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Abstract: Most manufacturing and process industries require compressed air to such an extent that
in Europe, for instance, about 10% of the total electrical energy consumption of industries is due
to compressed air systems (CAS). However, energy efficiency in compressed air production and
handling is often ignored or underestimated, mainly because of the lack of awareness about its energy
consumption, caused by the absence of proper measurements on CAS in most industrial plants.
Therefore, any effective energy saving intervention on generation, distribution and transformation
of compressed air requires proper energy information management. In this paper we demonstrate
the importance of monitoring and controlling energy performance in compressed air generation and
use, to enable energy saving practices, to enhance the outcomes of energy management projects,
and to obtain additional benefits for non-energy-related activities, such as operations, maintenance
management and energy accounting. In particular, we propose a novel methodology based on
measured data, and baseline definition through statistical modelling and control charts. The proposed
methodology is tested on a real compressed air system of a pharmaceutical manufacturing plant in
order to verify its effectiveness and applicability.

Keywords: energy efficiency; compressed air systems; energy data analysis; energy measures;
performance control; operations; maintenance; energy accounting

1. Introduction

The research presented in this paper is part of a wider research project addressed to the optimization
of the energy use of compressed air systems (CAS) in manufacturing plants in the context of Italian
energy intensive companies [1–3].

Through the information obtained by more than 15,000 energy audits and data collected through
questionnaires, detailed analyses have led to the conclusion that the actual state of the CAS within the
Italian industry shows great opportunities for improvement. Indeed, the analyses, on the one hand,
confirmed that compressed air production accounts for quite an high portion of the overall Italian
industrial sector’s electric energy consumption, and, on the other hand, revealed the widespread lack
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of monitoring systems to measure the energy consumption of CAS [3]. In fact, despite the importance
attributed by most research and legislation to the use of reliable measures for energy efficiency and
energy savings in industrial sites [4–8], this practice is clearly still quite far from being diffusely
implemented. In addition, this is due to the limited knowledge of ensuing energy efficiency and
non-energy efficiency benefits. Therefore, there are still huge opportunities for improvement for both
technical and managerial aspects. In particular, the improvement of energy performance control seems
to be one of the most important interventions to apply as it can provide guidance to the company in
the identification of energy waste, in the of optimization of the use of energy, in the improvement of
maintenance methodologies and in the assessment and verification of results in economic terms.

Moreover, the increasingly fast innovation in the fields of distributed control, smart metering and
machine learning can foster the implementation of a dynamic energy control by companies [9], in an
Industry 4.0 perspective. Indeed, the analysis of process data and the relationships among variables
enable the acquisition of valuable insight for different applications, such as process monitoring, fault
diagnosis, mode clustering, soft sensing of key variables/quality variables, etc. [10].

For example, in operations management, by comparing measured data to a highly accurate
and reliable reference, it is possible to exert an efficient and more effective real time control of the
performance of the system and an optimization of its operating conditions [11].

Furthermore, from a maintenance point of view, the use of advanced techniques can support
the real time performance control during production, implementing faults detection [12–15], fault
diagnosis [16,17] and remaining useful life estimation to support the optimization of manufacturing
management and maintenance scheduling [18].

Finally, the use of real time control tools can benefit the organization also from a pure economical
perspective. Modelling the energy performance of the system, in fact, allows a more accurate estimation
of the energy budget, not only enabling a timely discovery of anomalous behaviors but also supporting
management in the investigation of their actual causes, thus enacting an efficient control of the overall
performance of the system [19].

The aim of the paper is to present a general computing approach applied to energy performance
control which can also jointly support the decision-making process of three different non-energy-related
activities, namely operations, maintenance and energy accounting.

The approach presented can be applied to any energy use in industry, but is here specifically
tailored to CAS. The paper is structured as follows: Section 2 describes the background of the
problem, discussing the different methodological approaches identified in literature to impact energy
performance control and the main non-energy-related activities mentioned; Section 3 provides a
description of the methodology adopted while Section 4 shows the results of the application of the
proposed methodology to a real case study: the compressed air system of a pharmaceutical production
plant. Finally, Section 5 ends the paper, presenting the main conclusions and implications of the study.

2. Background

In recent years, with the development of new information technologies the paradigm of the fourth
technological revolution, namely Industry 4.0, has emerged. This concept is based on innovative
technologies such as cyber-physical systems (CPS), the Internet of Things (IoT) and cloud computing
and its aim is to achieve higher operational efficiency, productivity and automation, through a
continuous integration and analysis of heterogeneous data [20,21]. Considering that some of the
most prominent features of this paradigm are digitization, optimization, automation, human machine
interaction (HMI), and automatic data exchange and communication, it is clear how Industry 4.0 is
an industrial process of both value adding and knowledge management, supported by the use of
internet technologies and advanced algorithms [21]. In this context, an important aspect of Industry
4.0 is the ability of manufacturing systems to monitor and analyze the industrial reality at different
levels and with different purposes, through the use of a digital copy (“digital twin”) of the physical
system, process or manufacturing phenomena studied [22,23], thus making possible the enactment of
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smart decisions achieved through a continuous and synchronized information flow among humans,
machines, and sensors alike [24].

In particular, a growing number of publications have been dedicated in the recent years to the
study of new control tools based on the use of real time data from measurement systems in the field
of energy performance control as well as in the main applications mentioned before: operations,
maintenance and energy accounting. While presenting a variety of methodologies and different
approaches, the scientific literature in these fields tends to focus on addressing these issues separately
instead of analyzing the possibility of tackling them in a joint manner.

In order to examine the implications of the methodology presented in this paper, the main aspects
and opportunities arisen in the mentioned applications are here briefly described (to obtain further
information about the scientific literature on these topics refer to Appendix A for a deeper analysis of
the publications examined).

Regarding the energy domain, various applications can benefit from a more complex data analysis.
For instance, most of the different approaches available in literature to monitor and control energy
performance in industrial plants share the same main phases [25,26]: measurement plan and data
collection, baseline definition, implementation of control over time through comparison between
the baseline, and monitored energy consumption. However, various techniques might be used to
characterize the baseline energy performance of the system, depending on its complexity and on the
availability and quality of data (e.g., air compressors, boilers, pumps, buildings, etc.) [27–33]. Often,
for this purpose, statistical regression is used, and more recently—machine learning methodologies,
such as artificial neural networks or support vector regression; all of which have been tested. The most
common approach is to evaluate the residual between actual energy consumption and the prediction
obtained from the baseline model. In order to help the evaluation of the residuals’ significance,
control charts, such as EWMA (exponentially weighted moving average), CuSum (cumulative sum) or
Shewhart charts are used [27,28,30].

