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Abstract: We investigate the main statistical parameters of the integral over time of the fractional
Brownian motion and of a kind of pseudo-fractional Gaussian process, obtained as a classical
Gauss–Markov process from Doob representation by replacing Brownian motion with fractional
Brownian motion. Possible applications in the context of neuronal models are highlighted.
A fractional Ornstein–Uhlenbeck process is considered and relations with the integral of the
pseudo-fractional Gaussian process are provided.
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1. Introduction

In the last two decades, an increasing amount of attention has been dedicated to non-Markov
stochastic processes [1,2]. This happened in many application fields, such as that of finance, biology,
genetics, neuroscience, and so on (see, for instance, [3–6]). The motivation is essentially in the need to
design more realistic stochastic models, even if mathematically more complicated [7,8]. Such models
include memory in the mathematical description, (see, for instance, [9]). More recently, we aimed
to give a contribution in this direction and we studied at first some stochastic processes obtained as
integrals over time of Gauss–Markov (GM) processes [10–12]. Indeed, such processes, while remaining
Gaussian, are no longer of Markov-type: they preserve in some way the memory of their own time
evolution. More recently, the fractional calculus [13], and its application to the stochastic analysis [14],
provides an alternative strategy to include memory in some stochastic models. The main reason is
the non-local nature of the fractional operators such as derivatives and integrals. Similarly to what
done for integrated GM processes in [11], we then considered the fractional Riemann–Liouville (RL)
integral of order α ∈ (0, 1) of a GM process. In [15], specifically, we studied the qualitative behavior
of such integrated processes, as varying the parameter α, that turned out to have a key rule in the
determination of how much memory has to be included in the stochastic description.

An additional useful stochastic tool suitable for developing non-Markov models is the fractional
Brownian motion (FBM) [16]. This Gaussian process has properties useful for modeling those
phenomena whose temporal evolution shows some kind of dependency; indeed, FBM has stationary
increments with long-range (short) dependence if its Hurst parameter H ∈ (0, 1) is greater than 1/2
(less than 1/2). Furthermore, the FBM coincides with the classical Brownian Motion (BM) if H = 1/2.

Here, we consider a new class of stochastic processes that we call pseudo-fractional Gaussian process
(pFG), obtained by the classical Doob representation of GM processes by replacing the BM with the
FBM. We investigate the integral over time of such kind of pseudo-fractional Gaussian process. With this
aim, we firstly study the integral over time of the FBM and investigate its main statistical properties
(mean and covariance). We define the latter as the integrated FBM (IFBM).
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Note that, while in [15] the fractional RL integral of a GM process was studied, here we deal
with its fractional counterpart concerning the noise: precisely, we consider the ordinary Riemann
integral, but involving pseudo-fractional GM processes instead of the classical GM ones. In other
words, the fractional feature is shifted from the integral operator to the stochastic term that, in the
models, is involved as the noise process.

Here, we also show how varying the Hurst index H of the FBM affects the integral of the
considered process, and if this can be possibly put into relation with the fractional RL integral of a GM
process, already studied in [15].

The wealth of behavior of the integral of these new processes could be useful in the scope of
neuronal stochastic models that is a research field in which recently several fractional models have
been proposed, (see, e.g., [17,18] and references therein).

1.1. The FBM Process and Its Integral

We recall that FBM BH(t) is a continuous-time Gaussian process starting at zero, with zero mean
for all t, having the following covariance function:

E(BH(s)BH(u)) =
1
2
(u2H + s2H − |u− s|2H), (1)

where H ∈ (0, 1) is the Hurst index. For H = 1/2, the process becomes the ordinary BM, while, for
H = 1, as follows by (1), one has E(B1(s)B1(u)) = su and so B1(t) = tξ, where ξ denotes a standard
Gaussian random variable. For H > 1/2, the increments of the process turn out to be positively
correlated, while for H < 1/2 they are negatively correlated (see, e.g., [16]) . Moreover, BH(t) has
the self-similarity property, with parameter of self-similarity (or scaling exponent) H, namely, for any

c > 0, one has BH(ct) d
= cH BH(t).

