦ υ) ⊆ στ ◦h συ if

and only if V has ternary terms ti, i = 0, . . . , h, and 4-ary terms si and ui,

i = 0, . . . , h− 1, such that the following identities hold throughout V.

x = t0(x, y, z), th(x, y, z) = z,

ti(x, y, z) = ui(x, y, z;x), ui(x, y, z; z) = ti+1(x, y, z), for i < h,

ti(x, y, z) = si(x, y, z;x), si(x, y, z; y) = ti+1(x, y, z), for even i < h,

ti(x, y, z) = si(x, y, z; y), si(x, y, z; z) = ti+1(x, y, z), for odd i < h.

All the above conditions hold in V if and only if they hold in FV(3).

Proof. Suppose that σ(τ ◦ υ) ⊆ (στ ◦h συ) holds in V , or just in FV(3), in

the weak form, that is for reflexive and admissible relations. Let FV(3) be

generated by the elements x, y and z and let σ, τ , υ be the smallest re-

flexive and admissible relations containing, respectively, (x, z), (x, y), (y, z),

thus (x, z) ∈ σ(τ ◦ υ). By the assumption, (x, z) ∈ στ ◦h συ. Since we are

in the free algebra generated by x, y, z, the above relation is witnessed by
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ternary terms ti, i = 0, . . . , h. The elements ti(x, y, z) of FV(3) have to satisfy

x = t0(x, y, z), ti(x, y, z) στ ti+1(x, y, z), for i even, ti(x, y, z) συ ti+1(x, y, z),

for i odd, and th(x, y, z) = z. It is easy to see that in FV(3) we have

σ = {(u(x, y, z;x), u(x, y, z; z)) | u a 4-ary term of V}. Hence the relation

ti(x, y, z) σ ti+1(x, y, z) implies the existence of terms ui satisfying the desired

equations. The equations hold throughout V since we are in the free algebra

generated by 3 elements and the terms depend on 3 variables. Arguing in the

same way with τ and υ, we get all the claimed equations.

Now suppose that the displayed equations hold in V . The arguments famil-

iar by now show that σ(τ ◦ υ) ⊆ (στ ◦h συ) holds in the strong form in which

σ, τ and υ are taken to be U-admissible relations. Indeed, let A ∈ V , σ, τ and

υ be U-admissible relations of A and (a, c) ∈ σ(τ ◦ υ), thus a τ b υ c, for some

b. Then we have, say, ti(a, b, c) = ui(a, b, c; a) σ ui(a, b, c; c) = ti+1(a, b, c). By

using the other equations in a similar way we get that the elements ti(a, b, c),

i = 0, . . . , h witness (a, c) ∈ στ ◦h συ.

Since the stronger form of σ(τ ◦ υ) ⊆ (στ ◦h συ) implies the weaker form,

we have that all the conditions are equivalent. �

Of course, from the equations in Proposition 3.7 the ti’s are determined

either by the ui’s or by the si’s, hence, in principle, it is not even necessary to

mention the ti’s explicitly, it would be enough to reformulate the equations as

follows.

x = u0(x, y, z;x) = s0(x, y, z;x), uh−1(x, y, z; z) = z,

sh−1(x, y, z; z) = z if h is even, sh−1(x, y, z; y) = z if h is odd,

ui(x, y, z; z) = ui+1(x, y, z;x) = si(x, y, z; y) = si+1(x, y, z; y) if i < h− 1, i even,

ui(x, y, z; z) = ui+1(x, y, z;x) = si(x, y, z; z) = si+1(x, y, z;x) if i < h− 1, i odd.

However, both the statement and the proof seem clearer if we mention

explicitly the ti’s.

Proof of Theorem 3.6. Clearly, (1) ⇒ (2) and (3) ⇒ (2) either in the weak or

in the strong case. If (2) holds for U-admissible relations, then, by an easy

induction, we get

στ⊛ ⊆ (στ)⊛. (P)

Applying (2) again with τ⊛ in place of σ, we get

τ⊛(σ ◦ σ) ⊆ (τ⊛σ)⊛ = (στ⊛)⊛ ⊆ (στ)⊛⊛ = (στ)⊛,

by (P) and idempotence of ⊛. Then another induction shows σ⊛τ⊛ = τ⊛σ⊛ ⊆

(στ)⊛. The reverse inclusion is trivial. Thus we have that (2) and (3) are

equivalent for U-admissible relations.

Since, by Proposition 3.7, the weaker and the stronger forms of (1) are

equivalent, it is enough to prove that the version of (2) for U2-admissible

relations implies the version of (1) for reflexive and admissible relations (for
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this in turn implies the stronger form of (1), hence the stronger form of (2),

hence (3) follows also from the version of (2) only for U2-admissible relations).