Other important applications developed due to the availability of real time data are the prediction
of energy consumption, especially critical for building management [34–41] and electrical load
management [42–54], and the forecast of energy production by renewable energy systems (mostly used
for wind turbines and photovoltaic panels) [55–59].

Process control and performance monitoring are other fields interested in the innovation brought
by data analytics tools. For instance, some data-driven models are used to give online estimation
of key variables that, due to technical or economic limitations, would be too difficult to measure
otherwise [60,61], while other models are used to perform process monitoring in order to detect
anomalies [62].

In regards to maintenance, instead, depending on the specific application, different goals can be
achieved: condition-monitoring, fault detection, diagnosis and prognostics. The more complex the
objective, the more complex the model and the data used to achieve it. Therefore, while condition
monitoring [63–65], fault detection [66,67] and diagnosis [12–14,68] may be achieved even with statistical
models, prognostics models are usually developed through machine learning techniques [17,18,69–75].
Both supervised and unsupervised approaches are used in fault detection, diagnosis and prognosis
(e.g., artificial neural networks, decision trees, ARMA (autoregressive moving average) or logistic
regression models, etc.) [73].

Finally, the scientific literature related to energy accounting is still limited. In fact, while energy
efficiency is finally regarded with attention in the industrial context, the cost of energy is still not
widely analyzed. Some papers propose methodologies to predict the energy budget using variables
of influence to estimate the energy consumption through statistical modelling [76,77]. Moreover, the
differences between budget and actual costs can be analyzed through indicators that distinguish the
effect of different specific causes (e.g., different prices, production volumes, on-site generation system
efficiency, etc.) [76,78,79].
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3. Methodology

The methodology described herein defines a series of steps for a real time energy performance
control organized in a replicable process in order to facilitate their implementation in different
industrial contexts.

The methodology was developed to be as widely applicable as possible (at least to a wide range
of different industrial auxiliary systems) but is here particularly referred to CAS. It is fundamental
to highlight that the paper focuses on energy performance rather than energy consumption. This
entails a combined measure and integrates analysis of CAS’ energy consumption and compressed
air production which has the potential to provide much more information to the final user of the
control system.

Moreover, one main innovative aspect of the proposed methodology is its capability of impacting, in
a jointly manner, three different non-energy-related activities (operations, maintenance and accounting):
(i) the definition of the best operating conditions of a system from an energy efficiency perspective; (ii)
the identification of changes to energy consumption patterns or degradation of energy performances
linked to sporadic faults or events and (iii) the achievement of a deeper understanding of the energy
behavior of the overall system aimed at an improved energy accounting.

The methodology is developed following an empirical approach, on the basis of needs and
requirements identified through a close collaboration with industrial practitioners involved in the case
study and afferent to the different functions, such as energy, operations and maintenance management.
Some of the tools integrated in the methodology adopt features from similar non-energy-related
tools already in use, such as quality and process control tools as well as project management
tools [9,10,27,28,76,77], in order to overcome implementation barriers mainly related to usability and
resistance to change. As a result, people involved in the case study are able to work with familiar tools,
even though based on new data analysis and real time control concepts and applied to the energy
management context.

The rest of this section is organized as follows: the first subsection illustrates the overall
methodology for real time energy performance control, while following subsections will be dedicated
to each application.

3.1. Methodology for Real Time Energy Performance Control

The methodology is built on statistical tools for energy measurement and verification and energy
monitoring and targeting [6,19,28], which were then customized for real time energy performance
control (and auxiliary industrial systems, with particular focus on CAS) in order to draw a complete
picture of the system’s energy behavior, and therefore, create a reliable baseline.

Figure 1 gives a schematic representation of the most common variables to be monitored for CAS
and the different possible boundaries of the analysis. Compressed air generation and utilization are
represented together with their main inputs/outputs and all the main variables that are capable to
influence the energy performance of the system, also called “energy drivers” [19]. Energy drivers are
divided into two categories, i.e., controllable and non-controllable. Controllable energy drivers can
be modified by the companies and set by operators, while non-controllable energy drivers cannot
be modified (either because out of company’s control, such as weather conditions, or because the
company is not willing to change them to improve energy efficiency, such as production rates and
working hours).
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Figure 2. Conceptual map of the methodology developed for real time energy performance control.
Such a process is iterative in nearly every step. Indeed, depending on the results of the specific step, it
might be necessary to go back and change some of the assumptions or choices previously made.

Step 1 is the definition of the boundaries of the analysis. In this preliminary step, it is important
to identify the main typologies of energy carriers (defined by the International Organization for
Standardization as “substance or medium that can transport energy” [80]) and the transformations
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that they underwent. In particular, when examining a specific energy carrier, it is useful to distinguish
between its generation and its utilization in order to be able to address the needs of different users in
term of control (e.g., top management, operations managers, utilities managers, maintenance operators,
etc.). For example, considering CAS, it is necessary to understand whether the analysis should focus
on compressed air production (the generation of compressed air by air compressors using electricity),
utilization (the use of compressed air by production equipment), or both.

Once boundaries are defined, it is necessary to identify the level of detail of the analysis (Step 2) in
terms of space and time, determining, for example, whether it is more convenient to take into account
the whole plant, a single department or just one production line or machine, and, moreover, defining
the most suitable frequency at which analyze energy data. This second choice is made considering
the thermodynamics of the process/system, the purpose of the control and the type of users of the
implemented control system: a low frequency (e.g., from a few hours to a few days) is generally used
for strategic control purposes whereas a higher frequency (e.g., from 10 to 30 min) is more suitable for
operational control.

The third step is the energy baseline method definition. Among the several methods available
to analyze data and to build the energy baseline, we chose statistical regression [25,27,81,82] as the
most effective to organize the data collection accordingly. However, physical models, artificial neural
networks or even machine learning techniques [15,28] are employable. First of all, it is important
to highlight that the choice of the method mainly depends on the following factors: (i) available
resources for the control system ramp-up; (ii) available resources for the control system maintenance;
(iii) boundaries and chosen level of detail (i.e. the need to analyze several assets at the same time); and
(iv) the need to keep a deep understanding of the thermodynamics controlling the process (i.e. highly
automated tools generally allow a lower understanding, as they rely on “black box” methods).