FBM BH is the only Gaussian self-similar process with stationary increments, but they are not
independent (see, e.g., [19,20]); furthermore, one has the following representation of BH , in terms of
BM Bt (see, e.g., [21]) :

BH(t) =
1

Γ(H + 1/2)

(∫ 0

−∞
((t− s)H−1/2 − (−s)H−1/2)dBs +

∫ t

0
(t− s)H−1/2dBs

)
, (2)

where Γ is the Euler’s Gamma function.
Here, we focus our attention on the integral over time of the FBM, i.e.,

IH(t) =
∫ t

0
BH(s)ds

that we call the integrated FBM (IFBM). In particular, we study its statistical property; this is analogous
to what done in [15], where we have studied the Riemann–Liouville integral of order α ∈ (0, 1) of a
GM process Y(t), which is

Iα(Y)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1Y(s)ds. (3)

Some comparisons between the above processes will be provided.

1.2. Neuronal Models and Pseudo-Fractional Gaussian Processes

To explain how IFBM can be used for neuronal modeling, one can consider, as an application
example, the following model based on the coupled differential equations, for t ≥ 0:{

V′(t) = gL
Cm

VL +
η(t)
Cm

, V(0) = V0,

dη(t) = ς
τ dBH(t), η(0) = η0.

(4)
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A similar model was considered in [11] with BM, here substituted by FBM BH(t). The above model
is a modified version of a classical Integrate-and-Fire (IF) neuronal model in which the stochastic
component is classical white noise.

Specifically, V(t) represents the voltage of the neuronal membrane, Cm is the membrane
capacitance, gL the leak conductance, VL the resting (equilibrium) level potential, and τ and ς

parameters regulating the correlation of increments of η(t). The initial values V0 and η0 can be specified
constants or random variables. In this model, it appears evident the rule of the integral over time of an
FBM; indeed, the V(t) process involves the integral of FBM BH(t) that, in the physical interpretation,
includes the time evolution of the interaction with the surrounding environment. Properly, we will say
that V(t) is a simple example of IFG process, being a non-Markov process involving the integral of
the FBM.

A slightly modification of model (4) can be one in which a term I(t) of external current is
added, i.e., {

V′(t) = gL
Cm

VL +
η(t)
Cm

, V(0) = V0,

dη(t) = I(t)
τ dt + ς

τ dBH(t), η(0) = η0,
(5)

or a more complicated one in which a leaky-term is also included, i.e., the following modified Leaky
Integrated-and-Fire (LIF) model with a fractional noise:{

V′(t) = gL
Cm

VL +
η(t)
Cm

, V(0) = V0,

dη(t) = − η(t)−I(t)
τ dt + ς

τ dBH(t), η(0) = η0.
(6)

Thus, according to (4)–(6), V(t) can be written in terms of the integral over time of the Gaussian process
η(t), namely

V(t) =
∫ t

0
V′(s)ds = V0 +

gL
Cm

VL · t +
1

Cm

∫ t

0
η(s)ds,

while η(t) is a process that solves the second equation of models (4), (5) or (6), respectively. In any
case, it is possible to say that the solution process V(t) involves the integral of an FBM.

We recall that in the classical version of above models, where a BM B(t) is in place of the FBM
BH(t), the solution process V(t) is a GM process. For such kind of processes the following Doob
representation is valid, i.e.,

Y(t) = m(t) + h2(t)B(r(t)), t ≥ 0, (7)

where m(t), h1(t), h2(t) are continuous functions of t ≥ 0, which are C1 in (0,+∞) and such that
h2(t) 6= 0, and r(t) = h1(t)/h2(t) is a non-negative, differentiable function, with r′(t) > 0 for t > 0.
The GM process Y(t) defined in (7) has mean m(t) and covariance c(u, t) := cov(Y(u), Y(t)) =

h1(u)h2(t), 0 ≤ u ≤ t.
Here, in order to design a wider class of processes that could be suitable to investigate models

such as (4), (5) or (6) , we consider processes obtained by means of a formula analogous to (7), i.e.,

YH(t) = m(t) + h2(t)BH(r(t)), (8)

with BH(t) an FBM with Hurst index H. Indeed, by analogy with the definition (7) of the classical GM
process, we will consider the fractional counterpart of it, obtained by replacing in (7) the ordinary BM
B(t) with FBM BH(t); the obtained process is Gaussian, but non-Markov, since FBM is not. We call
YH(t) pseudo-fractional Gauss (pFG) process.