The proof that (2) for U2-admissible relations implies (1) for reflexive and

admissible relations is similar to the proof of Lemma 2.2. Indeed, for R, S,

and T reflexive and admissible relations, letting σ = S ∪ T and applying (2),

we have R(S ◦ T ) ⊆ R(σ ◦ σ) ⊆ (Rσ)⊛ = (RS ∪RT )⊛ = (RS ◦RT )⊛. �

4. A Maltsev-like characterization of α(σ ◦ σ) ⊆ (ασ)◦h

In this section we present a Maltsev type characterization of the identity

α(σ ◦ σ) ⊆ (ασ)◦h, for fixed h. This is somewhat similar to Theorem 3.6 and

Proposition 3.7, but qualitatively different in that, for fixed h, the identity

turns out to be equivalent to a finite disjunction of identities involving reflexive

and admissible relations. In other words, for the reader who knows the termi-

nology, while the identities in Theorem 3.6 are described by Proposition 3.7 as

Maltsev classes, on the other hand, for fixed h, we describe α(σ ◦ σ) ⊆ (ασ)◦h

as a finite union of strong Maltsev classes.

Theorem 4.1. For every natural number h > 0 and every variety V, the

following conditions are equivalent. Each condition holds for V if and only if

it holds for FV(3).

(1) V satisfies the identity α(σ ◦ σ) ⊆ (ασ)◦h, where σ is a U-admissible

relation, equivalently, a U2-admissible relation.

(2) There is a function f : {0, 1, . . . , h − 1} → {1, 2} such that one (and

hence all) of the following equivalent conditions hold.

(a) V satisfies the identity α(R1 ◦R2) ⊆ αRf(0) ◦ αRf(1) ◦ · · · ◦ αRf(h−1),

where R1 and R2 are reflexive and admissible relations.

(b) V has 4-ary terms si, i = 0, . . . , h−1 such that the following identities

hold throughout V.

x = s0(x, y, z;wf(0)), sh−1(x, y, z;w
′

f(h−1)) = z, and

si(x, y, z;w
′

f(i)) = si+1(x, y, z;wf(i+1))

x = si+1(x, y, x;w
′

f(i))
for i < h− 1,

where w1, w2, w′
1 and w′

2 denote, respectively, the variables x, y, y

and z.

In the identities in (1) and (2)(a) above we can let α be equivalently a variable

for congruences or tolerances.

Proof. That in each case we get an equivalent condition letting α be a congru-

ence or tolerance is proved using the argument from [2] recalled at the end of

the proof of Proposition 2.4. We shall deal here with the simpler case when α

is a congruence.

Suppose that V satisfies the identity α(σ ◦ σ) ⊆ (ασ)◦h, where σ is a U2-

admissible relation. Let us work in the free algebra FV(3) in V generated
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by the three elements x, y and z. Let α be the congruence generated by

(x, z) and let R1 and R2 be, respectively, the smallest reflexive and admissible

relations containing (x, y), respectively, (y, z). Let σ = R1 ∪ R2. We have

that (x, z) ∈ α(σ ◦ σ), hence, by (1), (x, z) ∈ (ασ)◦h. Hence there are ternary

terms t0, t1, . . . , th such that x = t0(x, y, z), ti(x, y, z) ασ ti+1(x, y, z), for

i = 0, . . . , h − 1 and th(x, y, z) = z. The usual arguments show that the

identities ti(x, y, x) = x should hold throughout V . Moreover, since σ =

R1 ∪ R2, then, for every i = 0, . . . , h − 1, either ti(x, y, z) R1 ti+1(x, y, z)

or ti(x, y, z) R2 ti+1(x, y, z). Let f be such that ti(x, y, z) Rf(i) ti+1(x, y, z).

Arguing as in the proof of Proposition 3.7, there are 4-ary terms si such

that ti(x, y, z) = si(x, y, z;wf(i)) and si(x, y, z;w
′

f(i)) = ti+1(x, y, z), for i =

0, . . . , h − 1 and where w1, w2, w
′
1 and w′

2 denote, respectively, the variables

x, y, y and z. Eliminating the ti’s from the equations we have obtained, we

get exactly the identities in (2)(b).

We have proved that if (1) holds for U2-admissible relations, then there

exists some function f such that (2)(b) holds.

It is by now standard to show that, given some function f , (2)(a) and (2)(b)

are equivalent. Obviously, if (a) holds, then (a) holds in FV(3); moreover, the

argument above can be easily reformulated in order to show that if (a) holds

in FV(3), then (b) holds. On the other hand, the proof that (b) implies (a)

is similar to the final part of the proof of Proposition 3.7. If a α c and

a R1 b R2 c, then (a, c) ∈ αRf(0) ◦ αRf(1) ◦ · · · ◦ αRf(h−1) is witnessed by the

elements si(a, b, c; df(i)), for i < h − 1, where d1 = b and d2 = c. Indeed, if,

say, f(i) = f(i + 1) = 1, then si(a, b, c; b) = si+1(a, b, c; a) R1 si+1(a, b, c; b)

and si(a, b, c; a) α si(a, b, a; a) = a = si+1(a, b, a; a) α si+1(a, b, c; a).