As energy consumption is often dependent on several variables, the characterization of the energy
behavior requires the collection of different types of information: consumption data, production data,
environmental data, technical (users) and operational data [26]. Therefore, a measurement plan is
implemented (Step 4) with the aim to perform an appropriate data collection for all the variables
(inputs, outputs, energy drivers) that need to be monitored, paying special attention at their coherence
(same period of time and frequency) and at identifying the appropriate measuring systems and the
additional information that needs to be collected (e.g., maintenance schedules, production data). The
amount of data and information collected and the consequent resources committed in this phase are
defined accordingly to the entity of the potential saving achievable with real time control, while also
establishing a duration of the data collection phase such as to guarantee a correct representation of all
possible working conditions.

In the following phase (Step 5), the measurement plan illustrated above is implemented and data
collection activities are performed.

Step 6 aims to check and solve any synchronization issues and to implement manual or automatic
data handling, depending on the amount and quality of the collected data. Inaccuracies introduced by
the measuring system are also corrected in this moment. Moreover, it is necessary to perform a first
data validation in order to avoid poor/low quality data and meters’ faults.

Afterwards, on the basis of the choice made in the third step, a model that characterizes the
energy behavior of a system from a set of collected data is developed in Step 7 in order to enable the
investigation of intrinsic and external causes of energy performance variability.

The first statistical tool is the correlation analysis of the previously collected energy drivers
and energy consumption data to define the dependence of the energy behavior of the system on
identified energy drivers, thus allowing preliminary qualitative considerations. Moreover, in order to
get more quantitative information, it is possible to perform regression analyses, using the coefficient of
determination (i.e., R2) and the related probability (i.e., P_value) [81,83] to analyze the strength of the
correlation and select the energy drivers on the basis of their actual influence.
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Once the first model that included all the available data has been created, a validation and a first
analysis of the overall performance of the system is carried out. Among the control charts used in
quality control [83], two of them are particularly suitable for this kind of analysis.

First of all, let Eac(t) be the actual energy consumption of the system at time t and Epd(t) be the
energy consumption predicted through the use of the baseline model for the same time t. The difference
between these two values is the energy performance deviation, defined as ∆E(t) and calculated as
follows:

∆E(t) = Eac(t) − Epd(t) (1)

The evolution over time of this parameter (∆E(t)) can be observed in a first control chart—the
control chart for energy performance deviations. Every point in the chart represented the energy
performance deviation at a specific time (Figure 3a). Two lines, the upper and lower control limits, are
added to the chart to support the analysis of the energy behavior of the system. These two control
limits (UCL—upper control limit; LCL—lower control limit) are evaluated starting from σ, the standard
deviation of the statistical distribution of ∆E(t), as follows:

UCL = +k× σ (2)
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Figure 3. Qualitative representation of the two control charts applied for the joint analysis of energy
behavior of a system: (a) control chart for energy performance deviations and (b) the cumulative sums
chart (CuSum) chart. In the first period of the analysis (time interval from 1 to 7) the energy behavior
of the system is normal, whereas in the second period (time interval from 7 to 14) the charts show
a decrease in energy performance (positive shift of the average in (a) and upward trend in (b)). In
the final period (time interval from 14 to 20), the system shows an improvement of the performance
(negative shift of the average in (a) and downward trend in (b)).

LCL = −k× σ (3)

The coefficient k used in the equations is conventionally set to 3, but as the control chart’s sensitivity
is established by the width of its control limits, the coefficient k may also be set to a lower value in
order to enact a stricter control. When the system examined shows an energy consumption behavior
compliant with the baseline model, the energy performance deviations on the chart displays a normal
statistical distribution with mean equal to zero, on the contrary, the presence of nonrandom patterns
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(e.g., points outside the control limits, mixtures or shits of the average) are signals of non-conformity
with the baseline model and therefore of anomalous behavior.

Moreover, a second control chart, the cumulative sums chart, or CuSum, is used to deepen the
analysis of the energy behavior of the system. Every point in the CuSum chart shows the value over
time of the cumulative sum of energy performance deviations, defined as ∆EC(t) and is calculated
as follows:

∆EC(t) =
t∑

t=0

∆E(t) (4)

This type of control chart is useful because it highlights trends in energy performance behavior
(Figure 3b). Indeed, a change in the slope of the CuSum represents a variation in the energy behavior
of the system.

The joint examination of these two control charts supports the identification of different energy
behaviors within the observed period or sub-periods and the identification of an accurate baseline
model (i.e., the energy behavior that is taken as a reference to compare future performances).

The baseline model can be identified (Step 8) in the following three ways [19], depending on the
choice of the set of data:

• considering the most recent available one; this choice is the best one when changes to technical,
technological or structural configurations of the analyzed center occurred;

• considering the data set that showed the best energy performance; this choice is usually considered
with a view to continuous improvement because it implies a more challenging outcome in terms
of energy objectives;

• considering the data set that showed the most constant and stable energy behavior; this choice is
generally made when none of the two previous options is applicable.

It is worth noting that, in any case, the sub-period chosen to create the baseline model should
allow an accurate statistical data analysis, and therefore, it should be sufficiently long to include
enough data. In some cases, where the cyclic nature of the energy consumption is evident (e.g., when
the external temperature has a strong influence on the energy efficiency of the system), it might be
appropriate to build different energy baselines for different time periods or conditions, defining when
it is necessary to switch from one baseline model to another. In this phase, it is also possible to validate
the baseline model by using all the available additional information, mainly related (but not limited
to), operations and maintenance. This allows matching most of the variations from the baseline energy
behavior occurring during the observed time period with actual events happened to the system (e.g.,
periodic maintenance interventions, shutdowns, etc.) and therefore, verifies the effectiveness of the
model itself and of the control charts. This specific activity is usually time and resource consuming, as
it is necessary to collect more information and to interview operators and maintenance personnel.

In the final step (Step 9), it is possible to use the baseline model to implement a continuous control
over time. Real time data for both energy consumption and energy drivers are acquired by metering
systems and their differences (i.e., ∆E(t)) are evaluated at the chosen frequency (or at different/multiple
frequencies, depending on users’ needs) and represented on the control charts to highlight the presence
of possible anomalies, enabling a real time control by the users. Moreover, the setting of control limits
and other alarm conditions can automatize the generation of alerts to foster a timely response.

3.2. Definition of the Best Operating Conditions of a System From an Energy Efficiency Perspective

The methodology previously illustrated (Steps 1–7) is implemented in order to evaluate different
operating conditions for the system and identify the best option from an energy efficiency perspective.
In fact, it is sufficient to include in the data collection period, different sub-periods where operating
conditions are different (e.g., different time sets, different pressure sets, different starting sequence, etc.).
In many cases this happens automatically by considering a long data collection period or is achieved
by switching such conditions on purpose during the data collection process.
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Since different energy behaviors can be distinguished through the analysis of control charts (Step 7)
and energy performance variations due to energy drivers’ variability are already within the model,
only the energy consumption variability due to the different operating conditions is made visible on the
control charts. The evaluation of different operating conditions is therefore, made more accurate and
effective. Moreover, the whole of Step 7 can also be iterated in different moments if a new evaluation is
required during the control phase (e.g., when a new operating condition is introduced).