Notice that we use the term “pseudo-fractional Gaussian”, since “fractional Gaussian” is used
usually for self-similar GP, and YH(t) is not self-similar, in general.

In particular, the present contribution is devoted to the study the integral over time of YH(t), i.e.,

XH(t) =
∫ t

0
YH(s)ds. (9)
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The process YH(t) can be interpreted as the “velocity process” and XH(t) as the “position process”,
analogous with the Langevin equation describing the velocity of a particle subject to a random motion
in a fluid. We call XH(t) the IpFG process. We already remarked that the process YH(t) finds interesting
applications in several fields (see, e.g., the discussion in [22]). Note that, from (8), YH(t) is written in
terms of an FBM in the transformed time r(t). We point also that a different approach was followed
in [23], where the time-changed fractional Ornstein–Uhlenbeck process was studied, in which the time
change is given by the inverse of a subordinator.

The mean of YH(t) is m(t) and, by taking into account (1), its covariance function turns out to be

cov(YH(u), YH(t)) =
1
2

h2(u)h2(t)
(

r(t)2H + r(u)2H − |r(t)− r(u)|2H
)

. (10)

In Section 2, we calculate the mean and the covariance of the IFBM IH(t) and of the IpFG XH(t)
processes, providing some plots and comparing considerations.

1.3. A Fractional Ornstein–Uhlenbeck Process for Some Comparisons

In classical (non fractional) stochastic calculus, it is well known that the OU process YOU can be
constructed as the unique strong solution of the Langevin SDE:

dYOU(t) = −µYOU(t)dt + σdBt, YOU(0) = y, (11)

where µ, σ > 0 and Bt is standard BM, starting from 0. The solution of (11) can be expressed as

YOU(t) = e−µt
(

y +
∫ t

0
σeµsdBs

)
. (12)

Moreover, YOU(t) can also be written as:

YOU(t)
d
= e−µt[y + B(r(t))], (13)

which is the equality is meant in distribution, with

r(t) =
σ2

2µ

(
e2µt − 1

)
. (14)

Thus, the OU process YOU turns out to be a special case of a continuous GM process because its form
(13) is the same as (7) with m(t) = e−µty, h2(t) = e−µt and r(t) as in (14). Now, replacing in (11) the
BM with the FBM, the process ZH(t) is obtained, and it is called fractional OU (FOU) process of the
first kind in [24] (see also [23]), which is solution of the SDE:

dZH(t) = −µZH(t)dt + σdBH(t). (15)

Similarly to (12), the solution can be expressed as

ZH(t) = e−µt
(

z +
∫ t

0
σeµsdBH(s)

)
. (16)

The stochastic integral exists pathwise as a Riemann–Stieltjes integral (see [25]). Although it is not
possible to obtain a representation for ZH(t) analogous to (13), alternatively, we can consider a
pseudo-fractional OU process, defined as:

YpFOU(t) = e−µt[y + BH(r(t))], (17)
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where, for the sake of notation simplicity, we drop the dependence of YpFOU from H, and r(t) is given
by (14). We use the term “pseudo-fractional OU process”, since YpFOU(t) defined by (17) does not
satisfy, in general, the usual properties of the OU process; for instance, the mean reverting property is
not guaranteed.