It is now easy to show that (2)(a), for some f , implies the stronger form of

(1) for U-admissible relations. Indeed, if σ =
⋃

g∈G Rg, a α c and a σ b σ c,

then a Rg1 b Rg2 c, for some g1, g2 ∈ G, hence (2)(a) implies (a, c) ∈ αRgf(0)
◦

αRgf(1)
◦ · · · ◦ αRgf(h−1)

⊆ (ασ)◦h. �

Remark 4.2. Let (a)f denote the identity given by (a) in Theorem 4.1 when

applied to some specific function f . It is probably an interesting problem

to determine which implications hold among identities of the form (a)f and

(a)f ′ , letting f and f ′ vary, possibly with h 6= h′. Of course, if k is the number

of “variations” in the sequence f(0), f(1), . . . , f(h − 1), then, letting R1 and

R2 be congruences in (a)f , we obtain α(β ◦ γ) ⊆ αβ ◦k+1 αγ if f(0) = 1, and

α(β ◦γ) ⊆ αγ ◦k+1αβ if f(0) = 2. By [8] and the last statement in Proposition

2.5, if one of the above congruence identities holds, then α(R ◦S) ⊆ αR ◦k′ αS

holds, for some k′, but the known proofs, so far, provide a relatively large k′.

As a related observation, we know that, in general, adjacent identical rela-

tions do not absorb in relation identities. For example, it follows from equation

(10) in [13] that Baker’s variety (cf. Proposition 3.5) satisfies T (R ◦ S ◦R) ⊆

TR◦TS ◦TR◦TR◦TS◦TR but fails to satisfy T (R◦S ◦R) ⊆ TR◦TS ◦TR◦

TS ◦ TR. Though there are probably similar examples in which the left-hand
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side has the form T (R ◦ S) or Θ(R ◦ S), at present we have none of them at

hand.

Problem 4.3. As pointed out by several authors, e.g. Jónsson [6, p. 370] or

Tschantz [15], it is interesting to study reflexive and admissible relations on

some algebra, as well as the identities they satisfy within a variety. Here the

identities can be constructed using the operations of intersection, converse,

composition and transitive closure. The results presented in this note suggest

that it might be interesting to study also identities satisfied by U -admissible

relations. Notice that the set of U -admissible relations on some algebra is

closed under the above-mentioned operations, as well as, obviously, under set-

theoretical union and under taking admissible closure. Hence it might be

interesting to study the structure U (A) = (U,∩,∪, ◦,` ,⊛ , )̄ associated to

any algebra A, where U is the set of all U-admissible relations of A and ¯

denotes the operation of taking the smallest reflexive and admissible relation

containing the argument.

Obviously, the arguments from Propositions 3.7 and Theorem 4.1 can be

merged in order to obtain a characterization of the identity σ(τ ◦ τ) ⊆ (στ)◦h,

for U-admissible relations.

More generally, parts of the arguments in the proof of Proposition 4.1 can

be inserted into a broader context, related to Problem 4.3.

If ε(σ1, σ2, . . . ) ⊆ ε′(σ1, σ2, . . . ) is an inclusion depending on the vari-

ables σ1, σ2, . . . , we say that an inclusion δ(R1,1, R1,2, . . . , R1,j1 , R2,1, . . . ) ⊆

δ′(R1,1, R1,2, . . . , R1,j1 , R2,1, . . . ) is an expansion of ε ⊆ ε′ if j1 is the number

of occurrences of σ1 in ε and similarly for the other variables, and δ ⊆ δ′

can be obtained in the following way. First, δ(R1,1, R1,2, . . . , R2,1 . . . ) is ob-

tained from ε(σ1, σ2, . . . ) by substituting each occurrence of σ1 for a distinct

variable from the sequence R1,1, R1,2, . . . , R1,j1 and similarly for the other vari-

ables. This first step can be performed essentially in a unique way, modulo

renamings. Then we require that δ′(R1,1, R1,2, . . . , R2,1 . . . ) is obtained from

ε′(σ1, σ2, . . . ) by substituting every occurrence of σ1 for some variable from

the sequence R1,1, R1,2, . . . , R1,j1 , in any order and with the possibility of rep-

etitions. Similarly for σ2 and for all the other variables. This second step can

be performed in many nonequivalent ways. For example, for every f as in

Condition (2) in Proposition 4.1, the identity obtained in (2)(a) is one of the

many possible expansions of the identity from (1) in Proposition 4.1.

Proposition 4.4. Suppose that ε(σ1, σ2, . . . ) ⊆ ε′(σ1, σ2, . . . ) is an inclusion

built using the operations ∩, ◦ and `, where σ1, σ2, . . . are intended to be

variables for U-admissible relations. Then a variety V satisfies ε(σ1, σ2, . . . ) ⊆

ε′(σ1, σ2, . . . ) if and only if V satisfies at least one expansion δ(R1,1, R1,2, . . . ,

R2,1, . . . ) ⊆ δ′(R1,1, R1,2, . . . , R2,1, . . . ) of ε ⊆ ε′, where the Ri,j ’s are inter-

preted as admissible relations.
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