3.3. Identification of Changes to Energy Consumption Patterns or Degradation of Energy Performances Often
Linked to Sporadic Faults or Events

The methodology previously illustrated (Steps 1–9) can also be implemented in order to identify a
system’s malfunctioning. The control charts can, in fact, be used over time to identify variations in
energy behavior which can in turn be related to fault events through further investigations (in a similar
way as the one described in Step 8).

In addition, it is possible to set up a registry (similar to fault registries already in use in industry
for maintenance management purposes [84]) where all anomalies identified in the charts are collected
together with relevant information such as time and entity of the deviation, values of all energy
drivers, operating conditions, and causes of the anomaly. This kind of registry enables the analysis and
classification of anomalies and allows identifying recurrences, patterns and similarities in the control
charts, in order to promote the association of the most likely causes for each new anomaly in a quick
and automatic way on the basis of past events (e.g., progressive obstruction of air compressors’ filters
resulted in a typical slope of the CuSum chart).

The creation of the registry and the analysis of past anomalies also increases the efficiency
of the control system, as it is possible to identify anomalies related to inaccuracies of the control
system itself rather than to actual issues of the observed physical system. Therefore it prevents false
alarms (such as a meter’s fault, missing data or a specific condition where the statistical model loses
accuracy), thus enabling the user of the system to immediately activate the functions/units in the
company that are most likely to be able to solve the issue. This registry can be compiled manually or
automatically, implementing pattern recognition techniques [85], depending on system’s characteristics
and available resources.

3.4. Improved Energy Accounting

Energy accounting in industrial companies can be ineffective, as discerning between energy
consumption variations to be expected (e.g., due to production volume variations) and actual anomalies
(e.g., faults) is difficult without using an appropriate energy baseline. With the proposed methodology
(Steps 1–8), once a proper energy baseline is created, it is possible to setup the earned value, a tool
widely diffused for accounting in project management [86] whose application to energy management
has already proved to be effective [76,87].

Such a tool requires a distinction between the actual values of energy consumption (measured,
indicated in the followings as CA) and the predicted ones (calculated using the baseline model, and
indicated in the followings as CP), calculated for budgeting purposes. In this case, the CP values are
calculated months before the energy is actually consumed by inputting the predicted values of the
energy drivers into the baseline model. This means that the difference between CA and CP includes both
energy efficiency and energy drivers’ variations, and therefore it is not possible to distinguish actual
inefficiencies from physiological variability. As a consequence, it is necessary to introduce another type
of calculated energy consumption, named “flexible consumption” (CF), which is calculated through
the baseline model, using the actual values of the energy drivers as inputs. At this point, the difference
between CF and CP represents the physiological variability of energy consumption (due to energy
drivers’ variations and here indicated as ∆P), while the difference between CA and CF represents the
energy loss related to inefficiencies of the system (here indicated as ∆I).
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∆P = CF −CP (5)

∆I = CA −CF (6)

Since this application aimed at facilitating energy accounting, it is necessary to shift from energy
consumption to energy cost, multiplying CA by a standard energy unit cost. Such a unit cost comprises
energy purchasing and on-site energy production costs and allocates them to a single energy unit
(e.g., €/kWh). Again, since the budget is usually calculated months before the energy is actually
consumed, in order to take into account the possibility of differences in the energy price, it is necessary
to distinguish between the predicted standard energy unit cost (indicated as cP), which is calculated in
advance, and the actual standard energy unit cost (indicated as cA in the following), resulting from
electricity and fuels bills. The energy budget variance due to differences in energy prices (∆p) is,
therefore, calculated as follows:

∆p = (CA × cA) − (CA × cP) (7)

This analysis is usually performed at time steps at which the energy budget is calculated, at least
on a monthly basis. However, it could be in principle applied to any time step at which the energy
baseline is calculated.

4. Case Study

The proposed methodology was applied to monitor and control the energy performance of the
compressed air system of a pharmaceutical production plant located in central Italy, in order to get a
first validation and to verify its applicability to the three non-energy-related activities illustrated in the
previous section.

For what concerns Step 1, the company decided to focus on the compressed air production phase
in order to identify additional improvement opportunities and to verify its correct operation and
energy behavior (data were already available but had never been actually analyzed before). The plant
was equipped with five screw compressors divided into two groups installed in separate sections of
the industrial plant. We referred to these sections as room “A”, hosting two of the five compressors,
and room “B”, with the other three compressors.

The maximum compressed air production was higher than the maximum compressed air demand,
and usually only two or three compressors work simultaneously. Only Compressor 5, located in room
“B” had a variable speed drive installed, and it served as “master” (continuously functioning), while
the others worked as load/unload and served as “slaves”. A central control system regulated the
compressors in accordance with compressed air demand. Some general information on the compressors
(nominal and stand-by nominal power) is reported in Figure 4. Data related to energy consumption
and compressed air production, as well as compressed air pressure, external air temperature and
humidity were available with a 15 min frequency (i.e., already collected, recorded and stored in the
company’s servers), while the number of hours worked by each compressor was available weekly
(cumulated).

The level of detail of the analysis (Step 2) was defined by the company on the basis of three main
observations: (i) the energy manager wanted to properly exploit existing data, which was considered
to be relevant but had never been used to retrieve information on the system’s performances, (ii) there
was very little budget at that time to buy new meters, and the energy manager wanted to use results
from a first system’s analysis to justify additional budget allocation for new meters and (iii) for a first
analysis of the system, the energy manager aimed at having general information on the whole system’s
performances rather than on single compressors.
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Figure 4. Scheme of compressors’ groups and main data available.

All measured parameters (i.e., compressed air production, compressed air pressure, external air
temperature and humidity, hours worked by each compressor) were considered as potential energy
drivers and the first data analysis was conducted taking all of them into account, apart from the
amount of worked hours, as it was available at a lower frequency. In fact, for this first analysis, aimed
at defining the energy drivers as well as the energy behavior of the system, a daily frequency was
considered to be the most appropriate, and a data collection period of one year was adopted.

Considering the amount of data to be processed and the company’s needs, the baselining method
selected was the statistical analysis (Step 3). It is important to point out that, although in this case
a statistical regression was able to provide an appropriate baseline model, this method might not
always represent the best choice. Indeed, for every specific case, the right baseline method should be
identified taking into account the complexity and the dynamic of the system as well as the amount of
data available.