Some comparisons can be done between the above processes. Indeed, for the pseudo-fractional OU
process YpFOU(t), one gets:

m(t) = ye−µt

and, from (10),

cH(u, t) =
1
2

e−µ(t+u)
(

σ2

2µ

)2H [
(e2µt − 1)2H + (e2µu − 1)2H −

∣∣∣e2µt − e2µu
∣∣∣2H]

,

which can be compared with those of ZH(t). Note that, for H = 1/2, one obtains again the variance
and covariance of (classical) OU process (11), namely:

var(Y1/2(t) =
σ2

2µ
e−2µt(e2µt − 1), c1/2(u, t) =

σ2

2µ

(
e−µ(t−u) − e−µ(t+u)

)
.

In Section 3, in order to find relations between the FOU and the IFBM, we evaluate the covariance of
the fractional OU process ZH(t) in terms of the covariance of FBM BH(t) and of IFBM IH(t).

2. Integrated Fractional Gaussian Process

We start with studying the integral over time of FBM:

IH(t) =
∫ t

0
BH(s)ds. (18)

Note that IH(t) has a self-similarity property with scaling exponent H + 1, since, for any c > 0, one

has IH(ct) d
= cH+1 IH(t). Moreover, IH(t) is a Gaussian process, whose variance is:

var(IH(t)) = E
(∫ t

0
BH(s)ds ·

∫ t

0
BH(u)du

)
=
∫ t

0
ds
∫ t

0
duE(BH(s)BH(u))

=
∫ t

0
ds
∫ t

0
du

1
2
(u2H + s2H − |u− s|2H)

=
∫ t

0
du
∫ u

0
ds

1
2
(u2H + s2H − (u− s)2H) +

∫ t

0
du
∫ t

u
ds

1
2
(u2H + s2H − (s− u)2H)

= 2
∫ t

0
du
∫ u

0
ds

1
2
(u2H + s2H − (u− s)2H) =

t2H+2

2H + 2
. (19)

Note some analogy with the variance of the Riemann–Liouville integral of BM, Iα(B)(t) (see (3) for
the definition), for which var(Iα(B)(t)) = t2α+1

(2α+1)Γ2(α+1) , α ∈ (0, 1) (see [15]). In fact, for 0 < H < 1/2,

taking α = H + 1/2, we get var(IH(t)) = Γ2(H + 3/2)var(IH+1/2(B)(t)); in general, for H ∈ (0, 1),

we have var(IH(t)) = (2H+1)Γ2(H+1)t
2H+2 · var(IH(B)(t)). These equalities for the variances allow for

relating the behavior of an integral of FBM BH(t) to that of the RL integral of BM Bt, when varying the
Hurst index H ∈ (0, 1).

In Figure 1, we show the shape of the variance var(IH(t)) as a function of t > 0, for some values
of H ∈ (0, 1).
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Figure 1. Plot of the variance of IH(t) =
∫ t

0 BH(s)ds, given by (19), as a function of t for various
values of H ∈ (0, 1); from bottom to top, with respect to the higher value at the right of t-axes,
H = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 0.9, 0.99 .

For u ≤ t, the covariance function of IH(t) is:

cov(IH(u), IH(t)) = E
[∫ u

0
BH(s)ds

∫ t

0
BH(v)dv

]

=
∫ u

0
ds
∫ t

0
dvE(BH(s)BH(v)) =

∫ u

0
ds
∫ t

0
dv

1
2

(
v2H + s2H − |v− s|2H

)
=
∫ u

0
ds
∫ u

0
dv

1
2
(v2H + s2H − |v− s|2H) +

∫ u

0
ds
∫ t

u
dv

1
2
(v2H + s2H − (v− s)2H).

The first double integral is equal to u2H+2

2H+2 , because of (19); thus, one gets:

cov(IH(u), IH(t)) =
u2H+2

2H + 2
+

1
2

∫ u

0
ds
∫ t

u

[
v2H + s2H − (v− s)2H

]
dv

=
u2H+2

2H + 2
+

1
2(2H + 1)

[
ut2H+1 + tu2H+1 +

(t− u)2H+2

2H + 2
− 2u2H+2 − t2H+2 − u2H+2

2H + 2

]
. (20)

Of course, for u = t, one obtains again the expression (19) of the variance of IH(t).
Notice that, for H = 1/2, one has var(IH(t)) = t3/3, and cov(IH(u), IH(t)) = u2(t/2− u/6),

u ≤ t, which are, respectively, the variance and covariance function of the integral of (ordinary) BM,
namely the fractional Riemann–Liouville integral of BM, of order α = 1 (see [15]).