Since there were constraints in terms of budget, and the data available were more than sufficient to
conduct the analysis at the defined level of detail, the measurement plan and data collection (Steps 4–5)
were performed considering the already available data. A synthesis of the measurement plan is given
in the Table 1.

Table 1. Measurement plan.

MEASURED DATA

Label and Unit Frequency Collection Period Meter/Collection Method

In
pu

ts
/O

ut
pu

ts

Electric absorption
compressor 1 [kW] 15 min Last solar year

(April to April)
Schneider PM9C energy meter; data

on company’s online server
Electric absorption
compressor 2 [kW] 15 min Last solar year

(April to April)
Schneider PM9C energy meter; data

on company’s online server
Electric absorption

room B [kW] 15 min Last solar year
(April to April)

Schneider PM9C energy meter; data
on company’s online server

Compressed air flow
room A [Nm3/h] 15 min Last solar year

(April to April)

Emerson Rosemount™ 485
Annubar™ (averaging Pitot tube);
data on company’s online server

Compressed air flow
room B [Nm3/h] 15 min Last solar year

(April to April)

Rosemount™ 485 Annubar™
(averaging Pitot tube); data on

company’s online server

En
er

gy
D

ri
ve

rs

External temperature
[◦C] 15 min Last solar year

(April to April)
Data transmitted by closest

weather station

External humidity [%] 15 min Last solar year
(April to April)

Data transmitted by closest
weather station

Pressure set point [bar] 15 min Last solar year
(April to April)

Juno Midas pressure transmitter;
data on company’s online server

Compressors’ working
hours Weekly Last solar year

(April to April)

Measure collected by operators on
each compressor’s screen and

recorded on a shared spreadsheet
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An accurate data synchronization and validation (Step 6) was performed in order to correctly
aggregate data to the chosen frequency (from 15 min to one day), the level of detail (summing up
data related to different compressors) and to avoid meters’ inaccuracies in affecting the data analysis.
First of all, some flaws were identified and corrected by observing and comparing measured data: a
15 minute delay was observed between electricity consumption and compressed air production (as
shown in Figure 5) and bad compressed air flow meters’ calibration (meters measuring compressed air
flow while compressors were off, as shown in Figure 6).
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In addition, the data collection period was reduced from one year to seven months due to frequent
failures and maintenance interventions occurred to the compressed air meters during the remaining
five months (see Figure 6).
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The first data analysis (Step 7) was conducted through correlation and regression, considering
the system’s energy consumption and the identified energy drivers in the data collection period. As
a result, the only parameter showing a satisfying correlation with the energy consumption of the
compressors and no multicollinearity with the other parameters, was the amount of compressed air
produced, as reported in Table 2. The results of the multicollinearity analysis are represented in the
form of a correlation matrix with a color scale in Figure 7.

Table 2. Results of the regression analysis.

Regression Analysis Results Considering
All Parameters

Regression Analysis Results Considering Only
Compressed Air Production

Coefficient of determination (R2) 0.96 Coefficient of determination R2 0.94
P_value 9.45 × 10−137 P_value 1.69 × 10−125

P_value intercept 0.76 P_value intercept 0.34
P_value compressed air
production 8.32 × 10−119

P_value external temperature 2.06 × 10−17

P_value external humidity 0.01
P_value pressure 0.84Energies 2019, 12, x FOR PEER REVIEW 14 of 31 
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The pressure referred to in the correlation analysis was the discharge pressure of the compressed
air generation system and since it was considered a set point, the system was equipped with an
advanced control in order to minimize its fluctuations. The pressure at which the compressed air was
produced was around 6.5 bar, normally oscillating between 6.4 and 6.6 bar, during weekdays, while it
was reduced to 6.2 bar (with a variation range between 6.1 and 6.3 bar) on weekends. These limited
variations explained the limited effect on the regression model of this variable, usually quite critical
for this kind of analysis. Moreover, the ambient conditions, were also examined in terms of external
temperature and external humidity for a whole year in order to guarantee the analysis of the complete
range of conditions possible, affecting poorly the regression model.

The resulting mathematical model of the system’s energy consumption was as follows:

Energy consumption [kWh] = 0.1575×Compressed air produced
[
Nm3

]
–80.02 (8)
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This is also represented in the scatterplot in Figure 8.
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The CuSum and the control chart for the energy performance deviations for the data collection
period (Step 8) are given in Figure 9 and their joint observation shows the presence of four energy
behaviors, highlighted using different colors. Indeed, the CuSum in Figure 9a shows four different
trends clearly distinguishable and the control chart for the energy performance deviations in Figure 9b
displays four different distributions with a different mean.Energies 2019, 12, x FOR PEER REVIEW 15 of 31 
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The causes of these different behaviors were further investigated, mainly through the observation
of daily consumption data over time and interviews to operators, and they were finally identified to be
the following:

• Red period (“A”): Compressor 2 presented a higher specific consumption until around day 325
when a maintenance intervention solved the problem;

• Green period (“B”): a change to the activation sequence caused Compressor 3 to work mainly
with Compressor 5, whereas the others were usually kept turned off;

• Orange period (“C”): Compressor 1 presented an evident malfunctioning, remaining stuck in
stand-by for three whole consecutive days;
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• Blue period (“D”): another change to the activation sequence caused Compressor 4 to work mainly
with Compressor 5, whereas the others were usually kept turned off.

Thus, through the analyses, two different maintenance-related events were highlighted and it was
revealed that the energy behavior of the system was strongly related to the set of operating compressors
and therefore to the compressors’ activation sequence (also confirmed by further analyses on the
amount of hours worked by each compressor).

The baseline was then created using data from the green period (“B”) which was the one showing
the best energy performance. The data analysis (Step 7) was then repeated in order to develop the
mathematical model for the baseline. Results are not given in full here for sake of brevity.

4.1. Definition of the Best Operating Conditions of a System from an Energy Efficiency Perspective

An optimal starting sequence was, therefore, identified (the one corresponding to the green period
B in Figure 9) and uploaded into the central control system. Some trials were performed involving the
operators working on the plant’s technical systems and production lines and maintenance personnel,
in order to make sure that the new starting sequence proposed suited the company’s needs best.