As we can see, for fixed u > 0 and H ∈ (0, 1), the covariance function cov(IH(u), IH(t)) of
IH(t) =

∫ t
0 BH(s)ds is increasing as a function of t ≥ u, while, for fixed u and t, it first decreases as a

function of H, then it increases, i.e., it admits a minimum.
In Figure 2, we plot cov(IH(u), IH(t)) given by (20), as a function of t > u, for u = 1 fixed, and

various values of H ∈ (0, 1). This figure presents some analogies with Figure 1 of [15], where the
covariance function of the fractional Riemann–Liouville integral of BM of order α ∈ (0, 1) is shown for
various values of α.

In Figure 3, we plot the same covariance as a function of H ∈ (0, 1), for u = 1 and t = 2.
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Figure 2. Plot of the covariance function of IH(t) =
∫ t

0 BH(s)ds, given by (20), as a function of t > u,
for u = 1 fixed, and various values of H ∈ (0, 1); from bottom to top, with respect to the higher value
at the right of t-axes, H = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 0.9, 0.99 .
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Figure 3. Plot of the covariance function of IH(t) =
∫ t

0 BH(s)ds, given by (20), as a function of H ∈ (0, 1),
for u = 1 and t = 2.

Now, we consider the PFG process YH(t) given by (8). The integral over time of YH(t) is:

XH(t) =
∫ t

0
YH(s)ds =

∫ t

0
(m(s) + h2(s)BH(r(s)))ds, (21)

and it is again a Gaussian process (not necessarily self-similar); we call it an integrated
pseudo-fractional Gaussian (IpFG) process. By proceeding as before for the integral of FBM IH(t), we
study the statistical parameters of IpFG process XH(t). The mean of XH(t) is equal to

∫ t
0 m(s)ds, of

course; for 0 ≤ u ≤ t, the covariance function is:

cH(u, t) := cov(XH(u), XH(t)) = E
[∫ u

0
h2(s)BH(r(s))ds ·

∫ t

0
h2(v)BH(r(v))dv

]
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=
∫ u

0
ds
∫ t

0
dvh2(s)h2(v)E[BH(r(s))BH(r(v))]

=
∫ u

0
ds
∫ t

0
dvh2(s)h2(v) ·

1
2

(
r2H(s) + r2H(v)− |r(s)− r(v)|2H

)
=
∫ u

0
ds
∫ s

0
dvh2(s)h2(v) ·

1
2

(
r2H(s) + r2H(v)− |r(s)− r(v)|2H

)
+
∫ u

0
ds
∫ u

s
dvh2(s)h2(v) ·

1
2

(
r2H(s) + r2H(v)− |r(s)− r(v)|2H

)
+
∫ u

0
ds
∫ t

u
dvh2(s)h2(v) ·

1
2

(
r2H(s) + r2H(v)− |r(s)− r(v)|2H

)
= 2

∫ u

0
ds
∫ s

0
dvh2(s)h2(v) ·

1
2

(
r2H(s) + r2H(v)− (r(s)− r(v))2H

)
+
∫ u

0
ds
∫ t

u
dvh2(s)h2(v) ·

1
2

(
r2H(s) + r2H(v)− (r(v)− r(s))2H

)
. (22)

Taking u = t, one gets the variance:

var(XH(t)) = E
(∫ t

0
h2(s)BH(r(s))ds ·

∫ t

0
h2(u)BH(r(u))du

)

=
∫ t

0
ds
∫ s

0
dvh2(s)h2(v)

(
r2H(s) + r2H(v)− (r(s)− r(v))2H

)
. (23)

For H = 1/2, one obtains covariance and variance of ordinary integral of a GM process (see [11]).
In conclusion, the covariance function and the variance of the IpFG process XH(t), i.e., the integral

of pFG process YH(t) defined by (8), can be calculated substituting the function r(t) in (22) and (23),
though formal calculations of the integrals involved are not easy, and sometimes it is more convenient
to resort to numerical computation.