Control charts, built using the selected baseline as a reference (Step 9), were then used for
continuous monitoring and control. In this case, the company decided to build a control system
with a slightly higher level of detail compared to the previous analysis. In particular, three CuSums
were employed: one for the whole compressed air generation system, one for Room “A” and one for
Room “B”, in order to allow an easier and faster troubleshooting. Accordingly, two control charts
for the energy performance deviations were also created: one for Room “A” and one for Room
“B”. The frequency used for the analysis also increased, aggregating data every four hours. This
allowed management to use relevant information coming from control charts observation for defining
operations and maintenance short-term strategies. It is worthy to note that some iterations of Steps 7
and 8 were needed in order to create different baselines for the two rooms (again, full details are not
given here for sake of brevity). The energy performance control results (control charts plots) for about
two months are given in Figure 10, which clearly show a stable system’s behavior apart from some
isolated issues mainly related to metering system’s faults.Energies 2019, 12, x FOR PEER REVIEW 16 of 31 
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4.2. Identification of Changes to Energy Consumption Patterns or Degradation of Energy Performances Often
Linked to Sporadic Faults or Events

Once the control system was finally up and running, the operations and maintenance team
gathered in order to discuss each single event highlighted by the control charts and to start setting the
anomalies registry up. Taking all occurred events into account, an initial classification was created
by defining a severity scale (from 1 to 4) defined according to the deviation’s entity. Then, most
likely causes for each category were listed in order to facilitate troubleshooting activities. This initial
version of the anomalies’ classification is given in Figure 11. The troubleshooting system has not
been automated yet, as data from a longer control period were needed in order to perform more
relevant analyses.
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4.3. Improved Energy Accounting

The proposed methodology was also applied to energy accounting, in order to obtain more
accurate predictions of the energy budget related to the use of compressed air in the production plant
(intended as the total cost of electricity necessary to the generation of compressed air). Budgeting
activities were performed for both compressed air generation and use, thus additional baselines
models for the two production departments using compressed air were created following the same
methodology. A new baseline was also defined for the compressed air generation system, as in this
case, a monthly frequency was chosen for data analysis. Figure 12 gives a schematic representation of
the energy accounting methodology proposed to predict the energy budget related to the compressed
air used in the production plant, highlighting the boundaries of cost/responsibility centers (Dept. 1,
Dept. 2, generation system, energy purchasing office).

From the monthly volume of production established for the following months, through the
use of two different statistical models, the expected compressed air consumption to be used by the
two departments in the plant was calculated. Then, using the sum of the expected compressed air
consumption values for the two production departments as a driver for another statistical model, the
electricity consumption of the compressed air generation system was also determined. The energy
budget was then calculated as the product between the estimated electricity consumption and the
predicted standard unit cost of electricity. Finally, the predicted standard unit cost of compressed air
produced was calculated by dividing the budget by the total amount of compressed air consumption
predicted. Table 3 gives all details related to the estimated energy budget of the compressed air system
for three months.
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Table 3. Estimated compressed air budget for the considered trimester.

ESTIMATED BUDGET

Month 1 2 3
Production Dept. 1 Units 4,047,800 3,757,201 3,294,456
Production Dept. 2 Units 5,475,148 4,427,156 5,889,159
Compressed air consumption Dept. 1 Nm3 12,805,432 11,219,241 8,693,420
Compressed air consumption Dept. 2 Nm3 15,916,589 12,785,528 17,153,518
Electricity consumption of the generation phase kWh 4,448,464 3,664,935 3,970,917
Standard unit cost of electricity €/kWh 0.158 0.158 0.158
Standard unit cost of compressed air €/m3 0.024 0.024 0.024
Estimated budget Dept. 1 € 313,362 270,638 211,023
Estimated budget Dept. 2 € 389,495 308,421 416,382
Estimated budget for the generation phase € 702,857 579,060 627,405

At the end of the trimester, once the actual flows of the energy consumed and actual standard
unit costs were known, it was possible to analyze the variations occurred between predicted values
and the actual ones to economically assess the performance of the plant in regards to production and
use of compressed air (see Table 4). Multiplying the actual standard unit cost of compressed air and
the consumption of the individual departments, individual values of budgets were calculated for the
two departments.

Table 5 reports the flexible consumption of compressed air and electricity for the considered
trimester, evaluated as described in Section 3.4. The flexible consumption of compressed air for the
two departments was estimated through the two previous statistical models using the actual volumes
of production of the two departments. Likewise, the flexible electricity consumption of the generation
system was estimated through the third statistical model, inputting the actual amount of compressed
air produced by the system.
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Table 4. Actual compressed air budget for the considered trimester.

ACTUAL BUDGET

Month 1 2 3
Production Dept. 1 Units 3,679,818 3,415,637 3,361,690
Production Dept. 2 Units 6,016,646 4,865,007 6,009,346
Compressed air consumption Dept. 1 Nm3 10,531,292 8,339,483 9,268,500
Compressed air consumption Dept. 2 Nm3 17,317,964 14,076,891 17,130,719
Electricity consumption of the generation phase kWh 4,114,206 342,4346 4,220,230
Standard unit cost of electricity €/kWh 0.159 0.159 0.159
Standard unit cost of compressed air €/m3 0.023 0.024 0.025
Estimated budget Dept. 1 € 247,372 202,558 235,587
Estimated budget Dept. 2 € 406,786 341,913 435,429
Estimated budget for the generation phase € 654,159 544,471 671,017

Table 5. Flexible consumption of compressed air and electricity for the considered trimester.

FLEXIBLE CONSUMPTION

Month 1 2 3
Compressed air consumption Dept. 1 Nm3 10,796,859 9,354,867 9,060,406
Compressed air consumption Dept. 2 Nm3 17,534,410 14,093,684 17,512,598
Electricity consumption of the generation phase kWh 4,303,499 3,401,105 4,062,650

Table 6 reports the analysis of the budget variance, distinguishing among cost/responsibility
centers and main causes. The total actual budget was lower than the predicted one in the first two
months and higher in the third month, as reported in the column ∆TOT of the group generation system.
Such a variation was mainly attributed to the lower production volumes of Department 1 (see row
∆P (units)—Dept. 1) while Department 2 showed an increased volume of production (see row ∆P
(units)—Dept. 2). In the trimester there was also a constant positive variation attributed to the price
of energy (see row ∆p—generation system). The cause was indeed an electricity price higher than
the estimated one because of a change in the procurement contract. Moreover, the performance of
the compressed air generation system was better than the predicted one in the first month whereas in
months two and three the efficiency worsened (see row ∆I—generation system). Lastly, the performance
of the two departments in the use of compressed air generally improved in the trimester except for the
performance of Department 1 in month three (see rows ∆I—Dept. 1 and Dept. 2).

Table 6. Budget variance analysis for the considered trimester.

Month 1 2 3

Budget performance—generation system

∆ TOT € −48,699 −34,589 43,612
∆I € −29,908 3672 24,898

∆P (Nm3) € −22,904 −41,685 14,494
∆p € 4114 3424 4220

Budget performance—Dept. 1

∆ TOT € −65,990 −68,081 24,564
∆I € −6499 −24,494 5051

∆P (units) € −49,152 −44,974 8908
∆p € −10,339 1387 10,605

Budget performance—Dept. 2

∆ TOT € 17,291 33,492 19,047
∆I € −5297 −405 −9270

∆P (units) € 39,590 31,556 8716
∆p € −17,002 2341 19,601
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5. Conclusions

We developed a methodology to monitor and control energy performances of significant energy
uses in industrial plants, through statistical analysis and baselining. Three different applications of the
methodology with potential impact on non-energy-related activities such as operations, maintenance
and accounting were presented, as well as their implementation in a real industrial case. The first step
of the methodology was constructing a baseline of the system energy behavior, for example through
statistical regression that correlated energy consumption to the main energy drivers. Then control
charts allowed us to validate the baseline and identify optimal operating conditions and to control the
energy performance over time and identify changes to energy consumption patterns or degradation of
the energy performance related to sporadic faults or events.

Moreover, the knowledge of the energy behavior of the CAS enabled a reliable energy accounting
system and allowed us to discern among the possible causes of budget variance.

The applicability of the proposed methodology to a real industrial environment was demonstrated
for a pharmaceutical plant. In particular, we highlighted two different maintenance-related events
as well as a quite strong dependency of the energy behavior on the set of the operating compressors,
and therefore, on the compressors’ activation sequence. Moreover, it was possible to define a first
association between the anomalies identified by the control charts and their most likely causes in order
to facilitate troubleshooting activities. Finally, the application of the proposed methodology to energy
accounting gave more accurate predictions of the energy budget related to the use of compressed air in
the departments of the production plant and helped top management in the analysis of the budget
variance, distinguishing among reasons behind the occurrences, and thus helping in the allocation of
the responsibility to different cost/responsibility centers.
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Appendix A

This appendix is dedicated to the description of the relevant contributions examined in the scientific
literature review phase of this research. Its aim is to summarize the main innovative applications and
methods implemented through the analysis of data in the domains of energy, operations, maintenance
and accounting. The research process started by using some main keywords such as “energy control”,
“energy performance control”, “energy consumption control”, “failure/fault detection”, “failure/fault
diagnosis”, “condition monitoring/control”, “accounting”, “process control”. The first results were
examined also in terms of their references in order to expand the research.

Therefore, Table A1 reports the resulting list of relevant scientific publications about control tools
in energy, process control, maintenance and accounting examined, reporting for each domain, specific
application addressed, asset on which it was applied, type of contribution, methodological approach
and presence of a specific case study.

Moreover, Figure A1 represents the evolution of publications that refer to the use of modelling
techniques for different specific applications, highlighting their increase in the recent years.
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Table A1. Summary of relevant publications about control tools in operations, maintenance and
energy accounting.

Ref. Domain Asset Specific
Application

Type of
Contribution

Case
Study

Approach
Described

[79] Capehart et al.,
2002 Accounting Industrial

plant
Energy Budget

Control
Methodological

Contribution Yes Mathematical
model

[76] Cesarotti et al.,
2009 Accounting Industrial

plant
Energy Budget

Control
Methodological

Contribution Yes Statistical model

[78] Santolamazza et al.,
2017 Accounting Industrial

plant
Energy Budget

Control
Methodological

Contribution Yes Mathematical
model

[88] Torregrossa et al.,
2018 Accounting Industrial

plant
Energy Budget

Control
Methodological

Contribution Yes Machine Learning
model

[77] Pérez-Rave et al.,
2017 Accounting Industrial

plant

General
Budget
Control

Methodological
Contribution Yes

Statistical/Machine
Learning Model

and Control Charts

[28] Benedetti et al.,
2016 Energy Building

Energy
consumption

control

Methodological
Contribution Yes

Statistical/Machine
Learning Model

and Control Charts

[29] Fan et al., 2018 Energy Building
Energy

consumption
control

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[8] Hu et al., 2012 Energy Industrial
machine

Energy
consumption

control

Methodological
Contribution Yes Statistical model

[27] Nikula et al.,
2016 Energy Boiler

Energy
consumption

control

Methodological
Contribution Yes

Statistical/Machine
Learning Model

and Control Charts

[30] Santolamazza et al.,
2018 Energy Compressor

Energy
consumption

control

Methodological
Contribution Yes

Statistical/Machine
Learning Model

and Control Charts

[31]
Shrouf and
Miragliotta,

2015
Energy Industrial

plant

Energy
consumption

control

Literature
Review/Conceptual

Contribution
No Not described

[32] Sunthornnapha,
2017 Energy Industrial

plant

Energy
consumption

control

Methodological
Contribution Yes

Different data
modelling
techniques
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Table A1. Cont.

Ref. Domain Asset Specific
Application

Type of
Contribution

Case
Study

Approach
Described

[33] Torregrossa et al.,
2017 Energy Pump

Energy
consumption

control

Methodological
Contribution Yes Machine Learning

model

[34] Amasyali and
El-Gohary, 2018 Energy Building

Energy
consumption

prediction

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[35] Christensen and
Himme, 2017 Energy Industrial

machine

Energy
consumption

prediction

Methodological
Contribution Yes Statistical model

[36] Deb et al., 2017 Energy Building
Energy

consumption
prediction

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[37] Foucquier et al.,
2013 Energy Building

Energy
consumption

prediction

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[38] Ngo, 2019 Energy Building
Energy

consumption
prediction

Methodological
Contribution Yes

Different data
modelling
techniques

[39] Pino-Mejías et al.,
2017 Energy Building

Energy
consumption

prediction

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[40] Wang et al., 2018 Energy Industrial
plant

Energy
consumption

prediction

Methodological
Contribution Yes Machine Learning

model

[55] Das et al., 2018 Energy Photovoltaic
systems

Energy
production
forecasting

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[56] Foley et al., 2012 Energy Wind
turbines

Energy
production
forecasting

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[57] Sharma and
Kakkar, 2018 Energy Photovoltaic

systems

Energy
production
forecasting

Methodological
Contribution Yes

Different data
modelling
techniques

[58] Voyant et al.,
2017 Energy Photovoltaic

systems

Energy
production
forecasting

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[59] Wang et al., 2016 Energy Wind
turbines