The knowledge of the covariance function of the IpFG process allows for studying the qualitative
behavior of phenomena, especially in the framework of stochastic neuronal models, whose evolution
is modeled by an IpFG process.

3. Comparisons with a Particular Fractional OU

We consider the process ZH(t) driven by Equation (15) with σ = 1, already introduced by
Kaarakka and Salminen ([24]), and called the fractional OU process of the first kind, with initial
condition ZH(0) = z, where z is an assigned random variable. The solution process ZH(t) can be
written as in (16), and using integration (pathwise) by parts in the Riemann–Stieltjes integral of (16),
we can also write

ZH(t) = e−µt
(

z +
∫ t

0
eµsdBH(s)

)
= e−µtz + BH(t)− µe−µt

∫ t

0
eµsBH(s)ds. (24)

The process ZH(t) is not a pFG process, but it involves the FBM and a particular weighted integral
of FBM. It has mean:

E(ZH(t)) = e−µtE(z).
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Assuming E(z) = 0, only for simplicity in writing, we show how its covariance can be written in terms
of the covariance of FBM and IFBM; indeed, for s ≤ t, we have:

E(ZH(s)ZH(t))= E
[(

e−µsz+BH(s)−µe−µs
∫ s

0
eµwBH(w)dw

)(
e−µtz+BH(t)−µe−µt

∫ t

0
eµvBH(v)dv

)]
= e−µse−µtVar(z) + E(BH(s)BH(t))

− µe−µtE
(

BH(s)
∫ t

0
eµvBH(v)dv

)
− µe−µsE

(
BH(t)

∫ s

0
eµwBH(w)dw

)
+ µ2e−µse−µtE

(∫ s

0
eµwBH(w)dw ·

∫ t

0
eµvBH(v)dv

)
. (25)

Finally, the covariance of ZH(t) as function of covariance E [BH(s)BH(t)] of FBM has the
following expression:

E(ZH(s)ZH(t))= e−µse−µtVar(z) + E [BH(s)BH(t)]

− µe−µt
∫ t

0
eµvE [BH(s)BH(v)] dv− µe−µs

∫ s

0
eµwE [BH(t)BH(w)] dw

+ µ2e−µse−µt
∫ s

0
eµw

∫ t

0
eµvE [BH(w)BH(v)] dwdv. (26)

In addition, we can also make evident the relation of process ZH(t) with the IFBM IH(t). Indeed,
recalling that BH(0) = 0, we can write

∫ t

0
eµvBH(v)dv = eµt IH(t)− µ

∫ t

0
eµv IH(v)dv

and, coming back to (25), we consider the term in the last parenthesis, and again we proceed by
applying integration by parts in the following way:

E
[∫ s

0
eµwBH(w)dw ·

∫ t

0
eµvBH(v)dv

]
= E

[(
eµs IH(s)− µ

∫ s

0
eµw IH(w)dw

)(
eµt IH(t)− µ

∫ t

0
eµv IH(v)dv

)]
= eµ(s+t)RH(s, t)− µeµs

∫ t

0
eµvRH(s, v)dv− µeµt

∫ s

0
eµwRH(t, w)dw

+ µ2
∫ s

0
eµw

∫ t

0
eµvRH(w, v)dvdw, (27)

where we set RH(s, t) = Cov(IH(s)IH(t)), i.e., (20). Finally, if we pose CH(s, t) = E(BH(s)BH(t)),
i.e., (1), taking into account (27), the following form of the covariance of ZH(t) holds:

E(ZH(s)ZH(t))= e−µ(s+t)Var(z) + CH(s, t)