Energy
production
forecasting

Methodological
Contribution Yes

Different data
modelling
techniques

[42] Ahmad et al.,
2018 Energy Building Load

Management

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[43] Ahmad et al.,
2018 Energy Electrical

Grid
Load

Management

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[44] Chou and Tran,
2018 Energy Building Load

Management
Methodological

Contribution Yes
Different data

modelling
techniques

[45] Diamantoulakis et al.,
2015 Energy Electrical

Grid
Load

Management

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[46] Ferreira et al.,
2013 Energy Electrical

Grid
Load

Management
Methodological

Contribution Yes Machine Learning
model

[47] Grolinger et al.,
2016 Energy Building Load

Management
Methodological

Contribution Yes
Different data

modelling
techniques

[48] Stoyanova et al.,
2013 Energy Building Load

Management
Methodological

Contribution Yes
Statistical/Machine

Learning Model
and Control Charts

[49] Tsekouras et al.,
2008 Energy Electrical

Grid
Load

Management
Methodological

Contribution Yes Machine Learning
model

[50] Tu et al., 2017 Energy Electrical
Grid

Load
Management

Literature
Review/Conceptual

Contribution
No Not described

[51] Vázquez-Canteli
and Nagy, 2019 Energy Building Load

Management

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques
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Table A1. Cont.

Ref. Domain Asset Specific
Application

Type of
Contribution

Case
Study

Approach
Described

[52] Wei et al., 2018 Energy Building Load
Management

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[53] Yildiz et al., 2017 Energy Building Load
Management

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[54] Zhou et al., 2013 Energy Electrical
Grid

Load
Management

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[89] Debnath and
Mourshed, 2018 Energy Different

Systems
Various

applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[90] Jha et al., 2017 Energy

Different
Renewable

Energy
Systems

Various
applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[91] Koseleva and
Ropaite, 2017 Energy Building Various

applications

Literature
Review/Conceptual

Contribution
No Not described

[92] Lund et al., 2017 Energy Different
Systems

Various
applications

Literature
Review/Conceptual

Contribution
No Not described

[93] Molina-Solana et al.,
2017 Energy Building Various

applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[94] Shrouf et al.,
2014 Energy Industrial

plant
Various

applications

Literature
Review/Conceptual

Contribution
No Not described

[26] Capobianchi et al.,
2011 Energy Industrial

plant
Various

applications
Methodological

contribution Yes
Statistical/Machine

Learning Model
and Control Charts

[95] Yu et al., 2016 Energy Building Various
applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[96] Zhou et al., 2013 Energy Different
Systems

Various
applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[41] Kim and Kim,
2007 Energy Chiller

Energy
consumption

prediction

Methodological
Contribution Yes Statistical model

[63] Engelberth et al.,
2018 Maintenance Compressor Condition

Monitoring
Methodological

Contribution Yes Statistical model

[64] Santolamazza et al.,
2018 Maintenance Compressor Condition

Monitoring
Methodological

Contribution Yes
Statistical/Machine

Learning Model
and Control Charts

[65] Stetco et al.,
2019 Maintenance Wind

turbines
Condition

Monitoring

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[69] Diez-Olivan et al.,
2019 Maintenance Different

Systems

Diagnostic
and

Prognostic

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[17]
Guillén

López et al.,
2018

Maintenance Different
Systems

Diagnostic
and

Prognostic

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[70] Karim et al.,
2016 Maintenance Different

Systems

Diagnostic
and

Prognostic

Literature
Review/Conceptual

Contribution
Yes Not described

[71] Kim et al., 2014 Maintenance Industrial
plant

Diagnostic
and

Prognostic

Methodological
Contribution Yes

Different data
modelling
techniques

[72] Lee et al., 2015 Maintenance Different
Systems

Diagnostic
and

Prognostic

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[16] Lee et al., 20006 Maintenance Different
Systems

Diagnostic
and

Prognostic

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques
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Table A1. Cont.

Ref. Domain Asset Specific
Application

Type of
Contribution

Case
Study

Approach
Described

[73] Lee et al., 2014 Maintenance Different
Systems

Diagnostic
and

Prognostic

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[74] Roy et al., 2016 Maintenance Industrial
machine

Diagnostic
and

Prognostic

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[75] Vogl et al., 2016 Maintenance Industrial
plant

Diagnostic
and

Prognostic

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[66] Romeo and
Gareta, 2009 Maintenance Boiler Fault

detection
Methodological

Contribution Yes
Different data

modelling
techniques

[67] Xiao, 2016 Maintenance Industrial
plant

Fault
detection

Methodological
Contribution Yes Machine Learning

model

[68] Liu et al., 2018 Maintenance Industrial
machine

Fault
detection and

diagnosis

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[14] Qi et al., 2018 Maintenance Compressor
Fault

detection and
diagnosis

methodological
Contribution Yes Machine Learning

model

[12] Tran et al., 2015 Maintenance Chiller
Fault

detection and
diagnosis

Methodological
Contribution Yes

Statistical/Machine
Learning Model

and Control Charts

[13] Xiao et al., 2011 Maintenance Chiller
Fault

detection and
diagnosis

Methodological
Contribution Yes Statistical model

[62] Y. Zhang et al.,
2018

Process
Control

Industrial
machine

Process
Control

Methodological
Contribution Yes Statistical model

[61] Kadlec et al.,
2009

Process
Control

Industrial
plant Soft Sensor

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[60] Shang et al.,
2014

Process
Control

Industrial
plant Soft Sensor

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[87] Cesarotti et al.,
2007

Different
domains

Industrial
plant

Various
applications

Literature
Review/Conceptual

Contribution
No Not described

[9] Ge et al., 2017 Different
domains

Industrial
plant

Various
applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[10] Ge, 2017 Different
domains

Industrial
plant

Various
applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[97] Kusiak et al.,
2013

Different
domains

Wind
turbines

Various
applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[98] Lee et al., 2013 Different
domains

Different
Systems

Various
applications

Literature
Review/Conceptual

Contribution
No Not described

[99] Lee et al., 2013 Different
domains

Industrial
plant

Various
applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[100] Tao et al., 2018 Different
domains

Industrial
plant

Various
applications

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[101] J. Wang et al.,
2018

Different
domains

Industrial
plant

Various
applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques

[102] K. Zhang et al.,
2018

Different
domains

Industrial
plant

Various
applications

Literature
Review/Conceptual

Contribution
Yes

Different data
modelling
techniques

[103] Zhang et al.,
2017

Different
domains

Industrial
plant

Various
applications

Literature
Review/Conceptual

Contribution
No

Different data
modelling
techniques
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