− µe−µt
∫ t

0
eµvCH(s, v)dv− µe−µs

∫ s

0
eµwCH(t, w)dw

+ µ2RH(s, t)− µ3e−µt
∫ t

0
eµvRH(s, v)dv− µ3e−µs

∫ s

0
eµwRH(t, w)dw

+ µ4e−µ(s+t)
∫ s

0
eµw

∫ t

0
eµvRH(w, v)dwdv. (28)
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Finally, re-ordering, we obtain the following representation:

E(ZH(s)ZH(t))= e−µ(s+t)Var(z) + CH(s, t) + µ2RH(s, t)

− µe−µt
∫ t

0
eµv
[
CH(s, v) + µ2RH(s, v)

]
dv

− µe−µs
∫ s

0
eµw

[
CH(t, w) + µ2RH(t, w)

]
dw

+ µ4e−µ(s+t)
∫ s

0
eµw

∫ t

0
eµvRH(w, v)dwdv. (29)

Thus, the covariance of ZH(t) can be written in terms of the variance of the initial value z,
the covariance, CH(·, ·), of FBM BH(t), the covariance, RH(·, ·), of IFBM IH(t), and some integrals
involving functions of CH(·, ·) and RH(·, ·).

As a final remark, we point out that the fractional OU process ZH(t) can also be represented by
using FBM BH(t), IFMB IH(t), and the weighted integrated process of IH(t), i.e.,

ZH(t) = e−µtz + BH(t)− µIH(t) + µ2e−µt
∫ t

0
eµs IH(s)ds.

The last expression of ZH(t) can be used to design future neuronal models in which the stochastic
evolution of the neuronal potential is described as a function of different dynamics modeled by the
FBM and its integrals.

4. Conclusions and Final Remarks

In the present paper, we considered a new class of stochastic processes that we called a
pseudo-fractional Gaussian process (pFG): they are obtained by the classical Doob representation of
GM processes by replacing ordinary Brownian motion (BM) with fractional Brownian motion (FBM)
with a Hurst index H ∈ (0, 1), We investigated the integral over time of such kind of pseudo-fractional
Gaussian process; precisely, we studied the integral over time of the FBM and investigated its main
statistical properties (mean and covariance). We defined the latter as the integrated FBM (IFBM).

Actually, GM processes and their time integrals have important applications in a variety of
fields: in finance mathematics, in queueing theory, economy and other applied sciences, and mostly
in computational neuroscience: especially in this context, there is the need to describe complex
phenomena whose time evolution is affected by the history of their own behavior and by long range
memory effects of different natures, which require to design more elaborate mathematical models
relying on integrals over time of the involved stochastic processes. While in [15] the fractional RL
integral of a GM process was studied, here we have dealt with its fractional counterpart concerning the
noise: precisely, we have considered the ordinary Riemann integral, but involving pseudo-fractional
GM processes instead of the classical GM ones. In other words, the fractional feature is shifted from the
integral operator to the stochastic term that in the models is involved as the noise process. In fact, we
have considered a pseudo-fractional Gauss process of the form YH(t) = m(t) + h2(t)BH(r(t)), where
BH(t) is FBM with Hurst index H, and m(t), h2(t), r(t) are C1−functions. Then, we have studied the
main statistical properties of the integral over time of YH(t), namely the integrated pseudo-fractional
Gauss (IpFG) process; we have found how varying the Hurst index H of the FBM affects its behavior,
and we have put it into relation with the behavior of the fractional RL integral of the Gaussian Markov
process Y1/2(t), already studied in [15]. (Y1/2(t) is obtained by replacing FBM with BM). Moreover, as
an example of application, we have considered a particular fractional OU process ZH(t), showing that
its covariance function can be written in terms of the covariance functions of FBM, and IFBM; from
this, it follows that the study of the IFBM provides useful information about the statistical properties
of ZH(t).
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The wealth of behavior of the integral of the new kind of processes YH(t) could be useful in the
scope of neuronal stochastic models, which is a research field in which recently several fractional
models have been proposed (see, e.g., [17,18] and references therein).
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